• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      如何通過滲透數(shù)學(xué)思想方法提高學(xué)生思維素質(zhì)

      2017-02-26 06:58:06江蘇省沭陽高級中學(xué)
      數(shù)學(xué)大世界 2017年5期
      關(guān)鍵詞:題目知識點思想

      江蘇省沭陽高級中學(xué) 魏 兵

      如何通過滲透數(shù)學(xué)思想方法提高學(xué)生思維素質(zhì)

      江蘇省沭陽高級中學(xué) 魏 兵

      高中數(shù)學(xué)教學(xué)中有一個貫穿始終的關(guān)鍵點就是數(shù)學(xué)思想方法。在所有的數(shù)學(xué)知識中,思想方式是其靈魂所在,它引導(dǎo)學(xué)生認(rèn)識理解數(shù)學(xué)并發(fā)展和利用數(shù)學(xué)。高中數(shù)學(xué)課堂教學(xué)中必須重視數(shù)學(xué)思想方法的滲透,以此來提高學(xué)生的思維素質(zhì)。高中的數(shù)學(xué)課堂絕不能以“填鴨式”為教學(xué)方式,高中生升學(xué)壓力大,如果一直進行題海戰(zhàn)術(shù),沒有一個高效的學(xué)習(xí)方式,在浪費學(xué)生的時間和精力的同時也會對最終的高考產(chǎn)生不利的影響。學(xué)會運用數(shù)學(xué)思想方法是學(xué)生高效學(xué)習(xí)的重要途徑之一。

      高中數(shù)學(xué);數(shù)學(xué)思想方法;思維素質(zhì)

      新課標(biāo)要求當(dāng)下的課堂教學(xué)活動重視思想方法的運用,要求將書本教學(xué)內(nèi)容與數(shù)學(xué)思想方法相結(jié)合,提高學(xué)生的數(shù)學(xué)思維素質(zhì)。以往的教學(xué)方式都是以講解課本內(nèi)容為主,再加上大量的習(xí)題,一個章節(jié)的教學(xué)就算完成了,完全沒有從整體的數(shù)學(xué)思想方法的角度去進行教學(xué)。學(xué)生在遇到下一個難題的時候,由于沒有系統(tǒng)的思維方式,很容易放棄難題等待老師的講解,這對學(xué)生學(xué)習(xí)數(shù)學(xué)這門學(xué)科是有害而無一利的。

      高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的重要性已經(jīng)顯而易見了,現(xiàn)在需要教學(xué)工作者探討的是相應(yīng)的方式方法,筆者將從以下三點簡述如何做到把數(shù)學(xué)思想潤物細(xì)無聲地融入日常教學(xué)。

      一、立足基礎(chǔ)教材,挖掘解析書本中的數(shù)學(xué)思想方法

      課堂是學(xué)生和教師的課堂,學(xué)生是課堂的主角,而教師要扮演好一個引導(dǎo)者,每個數(shù)學(xué)教師在上課前都會有備課的習(xí)慣,備課的內(nèi)容來源主要是基礎(chǔ)教材。教師在備課時要立足基礎(chǔ)教程,善于歸納挖掘知識點中的數(shù)學(xué)思想方法,上課前對該堂課所涉及的知識點和深層次的數(shù)學(xué)思想做到了然于心。數(shù)學(xué)思想是一個非常抽象的數(shù)學(xué)概念,如何將抽象概念具象化呈現(xiàn)在課堂中是一個需要教師大量創(chuàng)造力的過程,教師要提前設(shè)計出題目并逐步展現(xiàn)出數(shù)學(xué)思想的發(fā)生和發(fā)展及其應(yīng)用過程,再加上學(xué)生的積極思考參與,整個課堂會變得生動,教學(xué)也會收獲最好的效果。例如分類討論這一數(shù)學(xué)思想,高中數(shù)學(xué)中的二次函數(shù)解不等式,在計算范圍時會用到分類討論。數(shù)學(xué)問題中含有參變量,這些參變量的不同取值會導(dǎo)致不同的計算結(jié)果。比如解教材上基礎(chǔ)不等式ax>2,求x的取值范圍,當(dāng)拋出題目的時候,很多學(xué)生會很簡單地給出答案x>2/a,很顯然這種解題是不完整的,告知解題結(jié)果后讓學(xué)生分組討論為什么這么顯而易見的答案會錯誤,經(jīng)過討論和總結(jié)不難發(fā)現(xiàn),我們還需要討論a的三種取值情況:a>0、a=0,a<0。以這樣的方法將分類討論這一數(shù)學(xué)思想于無形中融入了基礎(chǔ)教學(xué),也通過學(xué)生自己的力量經(jīng)歷了數(shù)學(xué)思想的發(fā)生、發(fā)展及運用過程。

