宋丹丹,劉 煜
(吉林大學(xué)第二醫(yī)院 內(nèi)分泌科,吉林 長春130041)
腸道菌群變化在2型糖尿病診療中的價(jià)值
宋丹丹,劉 煜*
(吉林大學(xué)第二醫(yī)院 內(nèi)分泌科,吉林 長春130041)
人體胃腸道中存在著大量的正常菌群,其腸道內(nèi)微生物主要由厚壁菌門、擬桿菌門、放線菌門、變形菌門以及疣微球菌門組成,而厚壁菌門及擬桿菌門占優(yōu)勢(shì),某些病毒及真核生物也同時(shí)存在于腸道內(nèi)[3]。腸道菌群和肥胖癥的發(fā)生有很大的關(guān)系,其與2型糖尿病的關(guān)系亦是如此,有學(xué)者發(fā)現(xiàn),改變腸道菌群構(gòu)成,可以控制與肥胖相關(guān)的代謝性疾病的發(fā)生[4]。2型糖尿病的一個(gè)重要發(fā)病機(jī)制即為胰島素抵抗,而肥胖是產(chǎn)生胰島素抵抗的重要因素,腸道菌群結(jié)構(gòu)和功能變化可促進(jìn)肥胖的發(fā)生[5]。通過對(duì)肥胖人群體內(nèi)菌群的研究發(fā)現(xiàn),其體內(nèi)厚壁菌門的數(shù)量有增多的現(xiàn)象,而擬桿菌的數(shù)目則與之相反[6]。有學(xué)者通過動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),把肥胖小鼠的腸道菌群移植到無菌小鼠體內(nèi),被移植過菌群的小鼠與消瘦小鼠相比,其體脂含量顯著增加并且產(chǎn)生胰島素抵抗[7]。有實(shí)驗(yàn)發(fā)現(xiàn),厚壁菌門相比于擬桿菌,前者可以更有效地提取碳水化合物的熱量[8]。測序比較肥胖小鼠和正常小鼠的腸道基因組發(fā)現(xiàn),兩者的基因構(gòu)成存在差異,并且肥胖小鼠腸道內(nèi)的微生物富含更多參與能量代謝的基因,導(dǎo)致更容易從食物中獲取能量而發(fā)生肥胖[9]。Xiuying Zhang等發(fā)現(xiàn)產(chǎn)丁酸菌如Akkermansia muciniphila和Faecalibacterium prau-snitzii的數(shù)量在正常人群多于糖尿病前期人群,擬桿菌的數(shù)量在糖尿病人群中僅為糖尿病前期和正常人群的一半,尤微菌綱的數(shù)目在糖尿病人群中明顯減少[10]。Larsen等研究發(fā)現(xiàn),相對(duì)于非糖尿病人群,2型糖尿病患者中擬桿菌的數(shù)量顯著減少,并且擬桿菌和厚壁菌門的比例與血糖值關(guān)系密切[11]。Wu.等發(fā)現(xiàn)雙歧桿菌和普通類桿菌的數(shù)量在2型糖尿病人群中顯著低于非糖尿病人群[12]。許多動(dòng)物試驗(yàn)表明,腸道內(nèi)乳酸桿菌、雙歧桿菌等益生菌的數(shù)目隨著血糖值的升高而降低,而血糖值在低水平時(shí),其數(shù)量反而增長[13]。同樣有實(shí)驗(yàn)證實(shí),2型糖尿病患者存在腸道乳酸桿菌增多而腸道雙歧桿菌數(shù)量減少的現(xiàn)象[14],此實(shí)驗(yàn)結(jié)果進(jìn)一步表明腸道菌群失調(diào)與2型糖尿病的發(fā)生和發(fā)展存在密切關(guān)聯(lián)。此外,腸道菌群可以引發(fā)慢性炎癥從而參與代謝性疾病的發(fā)生。研究表明,在肥胖、2型糖尿病患者體內(nèi),白介素-6、白介素-1β、C反應(yīng)蛋白等許多炎性因子存在有表達(dá)過度的現(xiàn)象[15]。脂多糖是構(gòu)成革蘭陰性菌外膜的一部分,可激發(fā)宿主產(chǎn)生許多炎癥因子,產(chǎn)生炎性影響,進(jìn)而引起胰島素抵抗[16]。大量脂肪飲食導(dǎo)致腸道菌群的腸通透性明顯增長,此時(shí)細(xì)菌脂多糖較易入血液,激發(fā)內(nèi)毒素血癥,宿主炎癥因子分泌,炎性反應(yīng)發(fā)生,從而產(chǎn)生一系列代謝性疾病[17]。
