廖買利,謝 東,丁 偉,劉金芝,田 伶
(南華大學(xué) 土木工程學(xué)院,湖南 衡陽(yáng) 421001)
輻射供冷空調(diào)系統(tǒng)的研究綜述
廖買利,謝 東,丁 偉,劉金芝,田 伶
(南華大學(xué) 土木工程學(xué)院,湖南 衡陽(yáng) 421001)
在對(duì)輻射供冷空調(diào)系統(tǒng)國(guó)內(nèi)外研究現(xiàn)狀概述的基礎(chǔ)上,提出了輻射供冷空調(diào)系統(tǒng)研究中存在的一些問(wèn)題,并對(duì)輻射供冷空調(diào)系統(tǒng)的發(fā)展進(jìn)行了探討和展望。
輻射供冷空調(diào)系統(tǒng);傳熱理論;供冷性能;舒適性;結(jié)露
隨著城市化進(jìn)程的加快,人們的生活和工作模式發(fā)生了轉(zhuǎn)變,導(dǎo)致人的絕大部分時(shí)間在室內(nèi),因而室內(nèi)環(huán)境的質(zhì)量與舒適度備受人們關(guān)注。日常生活中,空調(diào)、采暖、照明、智能電器等的使用加劇了建筑能源的消耗,空調(diào)供冷/供熱系統(tǒng)的能耗占建筑能耗的大部分。產(chǎn)業(yè)研究院的分析報(bào)告顯示,我國(guó)的建筑面積到2020年將達(dá)到700億m2,且高能耗建筑占97%以上,我國(guó)建筑能耗占總能耗的比例將增加至35%左右。隨著建筑業(yè)的迅速發(fā)展,建筑能耗問(wèn)題亟待改善,降低空調(diào)能耗對(duì)建筑節(jié)能與綠色建筑的發(fā)展具有重要意義。輻射空調(diào)作為一種新型空調(diào)技術(shù),相比傳統(tǒng)空調(diào)技術(shù),具有換熱效率高、節(jié)能環(huán)保、舒適性好的優(yōu)點(diǎn)。輻射空調(diào)技術(shù)在我國(guó)具有較好的發(fā)展前景,國(guó)內(nèi)外學(xué)者對(duì)其進(jìn)行了較多的探索和研究。
關(guān)于輻射空調(diào)傳熱理論方面,已有較多科研成果。如S. Okamoto等[1]利用水管密集度和冷水與室內(nèi)空氣的溫差,提出一種輻射頂板傳熱量的簡(jiǎn)化計(jì)算方法,并利用實(shí)測(cè)結(jié)果進(jìn)行了驗(yàn)證,兩者結(jié)果較接近。Li Q. Q.,Zhang L.等[2-3],對(duì)多層地板結(jié)構(gòu)的傳熱,提出了一種對(duì)地板表面溫度和最低溫度進(jìn)行簡(jiǎn)化計(jì)算的平衡熱阻法。M. M. Ardehali等[4]通過(guò)輻射換熱的角系數(shù)計(jì)算方法,考慮輻射冷頂板與人體的換熱,建立了輻射冷卻頂板與熱區(qū)域的換熱模型。B. I. Kilkis[5]提出了一個(gè)輻射地板平面肋片模型,將管道之間的地板上表面按傳熱肋片簡(jiǎn)化處理,并引入肋片效率概念。R. K. Stand等[6]通過(guò)輻射傳熱理論分析,提出了一個(gè)集成整個(gè)建筑能耗模擬程序的輻射系統(tǒng)模型。M. J. Ren等[7]對(duì)混凝土輻射板供冷系統(tǒng)建立了簡(jiǎn)化熱容熱阻網(wǎng)絡(luò)法(thermal resistance and capacitance,RC)模型,以描述混凝土板的動(dòng)態(tài)傳熱和蓄熱過(guò)程,與實(shí)驗(yàn)相比,模型的平均相對(duì)誤差不超過(guò)0.5 ℃。田喆等[8]利用熱工和幾何參數(shù)來(lái)確定RC簡(jiǎn)化模型的核心溫度層,并增加沿供水管道的換熱模型,實(shí)現(xiàn)了動(dòng)態(tài)熱響應(yīng)的模擬分析。于國(guó)清等[9]依據(jù)吊頂單元與環(huán)境換熱的換熱原理,建立了單塊和兩塊串聯(lián)的輻射吊頂供冷量的理論計(jì)算模型,并實(shí)驗(yàn)驗(yàn)證了理論模型的正確性。