      二、改變傳統(tǒng)觀念,教學(xué)中加入以數(shù)學(xué)思想為主的知識構(gòu)架

      教師身為課堂教學(xué)的組織者,課堂內(nèi)容和走向都是為一人所指引,有些教師很樂于描繪表述知識點構(gòu)架,不以具體的提目做依托,說一些大概念,不能否認(rèn)的是這樣的做法對于學(xué)生掌握整本書的知識構(gòu)架有著重要作用。例如,高二數(shù)學(xué)主要有函數(shù)和幾何兩個大方面,幾何包括直線和圓、圓錐、平面、簡單幾何體,函數(shù)主要是導(dǎo)數(shù),最后就是常見的邏輯用語。很顯然這樣一歸納,所有的知識點一目了然,但是也會存在這樣的問題:當(dāng)拿到的題目是直線、圓和函數(shù)的結(jié)合,學(xué)生在做題的時候會受到以上知識點的影響,兩個不同項目的知識點怎么聯(lián)系起來呢?難怪有學(xué)者曾說過這樣的話:一個人在學(xué)習(xí)和思考新事物時,注意力容易被心中復(fù)雜的知識體系所影響。這時不妨試著以數(shù)學(xué)思想為原材料對一個數(shù)學(xué)題目進行歸納,上文中提到的討論法是數(shù)學(xué)思想的一種,另外還有函數(shù)思想、等價轉(zhuǎn)化思想、數(shù)形結(jié)合思想、整體思想、類比思想等。在平時練習(xí)的時候善于引導(dǎo)學(xué)生總結(jié)數(shù)學(xué)思想并進行題目歸類,下次遇到新問題的時候可以暫時擯棄心中的知識體系,以數(shù)學(xué)思想作為思考的前提,這也有利于加深學(xué)生對數(shù)學(xué)思想的認(rèn)知并加以運用。思想是死的,只有用起來才是活的。例如數(shù)形結(jié)合的數(shù)學(xué)思想,利用這種思想可使要研究的問題化難為易,化繁為簡,把代數(shù)和幾何相結(jié)合。比如例題若a、b、x、y是實數(shù),且a×a+b×b=1,x×x+y×y=1,求證:ax+by≤1。這道題乍一看是道函數(shù)題,學(xué)生開始在腦海中搜索函數(shù)的知識體系,最后還是沒解出來,其實這道題可以采用數(shù)形結(jié)合的方式,作直徑AB=1的圓,在AB兩邊任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y(tǒng)。由勾股定理知a、b、x、y是滿足題設(shè)條件的。根據(jù)托勒密定理,有AC×BD+BC×AD=AB×CD,因為CD≤AB=1,所以ax+by≤1。我們從題目中的條件聯(lián)想到了圓和三角形的勾股定理,遂解題。由此可見數(shù)學(xué)思想的總結(jié)對解答涉及多種體系的題目是多么重要。

      三、優(yōu)化教學(xué)過程,注重數(shù)學(xué)思想的應(yīng)用

      前文提到了備課的重要性。在真正的課堂教學(xué)中數(shù)學(xué)思想方法的教授決不能采用生搬硬套的模式。不同的數(shù)學(xué)思想方法在不同的題目中有不同的表現(xiàn)方法,教師應(yīng)該預(yù)見多種可能出現(xiàn)的類型情況,靈活地將數(shù)學(xué)思想方法融入課題中。教師在教學(xué)中也要優(yōu)化過程,精心安排預(yù)習(xí)、課堂小結(jié)、復(fù)習(xí)、數(shù)學(xué)思想?yún)R總等環(huán)節(jié),讓學(xué)生深刻體會數(shù)學(xué)思想方法在解題中的功能,并在此基礎(chǔ)上加以運用。例如類比這一數(shù)學(xué)方法,幾何形體數(shù)量關(guān)系可以采用類比的方法,三角形的面積公式是1/2ah,通過類比可得出三棱錐的體積公式為1/3Sh。由已經(jīng)學(xué)過的三角形面積公式的推導(dǎo),再加上一些空間幾何體體積的知識,可以由學(xué)生自行類比得出三棱錐的體積。

      綜上所述,教師在數(shù)學(xué)課堂的教學(xué)中滲透數(shù)學(xué)思想方法,不僅有利于增強課堂效率,更有利于提高學(xué)生的思維素質(zhì),鼓勵學(xué)生發(fā)現(xiàn)數(shù)學(xué)思想方法產(chǎn)生的過程,并從知識構(gòu)架體系中體會數(shù)學(xué)思想,確保學(xué)生能夠更好地掌握數(shù)學(xué)思想方法的本質(zhì)并加以應(yīng)用。

      [1]韓智明.高中數(shù)學(xué)思想方法教學(xué)的若干研究[D].華中師范大學(xué),2013.

      [2]宮凡玉.高中數(shù)學(xué)教學(xué)中滲透數(shù)形結(jié)合思想的研究[D].魯東大學(xué),2015.

      [3]張洪娟.高中數(shù)學(xué)概念教學(xué)中滲透數(shù)學(xué)思想方法的研究[D].南京師范大學(xué),2015.

      猜你喜歡
      題目知識點思想
      思想之光照耀奮進之路
      華人時刊(2022年7期)2022-06-05 07:33:26
      一張圖知識點
      一張圖知識點
      第四頁 知識點 殲轟-7A
      思想與“劍”
      唐朝“高考”的詩歌題目
      文苑(2020年7期)2020-08-12 09:36:22
      關(guān)于題目的要求
      本期練習(xí)類題目參考答案及提示
      艱苦奮斗、勤儉節(jié)約的思想永遠(yuǎn)不能丟
      “思想是什么”
      达州市| 五台县| 汕头市| 岳池县| 萨嘎县| 错那县| 江门市| 秭归县| 工布江达县| 绥德县| 南部县| 锡林郭勒盟| 武鸣县| 长沙县| 庄河市| 甘洛县| 华容县| 青浦区| 东至县| 渭源县| 海阳市| 新龙县| 板桥市| 申扎县| 工布江达县| 库车县| 梁平县| 开江县| 青阳县| 威海市| 彩票| 沐川县| 砀山县| 格尔木市| 祁门县| 龙口市| 平武县| 望江县| 寻乌县| 南安市| 鸡西市|