王素玲,韓 衛(wèi),何路軍,王艷彬,王 切
(1.河北省血液中心檢驗科,河北 石家莊 050071;2.河北醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖學(xué)教研室,河北 石家莊 050017)
·論 著·
去白懸浮紅細胞儲存過程中ATP、2,3-DPG含量變化與氧化應(yīng)激的相關(guān)性分析
王素玲1,韓 衛(wèi)1,何路軍1,王艷彬1,王 切2*
(1.河北省血液中心檢驗科,河北 石家莊 050071;2.河北醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖學(xué)教研室,河北 石家莊 050017)
目的探討去白懸浮紅細胞儲存過程中三磷酸腺苷(adenosine triphosphate,ATP)、2,3-二磷酸甘油酸(2,3-diphosphoglycerate,2,3-DPG)含量變化與氧化應(yīng)激的相關(guān)性。方法采集志愿者血液,制備去白懸浮紅細胞,于2~6 ℃保存。于保存7 d、14 d、28 d、42 d時,應(yīng)用熒光酶標(biāo)儀測定去白懸浮紅細胞內(nèi)活性氧族(reactive oxygen species, ROS)含量,采用分光光度法測定細胞外過氧化氫(hydrogen peroxide,H2O2)含量,采用化學(xué)比色法測定ATP含量,采用紫外測試法測定2,3-DPG含量。對去白懸浮紅細胞內(nèi)ROS、ATP、2,3-DPG和細胞外H2O2含量與儲存時間進行相關(guān)性分析;對去白懸浮紅細胞內(nèi)ATP、2,3-DPG含量與ROS、H2O2含量進行相關(guān)性分析。結(jié)果 隨著儲存時間的延長,去白懸浮紅細胞內(nèi)ROS含量和細胞外H2O2含量均明顯升高,保存42 d的ROS和H2O2含量明顯高于保存7 d、14 d和28 d紅細胞的ROS和H2O2含量,且ROS和H2O2含量與儲存時間均呈正相關(guān)。去白懸浮紅細胞內(nèi)ATP、2,3-DPG含量卻明顯降低,保存42 d的ATP、2,3-DPG含量明顯低于保存7 d、14 d和28 d紅細胞的ATP、2,3-DPG含量,并且ATP、2,3-DPG含量與儲存時間均呈負相關(guān)。去白懸浮紅細胞內(nèi)ATP、2,3-DPG含量與ROS、H2O2含量也呈負相關(guān)。結(jié)論隨儲存時間延長,去白懸浮紅細胞內(nèi)ATP和2,3-DPG含量逐漸降低,與紅細胞內(nèi)氧化應(yīng)激反應(yīng)逐漸增強密切相關(guān)。
血液保存;腺苷三磷酸;2,3-二磷酸甘油酸
紅細胞輸注是臨床上提高血液運氧能力,改善組織缺氧狀態(tài)的一種重要治療手段。但隨儲存時間的延長,紅細胞會發(fā)生“儲存損傷”[1],明顯的改變?yōu)槿姿嵯佘?adenosine triphosphate,ATP)、2,3-二磷酸甘油酸(2,3-diphosphoglycerate, 2,3-DPG)減少。這不僅降低了紅細胞的運氧能力,還可能引起嚴重的輸血后并發(fā)癥,增加患者病死率[2-5]。研究表明氧化應(yīng)激所產(chǎn)生的大量活性氧族(reactive oxygen species, ROS)是導(dǎo)致紅細胞儲存損傷的重要機制之一[6-7]。懸浮紅細胞是目前國內(nèi)外臨床上應(yīng)用最為廣泛的血液制劑,在懸浮紅細胞儲存過程中,ATP、2,3-DPG的含量變化與細胞內(nèi)外氧化應(yīng)激水平的相關(guān)性,尚未見報道。本研究將去白懸浮紅細胞于2~6 ℃儲存,分別于儲存第7、14、28、42 d觀察去白懸浮紅細胞內(nèi)ROS、ATP、2,3-DPG和細胞外過氧化氫(hydrogen peroxide, H2O2)含量變化,并進行ATP、2,3-DPG含量與ROS,H2O2含量的相關(guān)性分析,報告如下。