2.1 輻射板的性能研究
M. Koschenz等[10]開發(fā)了一種用相變材料的毛細(xì)管網(wǎng)輻射頂板,建立了該新型輻射板的數(shù)學(xué)模型,并用實(shí)驗(yàn)方法驗(yàn)證了該頂板的性能。M. Fauchoux等[11]對(duì)一種熱濕傳遞的新型輻射板性能進(jìn)行了模擬與實(shí)驗(yàn)研究,結(jié)果顯示其性能提高了15%~28%。張倫等[12]測(cè)試了一種對(duì)流強(qiáng)化式輻射板的供冷性能,計(jì)算了其輻射和對(duì)流供冷量,分析了供冷量的影響因素。裴鳳等[13]對(duì)金屬輻射板和石膏毛細(xì)管網(wǎng)輻射板的供冷性能進(jìn)行了實(shí)驗(yàn)研究,發(fā)現(xiàn)相同條件下,石膏板比金屬板的單位供冷量大。金梧鳳等[14]對(duì)地板和吊頂輻射兩種方式的供冷能力進(jìn)行了實(shí)驗(yàn)對(duì)比研究,發(fā)現(xiàn)在相同條件下,吊頂?shù)墓├淠芰Ω哂诘匕遢椛?。J. W. Jeong等[15]在對(duì)冷輻射板與混合通風(fēng)系統(tǒng)的研究中發(fā)現(xiàn),送風(fēng)空氣流速的增加能使輻射板的制冷能力提高5%~35%。D. Song等[16]研究了熱濕地區(qū)輻射冷板與自然通風(fēng)相結(jié)合的方式對(duì)供冷量及室內(nèi)垂直溫差的影響。于志浩等[17]通過(guò)對(duì)毛細(xì)管輻射吊頂與置換通風(fēng)、貼附射流兩種送風(fēng)方式耦合的供冷性能研究,發(fā)現(xiàn)冷頂板與貼附射流耦合的供冷能力相對(duì)較高。宣永梅等[18]利用EnergyPlus軟件對(duì)輻射制冷與置換通風(fēng)系統(tǒng)進(jìn)行能耗模擬,發(fā)現(xiàn)送風(fēng)溫度每增加1℃,輻射地板提供的冷量增加1.9%。
2.2 輻射供冷性能的影響因素研究
Xia Y.等[19]建立了輻射冷頂板的傳熱方程,分析了導(dǎo)熱板效率,管徑、管間距、管長(zhǎng),水流量,導(dǎo)熱板的板材及室內(nèi)空氣流速對(duì)輻射冷頂板換熱量的影響。Xie D. 等[20]建立了毛細(xì)管輻射板三維穩(wěn)態(tài)傳熱模型,定性分析了輻射頂板供冷性能的影響因素,發(fā)現(xiàn)供冷量與水溫、抹灰層厚度、管間距成負(fù)相關(guān)。Jin X. 等[21]利用有限元方法建立了輻射供冷系統(tǒng)的數(shù)學(xué)模型,探究了管熱阻及流速對(duì)冷板換熱性能的影響,結(jié)果表明管的導(dǎo)熱系數(shù)較低會(huì)抑制輻射供冷板的換熱。Yin Y. L. 等[22]通過(guò)實(shí)驗(yàn)研究發(fā)現(xiàn)輻射末端的供冷能力主要受冷水流動(dòng)狀態(tài)的影響,冷水與環(huán)境的溫差也影響供冷能力。李青等[23]建立了三維流-固耦合模型,分析了毛細(xì)管席的結(jié)構(gòu)參數(shù)、敷設(shè)條件、室內(nèi)環(huán)境、供水條件對(duì)毛細(xì)管席換熱性能的影響。高志宏等[24]對(duì)毛細(xì)管供冷工況進(jìn)行了實(shí)驗(yàn)研究,結(jié)果表明安裝方式對(duì)供冷性能的影響較大,室溫設(shè)定值與水流量也會(huì)影響供冷性能。