阿卡波糖是a葡萄糖苷酶抑制劑,主要通過延緩混合性食物在胃的排空而抑制葡萄糖的吸收,從而使餐后血糖降低[18]。阿卡波糖在降低血糖方面有很高的安全性及有效性[19],目前已被廣泛應(yīng)用于2型糖尿病及2型糖尿病前期患者的臨床診療中。徐杰等通過對(duì)68例2型糖尿病患者進(jìn)行測試,在服用阿卡波糖治療3個(gè)月后,檢定他們糞便中雙歧桿菌的改變后發(fā)現(xiàn),對(duì)照組的雙歧桿菌數(shù)量相比于口服阿卡波糖治療組顯著減少[20]。曹曉紅等發(fā)現(xiàn),2型糖尿病患者在使用阿卡波糖進(jìn)行治療后,腸桿菌的數(shù)目和比例相比于對(duì)照組都有明顯的增加[21]。Benli Su等采用16S rDNA技術(shù)測定95例2型糖尿病患者服用阿卡波糖治療4周后,同樣發(fā)現(xiàn)應(yīng)用阿卡波糖治療組腸道雙歧桿菌水平較對(duì)照組顯著增長[22]。這和Aitken的研究相一致[23]。同樣,張秀英等通過實(shí)驗(yàn)得出,阿卡波糖使得腸道乳酸桿菌的數(shù)量增多,而有害菌的數(shù)量減少,腸道內(nèi)的生態(tài)環(huán)境得以改善[24]。
二甲雙胍作為糖尿病治療的一線用藥,其降糖機(jī)制主要有①通過直接降低肝臟的糖異生使空腹血糖降低;②提高外周組織對(duì)葡萄糖的攝取與利用使餐后血糖降低;③減少小腸內(nèi)葡萄糖吸收;④通過抑制線粒體復(fù)合物I和線粒體氧化磷酸化,減少脂肪合成,從而抑制胰島素抵抗;⑤增加胰腺胰島素敏感性,使β細(xì)胞對(duì)血糖的應(yīng)答提高;⑥升高GLP-1水平[25]。研究發(fā)現(xiàn),二甲雙胍可能有其它的降糖機(jī)制,在人類和其他動(dòng)物中,腸道是二甲雙胍代謝和在體內(nèi)積累的重要場所[26],據(jù)此推測二甲雙胍可以通過影響腸道菌群而降低血糖。Shin等以小鼠為實(shí)驗(yàn)?zāi)P?,發(fā)現(xiàn)二甲雙胍治療后,產(chǎn)丁酸鹽菌Akkermansia muciniphila的豐度增加,從而使整個(gè)機(jī)體代謝得以改善[27],這與Lee and Ko的研究相一致[28]。以往的研究表明,腸道菌群在促進(jìn)二甲雙胍吸收和利用葡萄糖方面發(fā)揮重要的作用[29]。孫煜等發(fā)現(xiàn)使用二甲雙胍治療2型糖尿病患者,其腸道菌群的群落組成變化明顯,種類增加,優(yōu)勢(shì)菌與健康人相比無明顯差異[30]。Jeffrey等發(fā)現(xiàn)二甲雙胍可以改善腸道菌群,在使用二甲雙胍的同時(shí)聯(lián)合使用胃腸道微生物調(diào)節(jié)劑可增加對(duì)二甲雙胍的耐受[31]。Heetae Lee等以小鼠為實(shí)驗(yàn)對(duì)象,發(fā)現(xiàn)高脂飲食小鼠擬桿菌數(shù)量較對(duì)照組明顯減少,相對(duì)地,厚壁菌門數(shù)量較對(duì)照組明顯增多,經(jīng)二甲雙胍治療高脂飲食小鼠后,高脂飲食小鼠的擬桿菌數(shù)量較前明顯增多,且與非高脂飲食小鼠接近[32]。