1.1 去白懸浮紅細胞的制備及處理 全血采自6例健康獻血者,每例采血400 mL。將采集到的血液標(biāo)本按照國家《全血及成分血質(zhì)量要求》[8]的規(guī)定進行乙型肝炎病毒、丙型肝炎病毒、人類免疫缺陷病毒、梅毒螺旋體等經(jīng)輸血傳播病原體檢測。檢驗合格后的血液嚴格按照《血站技術(shù)操作規(guī)程(2012版)》[9]操作步驟制備成去白懸浮紅細胞。采用無菌接合機將去白懸浮紅細胞分裝到4個空血袋內(nèi),分為7 d組、14 d組、28 d組和42 d組,然后將各組血液均置于2~6 ℃保存。分別于貯存的7 d、14 d、28 d、42 d觀察各組去白懸浮紅細胞內(nèi)ROS、ATP、2,3-DPG含量及細胞外H2O2含量變化。
1.2 主要試劑 ROS檢測試劑盒為碧云天生物技術(shù)研究所產(chǎn)品,H2O2測定試劑盒、ATP測定試劑盒、血紅蛋白測定試劑盒均為南京建成科技有限公司產(chǎn)品,2,3-DPG測定試劑盒為德國Roche公司產(chǎn)品。
1.3 去白懸浮紅細胞內(nèi)ROS含量測定 取200 μL懸浮紅細胞,2 000 r/min 離心5 min,棄上清。加入2倍體積生理鹽水,輕輕洗滌紅細胞,2 000 r/min 離心5 min,棄上清。按上述步驟將紅細胞洗滌3次。向紅細胞沉淀內(nèi)加入200 μL生理鹽水懸浮細胞,吸取50 μL細胞懸液并加入450 μL生理鹽水,將細胞稀釋10倍。吸取100 μL稀釋的細胞懸液,2 000 r/min 離心5 min,棄上清,加入稀釋好的DCFH-DA(1∶1 000生理鹽水稀釋) 200 μL。于37 ℃細胞培養(yǎng)箱內(nèi)孵育30 min,每隔5 min顛倒混勻1次。2 000 r/min 離心5 min,棄上清,終止反應(yīng)。用200 μL生理鹽水將紅細胞洗滌3次。加入等體積RIPA細胞裂解液將細胞裂解。將細胞裂解產(chǎn)物加入到黑色96孔檢測板內(nèi),通過熒光酶標(biāo)儀測定熒光值(激發(fā)波長488 nm,發(fā)射波長525 nm)。吸取20 μL細胞裂解產(chǎn)物按試劑盒操作說明測定其血紅蛋白含量。通過熒光值與血紅蛋白值之比表示紅細胞內(nèi)ROS含量。
1.4 去白懸浮紅細胞內(nèi)ATP含量測定 檢測步驟按試劑盒操作說明進行。
1.5 去白懸浮紅細胞內(nèi)2,3-DPG含量測定 取1 mL懸浮紅細胞于2 500 r/min 4 ℃離心10 min,棄上清。向紅細胞沉淀內(nèi)加入5 mL冰的高氯酸(0.6 mol/L)立即混勻。5 000 r/min 4 ℃離心10 min后,吸取4 mL無色上清。在上清內(nèi)加入0.5 mL 2.5 mol/L碳酸鉀,冰浴2 h。5 000 r/min 4 ℃離心10 min后去除高氯酸鹽沉淀,取0.1 mL上清用于檢測。檢測步驟按試劑盒操作說明進行。
1.6 去白懸浮紅細胞外H2O2含量測定 收集1 mL儲存的去白懸浮紅細胞,3 000 r/min 4 ℃離心10 min,收集上清,用于H2O2含量測定。檢測步驟按試劑盒操作說明進行。
1.7 統(tǒng)計學(xué)方法 應(yīng)用SPSS 13.0統(tǒng)計學(xué)軟件處理數(shù)據(jù)。計量資料比較分別采用單因素方差分析和SNK-q檢驗;相關(guān)性采用Pearson相關(guān)分析。P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 去白懸浮紅細胞內(nèi)ROS、ATP、2,3-DPG和細胞外H2O2含量變化 隨著紅細胞保存時間的延長,ROS和 H2O2含量呈逐漸升高趨勢,保存14 d、28 d的紅細胞內(nèi)ROS含量高于保存7 d,保存42 d的紅細胞內(nèi)ROS含量又高于保存7 d、14 d和28 d(P<0.05);保存28 d和42 d的紅細胞外H2O2含量高于保存7 d和14 d,保存42 d的紅細胞外H2O2含量高于保存28 d(P<0.05);隨著保存時間的延長,紅細胞內(nèi)ATP和2,3DPG含量呈逐漸下降趨勢,保存14 d、28 d、42 d的紅細胞內(nèi)ATP和2,3-DPG含量低于保存7 d,保存42 d的紅細胞內(nèi)ATP含量低于保存14 d和28 d(P<0.05);保存28 d和42 d的紅細胞內(nèi)2,3-DPG含量低于保存14 d,保存42 d的紅細胞內(nèi)2,3-DPG含量少于保存28 d(P<0.05)。見表1。