S. G. Hodder等[25]實(shí)驗(yàn)研究了頂板供冷與置換通風(fēng)結(jié)合方式下豎向輻射不對(duì)稱溫度對(duì)舒適性的影響。K. Kitagawa等[26]通過(guò)人工氣候室的熱舒適主觀實(shí)驗(yàn)研究,發(fā)現(xiàn)微小的空氣流動(dòng)能增加頂板輻射供冷系統(tǒng)的熱舒適性。R. A. Memon等[27]通過(guò)舒適性的調(diào)查及TRNSYS軟件模擬研究,對(duì)輻射供冷系統(tǒng)的舒適性及其能耗狀況進(jìn)行了分析。T. Catalina等[28]對(duì)輻射頂板測(cè)試房間進(jìn)行了實(shí)驗(yàn)及CFD模擬研究,發(fā)現(xiàn)室內(nèi)垂直溫度梯度均小于1 ℃/m,并利用PMV/PPD指標(biāo)進(jìn)行了舒適性分析。K. A. Antonopoulos等[29]通過(guò)金屬輻射頂板空調(diào)系統(tǒng)的理論與實(shí)驗(yàn)分析,指出該系統(tǒng)在滿足舒適的條件下,節(jié)能效果可增加12.5%。馬景駿等[30]對(duì)輻射頂板換熱過(guò)程中的舒適性進(jìn)行理論計(jì)算與分析,確定冷卻吊頂空調(diào)系統(tǒng)的室內(nèi)溫度,發(fā)現(xiàn)冷卻吊頂系統(tǒng)夏季室內(nèi)溫度可以比常規(guī)空調(diào)系統(tǒng)高1~2 ℃。陳露等[31]對(duì)頂板、地板和墻壁3種輻射供冷方式下的垂直溫差、吹風(fēng)感、PMV/PPD指標(biāo)及能量利用率對(duì)比分析,發(fā)現(xiàn)頂板輻射供冷的舒適性最好。黃濤等[32]對(duì)金屬輻射板+新風(fēng)的空調(diào)系統(tǒng)在高溫高濕條件下進(jìn)行室內(nèi)溫濕度測(cè)試,發(fā)現(xiàn)室內(nèi)具有較好的舒適性。
Lim J. H.等[33]對(duì)居住建筑的地板輻射供冷系統(tǒng)的運(yùn)行控制方式進(jìn)行模擬與實(shí)驗(yàn)研究,指出水溫控制優(yōu)于流量控制,為了防止結(jié)露,可通過(guò)露點(diǎn)溫度控制水溫。Ryu S. R.[34]對(duì)居住建筑地板供熱供冷系統(tǒng)的控制方法進(jìn)行了研究,并對(duì)水溫控制、流量控制的優(yōu)缺點(diǎn)進(jìn)行了比較分析。Seo J. M. 等[35]開發(fā)了一種適應(yīng)于熱濕地區(qū)的新風(fēng)與地板輻射制冷耦合系統(tǒng),并提出了溫濕度控制方案,其節(jié)能效果比普通輻射空調(diào)提高了20%。S. A. Mumma等[36]研究了冷卻頂板與獨(dú)立新風(fēng)系統(tǒng)的控制方法,通過(guò)水流量調(diào)節(jié)來(lái)控制室溫。吳倩蕓等[37]對(duì)一種輻射與對(duì)流空調(diào)系統(tǒng)進(jìn)行試驗(yàn)研究,提出了一種基于溫度的控制策略,并分析了系統(tǒng)的節(jié)能性。趙羽等[38]采用TRNSYS軟件,模擬探討定水溫和變水溫控制對(duì)室內(nèi)溫度穩(wěn)定性及舒適性的影響,結(jié)果表明,2種方式的能耗及舒適性相當(dāng),變水溫控制方式可避免結(jié)露。