Antonella Napolitano1等發(fā)現(xiàn),二甲雙胍可以調(diào)節(jié)2型糖尿病患者的腸道菌群的變化,并且這些變化與腸肝循環(huán)的膽汁酸和胃腸激素的變化緊密相關(guān),具體表現(xiàn)在應(yīng)用二甲雙胍治療的2型糖尿病患者,在停用二甲雙胍治療1周后,其厚壁菌門的數(shù)量較前明顯增加,擬桿菌的數(shù)量較前降低顯著[33]。Xu Zhang等發(fā)現(xiàn),肥胖2型糖尿病患者在采用二甲雙胍治療后,其腸道菌群的多樣性減低,乳酸桿菌和擬桿菌的豐度有所增長,但是梭狀芽孢桿菌的豐度減少[34]。此外,Karlsson等發(fā)現(xiàn),應(yīng)用二甲雙胍治療的2型糖尿病患者的腸桿菌科細(xì)菌如大腸埃希菌、志賀菌、肺炎克雷伯菌、沙門氏菌含量增加,而梭狀芽孢桿菌、真桿菌的水平則與之相反[35]。
DPP-4抑制劑,具有選擇性抑制DPP-4活性的作用,能夠使患者體內(nèi)的胰升糖素樣多肽(GLP-1)的水平增加,從而實(shí)現(xiàn)調(diào)節(jié)血糖水平的效果。而DPP-4 為二肽基肽酶-4,可通過使 GLP-1 分裂、降解而導(dǎo)致 GLP-1 失活。GLP-1 主要是由腸道上皮的內(nèi)分泌細(xì)胞分泌,其可以使胰島素分泌增加,而胰高血糖素分泌減少,增加外周組織對(duì)胰島素的敏感性,增進(jìn)胰島β細(xì)胞的增殖同時(shí)抑制其凋亡,并且還可以減緩胃排空、產(chǎn)生飽脹感和食欲下降等,從而降低2型糖尿病患者的血糖。DPP-4抑制劑作為一類新型作用機(jī)制的降糖藥物,當(dāng)前已經(jīng)被廣泛地應(yīng)用于治療2 型糖尿病。近年的研究發(fā)現(xiàn),GLP-1可能有其他方面的降糖機(jī)制。帕力萬等發(fā)現(xiàn),糖尿病大鼠在應(yīng)用利拉魯肽后,導(dǎo)致在高脂飲食菌群數(shù)量減少的基礎(chǔ)上,菌群的數(shù)目再次減少[37],提示利拉魯肽與腸道菌群存在某些聯(lián)系。Hwang,Park YJ等發(fā)現(xiàn),使用抗生素喂養(yǎng)肥胖小鼠后,厚壁菌和擬桿菌的比值降低,肥胖小鼠的胰島素抵抗等現(xiàn)象明顯改善,同時(shí)GLP-1的分泌明顯增加,此實(shí)驗(yàn)提示厚壁菌和擬桿菌可能通過介導(dǎo)GLP-1的分泌調(diào)控肥胖小鼠的胰島素抵抗[37]。同樣有研究發(fā)現(xiàn),小鼠中GLP-1水平增加時(shí),厚壁菌與擬桿菌的水平降低[38]。另有研究發(fā)現(xiàn),細(xì)菌代謝物吲哚可以在短期內(nèi)調(diào)節(jié)腸促胰島素內(nèi)分泌細(xì)胞分泌GLP-1[39]。有新的證據(jù)表明,GLP-1參與腸道菌群對(duì)膳食纖維或不易消化的碳水化合物的發(fā)酵從而保持能量平衡和血糖穩(wěn)態(tài)的過程[40]。已知DPP-4抑制劑主要通過抑制GLP-1的降解而發(fā)揮降糖作用,因此推測DPP-4抑制劑同樣可以影響腸道菌群的組成及數(shù)量而降糖。目前,已有部分學(xué)者通過研究發(fā)現(xiàn),有規(guī)律地應(yīng)用沙格列汀治療2型糖尿病患者2周后,腸道菌群的多樣性增加,腸道菌群構(gòu)成和正常人差異甚微[41]。