表1 不同保存時間ROS、H2O2、ATP和2,3-DPG比較Table 1 The comparison of ROS, H2O2, ATP and 2,3-DPG in different storage time
*P<0.05與7 d比較P<0.05與14 d比較 △P<0.05與28 d比較(SNK-q檢驗)
2.2 相關(guān)性分析 去白懸浮紅細胞內(nèi)ROS及細胞外H2O2含量與儲存時間呈正相關(guān)(P<0.01);去白懸浮紅細胞內(nèi)ATP、2,3-DPG含量與儲存時間呈負相關(guān)(P<0.01);ATP、2,3-DPG含量與ROS和H2O2含量呈負相關(guān)(P<0.01)。見表2,3。
表2 去白懸浮紅細胞儲存中ROS、H2O2、ATP、2,3-DPG與儲存時間的相關(guān)性分析 Table 2 The correlation between ROS,H2O2,ATP, 2,3-DPG and storage time
表3 去白懸浮紅細胞儲存中ATP、2,3-DPG與ROS、H2O2的相關(guān)性分析 Table 3 The correlation between ATP, 2,3-DPG and ROS,H2O2 during storage of suspended red blood cells without leukocyte
去白懸浮紅細胞是目前國內(nèi)外臨床應(yīng)用最為廣泛的血液制劑,適用于大多數(shù)需要補充紅細胞、提高血液攜氧能力的患者,也是改善急性大出血、嚴重創(chuàng)傷、器官移植等大量失血患者機體缺氧狀態(tài)的一種主要治療手段。但隨儲存時間的延長,紅細胞會發(fā)生儲存損傷。實驗研究和臨床調(diào)查均表明,儲存損傷紅細胞的運氧能力已降低,輸注長時間保存的紅細胞還可能增加腎衰竭、敗血癥、感染、多器官功能衰竭等并發(fā)癥發(fā)生率,甚至增加患者的病死率[10-14]。因此,去白懸浮紅細胞儲存過程中的損傷變化已引起高度重視。
紅細胞富含氧氣和血紅蛋白。在儲存過程中,血紅蛋白會不斷發(fā)生自動氧化,在這個過程中會有大量ROS產(chǎn)生,如O2-、OH和H2O2等,ROS與紅細胞膜內(nèi)的脂質(zhì)、重要活性蛋白、結(jié)構(gòu)蛋白發(fā)生過氧化反應(yīng),改變膜的結(jié)構(gòu)和功能,引起細胞損傷甚至死亡[15]。這是引起紅細胞儲存損傷的重要機制之一。本研究結(jié)果顯示,隨著儲存時間的延長,去白懸浮紅細胞內(nèi)ROS含量和細胞外H2O2含量都逐漸增加;在去白懸浮紅細胞儲存過程中,紅細胞內(nèi)ROS含量與儲存時間、細胞外H2O2含量與儲存時間均呈正相關(guān)。表明隨著去白懸浮紅細胞儲存時間延長,細胞內(nèi)外的ROS含量都逐漸增加,即去白懸浮紅細胞內(nèi)外的氧化應(yīng)激反應(yīng)隨儲存時間延長而增強。
ATP是紅細胞內(nèi)的能量物質(zhì),其濃度的高低是判斷紅細胞活性的重要指標(biāo)之一,對維持紅細胞的正常代謝、結(jié)構(gòu)和功能至關(guān)重要。2,3-DPG常被作為紅細胞攜氧能力的標(biāo)志物。當(dāng)其與血紅蛋白結(jié)合時,即降低了血紅蛋白與氧的親和力,從而促進氧合血紅蛋白釋放氧。因此, ATP和2,3-DPG的含量高低是判斷儲存紅細胞保存質(zhì)量的重要指標(biāo)[6]。本研究結(jié)果顯示,隨著儲存時間的延長,去白懸浮紅細胞內(nèi)的ATP和2,3-DPG含量明顯逐漸降低;在去白懸浮紅細胞儲存過程中,去白懸浮紅細胞內(nèi)ATP和2,3-DPG含量與儲存時間均呈負相關(guān)。表明隨著儲存時間的延長,去白懸浮紅細胞內(nèi)的能量物質(zhì)減少,攜氧能力降低,即隨去白懸浮紅細胞隨儲存時間的延長逐漸發(fā)生了儲存損傷。