國(guó)內(nèi)外關(guān)于輻射空調(diào)供冷系統(tǒng)的研究可以概括為4個(gè)方面:一是在傳熱理論的基礎(chǔ)上,對(duì)輻射板熱阻進(jìn)行簡(jiǎn)化計(jì)算,并對(duì)輻射板的傳熱模型進(jìn)行優(yōu)化。二是利用數(shù)值模擬或?qū)嶒?yàn)測(cè)試的方法來(lái)探究不同輻射末端形式與送風(fēng)系統(tǒng)結(jié)合情況下的供冷能力,以及頂板結(jié)構(gòu)、敷設(shè)方式、供水參數(shù)、送風(fēng)條件、室內(nèi)環(huán)境等因素對(duì)輻射供冷能力的影響。三是利用一系列的舒適性指標(biāo)(PMV/PPD、空氣流速、垂直溫差等)對(duì)輻射空調(diào)室內(nèi)熱環(huán)境進(jìn)行評(píng)價(jià),并在滿足舒適性的條件下對(duì)輻射空調(diào)系統(tǒng)的節(jié)能性進(jìn)行探究。四是利用水溫控制與流量控制策略對(duì)輻射空調(diào)供冷系統(tǒng)進(jìn)行調(diào)控,探討防止輻射板表面結(jié)露的方法。
隨著學(xué)者們對(duì)輻射供冷空調(diào)系統(tǒng)的深入研究,輻射供冷空調(diào)系統(tǒng)的供冷能力和舒適性得到了人們的認(rèn)可。在節(jié)能減排的政策下,輻射供冷空調(diào)系統(tǒng)的節(jié)能研究將成為下一個(gè)研究方向。輻射空調(diào)系統(tǒng)與太陽(yáng)能、地源熱泵以及其他新能源結(jié)合,可以降低輻射空調(diào)系統(tǒng)的能耗,因而具有廣闊的市場(chǎng)前景。另外,輻射板的結(jié)露現(xiàn)象一直是輻射供冷系統(tǒng)面臨的主要問(wèn)題,也限制了其輻射供冷能力。目前,人們主要利用不同控制策略來(lái)防止輻射頂板結(jié)露,但利用控制策略來(lái)防止輻射板結(jié)露的方式,無(wú)法完全消除輻射板的結(jié)露風(fēng)險(xiǎn),不能從根本上解決結(jié)露問(wèn)題。筆者建議從輻射末端的結(jié)構(gòu)及工藝上加以改進(jìn),對(duì)輻射板的結(jié)露機(jī)理進(jìn)行深入研究,從而從根本上解決結(jié)露問(wèn)題,提高其輻射供冷能力。
[1] OKAMOTO S,KITORA H,YAMAGUCHI H,et al. A Simpli fi ed Calculation Method for Estimating Heat Flux from Ceiling Radiant Panels[J]. Energy and Buildings, 2010,42(1):29-33.
[2] LI Q Q,CHEN C,ZHANG Y,et al. Simplified Thermal Calculation Method for Floor Structure in Radiant Floor Cooling System[J]. Energy and Buildings,2014,74:182-190.
[3] ZHANG L,LIU X H,JIANG Y. Simpli fi ed Calculation for Cooling/Heating Capacity, Surface Temperature Distribution of Radiant Floor[J]. Energy and Buildings,2012,55(12):397-404.
[4] ARDEHALI M M,PANAH N G,SMITH T F. Proof of Concept Modeling of Energy Transfer Mechanisms for Radiant Conditioning Panels[J]. Energy Conversion and Management,2004,45(13/14):2005-2017.