既往糖尿病的治療主要是內(nèi)科治療,然而并未能夠有效控制糖尿病及其并發(fā)癥,更難以完全恢復(fù)其對(duì)胰島素的敏感性及胰島B細(xì)胞的功能。因此,尋找有效的降糖方案已然成為了熱點(diǎn),近年的研究表明,胃腸手術(shù)可以成為有效的控制血糖的方法[42]。眾所周知,肥胖是一種慢性低水平的炎癥狀態(tài),肥胖的動(dòng)物和人類中腸道菌群存在某些變化,主要表現(xiàn)為擬桿菌的數(shù)量減少,而厚壁菌群的數(shù)量增加[43]。減重手術(shù)不但能明顯減輕體重,還能恢復(fù)胰島 β 細(xì)胞功能及對(duì)胰島素敏感性、維持血糖穩(wěn)態(tài)、減少糖尿病相關(guān)并發(fā)癥的發(fā)生和病死水平[44]。減重手術(shù)治療糖尿病的機(jī)制主要涉及熱量限制及吸收不良,從而增加胰島素敏感性等。最新的研究表明,手術(shù)治療糖尿病可能與腸道菌群有著某些關(guān)系[45]。研究發(fā)現(xiàn),胃腸旁路手術(shù)后,Akkermansia的數(shù)量增加[46]。De-wang Su等發(fā)現(xiàn)2 型糖尿病患者的腸桿菌較健康人增多,雙歧桿菌較正常人減少,胃轉(zhuǎn)流術(shù)后雙歧桿菌增加,腸桿菌減少[47]。Rubino等檢測了胃旁路手術(shù)后的糞便標(biāo)本發(fā)現(xiàn),胃旁路手術(shù)后厚壁菌數(shù)量較前降低,擬桿菌數(shù)量增多[48]。Alice P.Liou等發(fā)現(xiàn),胃旁路術(shù)后2周,擬桿菌、疣微菌、大腸桿菌的數(shù)量較術(shù)前明顯增加[49]。有研究發(fā)現(xiàn),肥胖個(gè)體的厚壁菌與擬桿菌的比例增加[50],而醫(yī)學(xué)減肥手術(shù)后,厚壁菌與擬桿菌的比例降低[51]。另有研究發(fā)現(xiàn),RYGB胃旁路手術(shù)后,蛋白菌的數(shù)量較前增加[52]。動(dòng)物模型中發(fā)現(xiàn),RYGB胃旁路手術(shù)后,厚壁菌門數(shù)目減低而擬桿菌數(shù)目較前增加[53]。而在人類中,得到與此相似的結(jié)果[54]。研究發(fā)現(xiàn),Laparoscopic sleeve gastrectomy (LSG)術(shù)后,擬桿菌的數(shù)量明顯增加,而厚壁菌門的數(shù)量較前減少[55],Sweeney TE得到了相似的結(jié)果[56],均提示胃腸手術(shù)后腸道菌群變化與血糖水平關(guān)系密切。
[1]Yang W,Lu J,Weng J,et al.(2010) China National Diabetes and Metabolic Disorders Study Group.Prevalence of diabetes among men and women in China[J].N Engl J Med,2015,362:1090.
[2]唐 英,張昆南,腸道菌群與肥胖和2型糖尿病的相關(guān)性[J].臨床內(nèi)科雜志,2014,31(4):287.
[3]Lozupone CA,StombaughJI,GordonJI,et al.Diversity,stability and resilience of the human gut microbiota[J].Nature,2012,489(7415):220.
[4]Canipd,Delzennenm.The role of the gut microbita in energy metabolism and metabolic disease [J].Current Pharmaceutical Design,2009,15(13):1546.