隨著儲存時間的延長,去白懸浮紅細胞內(nèi)外的ROS含量均逐漸增加,而標(biāo)志紅細胞保存質(zhì)量的ATP和2,3-DPG含量卻逐漸降低,兩者之間是否具有相關(guān)性?本研究結(jié)果顯示,在去白懸浮紅細胞儲存過程中,紅細胞內(nèi)的ATP和2,3-DPG含量與細胞內(nèi)ROS、細胞外H2O2含量均呈負相關(guān)。表明去白懸浮紅細胞內(nèi)的ATP和2,3-DPG含量的降低與細胞內(nèi)外氧化應(yīng)激反應(yīng)增強密切相關(guān);隨著儲存時間的延長,氧化應(yīng)激可能是導(dǎo)致去白懸浮紅細胞儲存損傷的主要原因之一。
總之,在懸浮紅細胞儲存過程中,隨著儲存時間的延長,去白懸浮紅細胞內(nèi)ATP和2,3-DPG含量的逐漸降低與細胞內(nèi)外氧化應(yīng)激反應(yīng)增強密切相關(guān)。這將為降低紅細胞“儲存損傷”、改善紅細胞儲存質(zhì)量提供一定的理論依據(jù)。
[1] Kim-Shapiro DB,Lee J,Gladwin MT. Storage lesion:role of red blood cell breakdown[J]. Transfusion,2011,51(4):844-851.
[2] Berra L,Pinciroli R,Stowell CP,et al. Autologous transfusion of stored red blood cells increases pulmonary artery pressure[J]. Am J Respir Crit Care Med,2014,190(7):800-807.
[3] Karkouti K. From the Journal archives:the red blood cell storage lesion:past,present,and future[J]. Can J Anaesth,2014,61(6):583-586.
[4] Shimmer C,Hamouda K,Ozkur M,et al. Influence of storage time and amount of red blood cell transfusion on postoperative renal function:an observational cohort study[J]. Heart Lung Vessel,2013,5(3):148-157.
[5] Roback JD. Vascular effects of the red blood cell storage lesion[J]. Hematology Am Soc Hematol Educ Program,2011,2011:475-479.
[6] Orlov D,Karkouti K. The pathophysiology and consequences of red blood cell storage[J]. Anaesthesia,2015,70(Suppl 1):29-37,e9-12.
[7] Chaudary R,Katharia R. Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage[J]. Blood Transfus,2012,10(1):59-62.
[8] 中國國家標(biāo)準(zhǔn)化管理委員會.全血及成分血質(zhì)量要求[S].北京:中華人民共和國標(biāo)準(zhǔn)化管理委員會,2012:4.
[9] 中華人民共和國衛(wèi)生部.血站技術(shù)操作規(guī)程(2012版)[S].北京:中華人民共和國衛(wèi)生部,2012:7-10.