[5] KILKIS B I. Enhancement of Heat Pump Performance Using Radiant Floor Heating Systems[J]. American Society of Mechanical Engineers,1992,28:119-127.
[6] STAND R K,BAUMGARTNER K T. Modeling Radiant Heating and Cooling Systems:Integration with a Whole-Building Simulation Program[J]. Energy and Buildings,2004,37(4):389-397.
[7] REN M J,WRIGHT J A. A Ventilated Slab Thermal Storage System Model[J]. Building and Environment,1998,33(1):43-52.
[8] 田 喆,牛曉雷,胡振杰,等. 混凝土輻射供冷RC簡(jiǎn)化傳熱模型的改進(jìn)及實(shí)驗(yàn)驗(yàn)證[J]. 天津大學(xué)學(xué)報(bào),2013,46(12):1095-1100. TIAN Zhe,NIU Xiaolei,HU Zhenjie,et al. Improvement and Experimental Validation of Modified RC-Network Model for Concrete Core Cooling[J]. Journal of Tianjin University,2013,46(12):1095-1100.
[9] 于國(guó)清,賈文哲,趙彥杰. 輻射吊頂單元供冷量的理論計(jì)算模型及實(shí)驗(yàn)驗(yàn)證[J]. 制冷學(xué)報(bào),2014,35(2):115-118. YU Guoqing,JIA Wenzhe,ZHAO Yanjie. Theoretical Calculation Model and Experimental Validation of the Radiant Ceiling Unit Cooling Capacity[J]. Journal of Refrigeration,2014,35(2):115-118.
[10] KOSCHENZ M,LEHMANN B. Development of a Thermally Activated Ceiling Panel with PCM for Application in Lightweight and Retro fi tted Buildings[J]. Energy and Buildings,2004,36(6):567-578.
[11] FAUCHOUX M,BANSAL M,TALUKDAR P,et al. Testing and Modeling of a Novel Ceiling Panel for Maintaining Space Relative Humidity by Moisture Transfer[J]. International Journal of Heat & Mass Transfer,2010,53(19):3961-3968.
[12] 張 倫,劉曉華,江 億. 對(duì)流強(qiáng)化式輻射板實(shí)驗(yàn)與性能分析[J]. 暖通空調(diào),2011,41(1):38-41. ZHANG Lun,LIU Xiaohua,JIANG Yi. Experiment and Performance Analysis on Convection Strengthened Radiant Panel[J]. Heating Ventilating and AirConditioning,2011,41(1):38-41.
[13] 裴 鳳,陳 華,金梧鳳,等. 不同結(jié)構(gòu)毛細(xì)管網(wǎng)輻射板供冷性能實(shí)驗(yàn)研究[J]. 低溫與超導(dǎo), 2013,41(7):58-63. PEI Feng,CHEN Hua,JIN Wufeng,et al. Experimental Study of the Cooling Performance of Different Structure of Capillary Mats of Radiant Panel[J]. Cryogenics and Superconductivity,2013,41(7):58-63.
[14] 金梧鳳,余銘錫,金光禹. 毛細(xì)管網(wǎng)系統(tǒng)供冷性能的實(shí)驗(yàn)研究[J]. 暖通空調(diào),2010,40(9):102-106. JIN Wufeng,YEO Myoungsouk,KIM Kwangwoo. Experiments on Cooling Capacity of Capillary Tube System[J]. Heating Ventilating and Air Conditioning,2010,40(9):102-106.
[15] JEONG J W,MUMMA S A. Ceiling Radiant Cooling Panel Capacity Enhanced by Mixed Convection in Mechanically Ventilated Spaces[J]. Applied Thermal Engineering,2003,23(18):2293-2306.
[16] SONG D,KATO S. Radiational Panel Cooling System with Continuous Natural Cross Ventilation for Hot and Humid Regions[J]. Energy and Buildings,2004,36(12),1273-1280.
[17] 于志浩,金梧鳳,劉艷超,等. 毛細(xì)管網(wǎng)吊頂輻射空調(diào)與新風(fēng)耦合的性能研究[J]. 綠色科技,2013(11):253-258. YU Zhihao,JIN Wufeng,LIU Yanchao,et al. Research on Capillary Radiant Ceiling Cooling System Coupling with Air Conditioning System[J]. Journal of Green Science and Technology,2013(11):253-258.
[18] 宣永梅,王海亮,黃 翔. 基于Energy Plus的地板輻射與置換通風(fēng)空調(diào)系統(tǒng)模擬分析[J]. 流體機(jī)械,2012,40(8):65-68. XUAN Yongmei,WANG Hailiang,HUANG Xiang. Simulation Analysis of Radiation Floor with Displacement Ventilation Air Conditioning System by Energy Plus[J]. Fluid Machinery,2012,40(8):65-68.
[19] XIA Y,MUMMA S A. Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails:Deriving the Governing Transfer Equations[J]. Ashrae Transactions,2006,112:34-41.
[20] XIE D,WANG Y,WANG H Q,et al. Numerical Analysis of Temperature Non-Uniformity and Cooling Capacity for Capillary Ceiling Radiant Cooling Panel[J]. Renewable Energy,2016,87:1154-1161.
[21] JIN X,ZHANG X,LUO Y,et al. Numerical Simulation of Radiant Floor Cooling System:Effects of Thermal Resistance of Pipe and Water Velocity on the Performance[J]. Building and Environment,2010,45(11):2545-2552.
[22] YIN Y L,WANG R Z,ZHAI X Q,et al. Experimental Investigation on the Heat Transfer Performance and Water Condensation Phenomenon of Radiant Cooling Panels[J]. Building and Environment,2014,71(1):15-23.
[23] 李 青,劉金祥,陳曉春,等. U形毛細(xì)管席冷卻頂板換熱性能數(shù)值模擬與分析[J]. 暖通空調(diào),2010,40(4):136-140. LI Qing,LIU Jinxiang,CHEN Xiaochun,et al. Numerical Simulation and Analysis of Thermal Performance of Ceiling Cooling U-Tube Capillary Mats[J]. Heating Ventilating and Air Conditioning,2010,40(4):136-140.
[24] 高志宏,劉曉華,江 億. 毛細(xì)管輻射供冷性能實(shí)驗(yàn)研究[J]. 太陽(yáng)能學(xué)報(bào),2011,32(1):101-106. GAO Zhihong,LIU Xiaohua,JIANG Yi. Experiment Study on Cooling Capacity of Capillary-Tube Radiation Air-Conditioner[J]. Acta Energiae Solaris Sinica,2011,32(1):101-106.
[25] HODDER S G,LOVEDAY D L,PARSONS K C,et al. Thermal Comfort in Chilled Ceiling and Displacement Ventilation Environments:Vertical Radiant Temperature Asymmetry Effects[J]. Energy and Buildings,1998,27(2):167-173.
[26] KITAGAWA K,KOMODA N,HAYANO H,et al. Effect of Humidity and Small Air Movement on Thermal Comfort Under a Radiant Cooling Ceiling by Subjective Experiments[J]. Energy and Buildings,1999,30(2):185-193.
[27] MEMON R A,CHIRARATTANANON S,VANGTOOK P. Thermal Comfort Assessment and Application of Radiant Cooling:A Case Study[J]. Building and Environment,2008,43(7):1185-1196.
[28] CATALINA T,VIRGONE J,KUZNIK F. Evaluation of Thermal Comfort Using Combined CFD and Experimentation Study in a Test Room Equipped with a Cooling Ceiling[J]. Building and Environment,2009,44(8):1740-1750.
[29] ANTONOPOULOS K A,VRACHOPOULOS M,TZIVANIDIS C. Experimental Evaluation of Energy Savings in Air-Conditioning Using Metal Ceiling Panels[J]. Applied Thermal Engineering,1998,18(11):1129-1138.