[10] Weinberg JA,MacLennan PA,Vandromme-Cusick MJ,et al. The deleterious effect of red blood cell storage on microvascular response to transfusion[J]. J Trauma Acute Care Surg,2013,75(5):807-812.
[11] Reynolds JD,Bennett KM,Cina AJ,et al. S-nitrosylation therapy to improve oxygen delivery of banked blood[J]. Proc Natl Acad Sci USA,2013,110(28):11529-11534.
[12] Wang D,Sun J,Solomon SB,et al. Transfusion of older stored blood and risk of death:a meta-analysis[J]. Transfusion,2012,52(6):1184-1195.
[13] Redlin M,Habazettl H,Schoenfeld H,et al. Red blood cell storage duration is associated with various clinical outcomes in pediatric cardiac surgery[J]. Transfus Med Hemother,2014,41(2):146-151.
[14] Dunn LK,Thiele RH,Ma JZ,et al. Duration of red blood cell storage and outcomes following orthotopic liver transplantation[J]. Liver Transpl,2012,18(4):475-481.
[15] Raval JS,Fontes J,Banerjee U,et al. Ascorbic acid improves membrane fragility and decreases haemolysis during red blood cell storage[J]. Transfus Med,2013,23(2):87-93.
(本文編輯:許卓文)
Correlation analysis between ATP, 2,3-DPG concentration in suspended red blood cells without leukocyte and Oxidative stress during storage
WANG Su-ling1, HAN Wei1, HE Lu-jun1, WANG Yan-bin1, WANG Qie2*
(1.DepartmentofClinicalLaboratory,HebeiBloodCenter,Shijiazhuang050071,China;2.DepartmentofHumanAnatomy,theSchoolofBasicMedicalSciences,HebeiMedicalUniversity,Shijiazhuang050017,China)
Objective To investigate the correlation between the change of adenosine triphosphate(ATP), 2,3-diphosphoglycerate(2,3-DPG) concentration and oxidative stress level in suspended red blood cells without leukocyte during storage. Methods The blood of volunteers were collected to prepare suspended red blood cells without leukocyte. The suspended red blood cells were stored at 2-6 ℃. On day 7, day 14, day 28 and day 42 of storage, the concentration of reactive oxygen species(ROS) in red blood cells was detected by fluorescence microplate reader, the concentration of hydrogen peroxide(H2O2) outside cell was detected with spectrophotometric method, the concentration of ATP was detected with chemical chromatometry, the 2,3-DPG was detected with Uv test method. Correlation analysis between the ROS, H2O2, ATP, 2,3-DPG and storage time were carried out, respectively. Correlation analysis between ATP, 2,3-DPG and ROS, H2O2were carried out, respectively. Results With the extension of storage time, the concentration of ROS and H2O2were significantly increased, the ROS and H2O2content on day 42 of storage were significantly higher than that of day 7, day 14 and day 28. There were positive correlation between ROS and storage time, between H2O2and storage time. But with the extension of storage time, the concentration of ATP and 2,3-DPG were significantly decreased. The ATP and 2,3-DPG content on day 42 of storage were significantly lower than that of day 7, day 14 and day 28. There were negative correlation between ATP and storage time, between 2,3-DPG and storage time. There were negative correlation between ATP and ROS, between ATP and H2O2, between 2,3-DPG and ROS, between 2,3-DPG and H2O2. Conclusion With the extension of storage time, the concentration of ATP and 2,3-DPG in suspended red blood cells without leukocyte were gradually reduced, which is closely related with the increasing of oxidative stress reaction.
blood preservation; adenosine triphosphate; 2,3-diphosphoglycerate
2016-02-06;
2016-03-03
河北省科技計劃項目(13277717D)
王素玲(1976-),女,河北玉田人,河北省血液中心主管檢驗師,醫(yī)學(xué)博士,從事血液保存方法的改進相關(guān)研究。
*通訊作者。E-mail:wangqie1012@163.com
R31.122;R954
A
1007-3205(2017)02-0192-04
10.3969/j.issn.1007-3205.2017.02.017