[30] 馬景駿,孫麗穎.冷卻吊頂系統(tǒng)的熱舒適性分析[J].哈爾濱工程大學(xué)學(xué)報(bào),2001,22(5):27-30. MA Jingjun,SUN Liying. Thermal Comfort Analysis in Cooling Ceiling System[J]. Journal of Harbin Engineering University,2001,22(5):27-30.
[31] 陳 露,廖勝明. 三種方式輻射供冷室內(nèi)熱環(huán)境對(duì)比分析[J]. 建筑熱能通風(fēng)空調(diào),2010,29(3):53-56. CHEN Lu,LIAO Shengming. Three Approaches to the Comparative Study of Indoor Thermal Environment for Radiant Cooling System[J]. Building Energy andEnvironment,2010,29(3):53-56.
[32] 黃 濤,王永紅,李 娜,等. 辦公建筑中吊頂輻射空調(diào)系統(tǒng)夏季工況性能測(cè)試研究[J]. 建筑節(jié)能,2016,44(10):5-7. HUANG Tao,WANG Yonghong,LI Na,et al. Experimental Research on Performance of Radiant Ceiling Air-Conditioning System in the Office Building in Summer[J]. Building Energy Efficiency,2016,44(10):5-7.
[33] LIM J H,JO J H,KIM Y Y,et al. Application of the Control Methods for Radiant Floor Cooling System in Residential Buildings[J]. Building and Environment,2006,41(1):60-73.
[34] RYU S R,LIM J H,YEO M S,et al. A Study on the Control Methods for Radiant Floor Heating and Cooling System in Residential Building[J]. Ashrae Transactions,2004,110:106-116.
[35] SEO J M,SONG D,LEE K H. Possibility of Coupling Outdoor Air Cooling and Radiant Floor Cooling Under Hot and Humid Climate Conditions[J]. Energy and Buildings,2014,81:219-226.
[36] MUMMA S A,JEONG J W. Field Experience Controlling a Dedicated Outdoor Air System[J]. Ashrae Transactions,2005,111:433-442.
[37] 吳倩蕓,蔡 亮,張 濤,等. 輻射與對(duì)流耦合空調(diào)系統(tǒng)及其控制策略[J]. 暖通空調(diào),2016,46(11):101-104. WU Qianyun,CAI Liang,ZHANG Tao,et al. Coupled Air Conditioning System of Radiation and Convection and Its Control Strategy[J]. Journal Heating Ventilating and Air Conditioning,2016,46(11):101-104.
[38] 趙 羽,袁東立,謝 飛. 天棚輻射供冷系統(tǒng)調(diào)節(jié)性能的研究[J]. 暖通空調(diào),2014,44(2):65-68. ZHAO Yu,YUAN Dongli,XIE Fei. Regulation Performance of Cooling Ceiling Air Conditioning System[J]. Journal Heating Ventilating and Air Conditioning,2014,44(2):65-68.
(責(zé)任編輯:鄧光輝)
A Research Review of the Radiant Cooling Air-Conditioning System
LIAO Maili,XIE Dong,DING Wei,LIU Jinzhi,TIAN Ling
(School of Civil Engineering,University of South China,Hengyang Hunan 421001,China)
Based on current researches made at home and abroad on the radiant cooling air-conditioning system, some problems, which exist in the research process of the radiant cooling air-conditioning system, have been pointed out, followed by a tentative discussion of the prospective of the further studies for the improvement of this system.
radiant cooling system;heat transfer theory;cooling performance;comfortableness;condensation
TU831
A
1673-9833(2017)02-0023-05
10.3969/j.issn.1673-9833.2017.02.004
2017-02-01
湖南省研究生科研創(chuàng)新基金資助項(xiàng)目(CX2016B447)
廖買利(1991-),女,湖南郴州人,南華大學(xué)碩士生,主要研究方向?yàn)榻ㄖ岘h(huán)境與建筑節(jié)能,E-mail:liaomaili@163.com
謝 東(1978-),男,湖北荊州人,南華大學(xué)教授,博士,主要研究方向?yàn)榻ㄖ?jié)能與暖通工程CFD應(yīng)用,E-mail: nhxiedong@126.com