[5]Musso G,Gambino R,Cassader M.Interactions between gut microbiota and host metabolis predisposing to obesity and diabetes[J].Annu Rev Med,2011,62:361.
[6]Ley RE,Turnbaugh PJ,Klein S.Gordon JI (2006) Microbial ecology:human gut microbes associated with obesity[J].Nature 444:1022.
[7]Turnbaugh PJ,Ley RE,Mahowald MA,et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444:1027.
[8]R Jumpertz,DS Le,PJ.Turnbaugh et al.“Energy-balance studies reveal associations between gut microbes,caloric load,and nutrient absorption in humans”[J]. The American Journal of Clinical Nutrition,2011,94(1):58.
[9]Turnbaugh PJ,Ley RE,Mahowald MA,et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature,2006,444:1027.
[10]Zhang X,Shen D,Fang Z,et al.Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance[J].PLoS ONE,2013,8(8):e71108.
[11]Larsen N,Vogensen FK,van den Berg FW,et al.Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults(2010) .PLoS One,2010,5:e9085.
[12]Wu X,Ma C,Han L,et al.Molecular characterisation of the faecal microbiota in patients with type II diabetes[J].Curr Microbiol,2010,61:69.
[13]胡星云,李 炎.腸道菌群與2型糖尿病[J].藥品評(píng)價(jià),2013,10(21):8.
[14]Xu X,Hui H,Cai D.Differences in fecal Bifidobacterium species between patients with type 2 diabetes and healthy individuals[J].Journal of Southern Medical University,2012,32(4):531.
[15]Gregor MF,Hotamisligil GS.Inflammatory mechanisms in obesity [J].Annu Rev Immunol,2011,29:415.
[16]Moreno-Navarrete JM,Fernandez-Real JM.Role of metabolic endotoxemia in insulin resistance and obesity.The Buffering Efficiency Hypothesis[J].Av Diabetol,2009,25(2):78.
[17]Cani PD,Bibiloni R,Knauf C,et al.Changes in high-fat diet-induced obesity and diabetes in mice [J].Diabetes,2008,57(6):1470.
[18]賈亞非.甘精胰島素聯(lián)合阿卡波糖治療 2 型糖尿病臨床觀察[J].中國醫(yī)學(xué)創(chuàng)新雜志,2011,8(18):25.
[19]Giuseppe Derosa,Pamela Maffioli.α-Glucosidase inhibitors and their use in clinicalpractice[J].Archives of Medical Science Ams,2012,8(5):899.
[20]徐 杰,蘇本利,關(guān)玉峰.阿卡波糖對(duì)糖尿病患者腸道雙歧桿菌的影響[J].中國醫(yī)學(xué)創(chuàng)新,2013,(9):37.
[21]曹曉紅,張新星.阿卡波糖聯(lián)合磷酸西格列汀治療老年2型糖尿病療效及對(duì)患者腸道菌群的影響[J].世界華人消化雜志,2015,(15):2507.
[22]Benli Su,Haixia Liu,Jing Li,et al.Acarbose treatment affects the serum Levels Of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus[J].Journal of Diabetes,2015,7(5):729.
[23]Aitken JD,Gewirtz AT.Gut microbiota in 2012:Toward understanding and manipulating the gut microbiota [J].Nat RevGastroenterol Hepatol,2013,10(2):72.
[24]張秀英,韓學(xué)堯,陳穎麗,等.阿卡波糖對(duì)糖尿病前期患者腸道菌群的影響[A].中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì)第十五次全國學(xué)術(shù)會(huì)議論文集[C],2012.
[25]劉 丹,付祖植.二甲雙胍臨床應(yīng)用中的幾個(gè)問題[J].中華糖尿病雜志,2005,2(13):149.
[26]CJ Bailey,C Wilcock,JHB Scarpello.Metformin and the intestine[J].Diabetologia,2008,51(8):1552.
[27]Shin NR,Lee JC,Lee HY,et al.An increase in theAkkermansia spp.Populationinduced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J].Gut,2013,63:727.
[28]Lee H,and Ko G.Effect of metformin on metabolic improvement and gut microbiota[J].Appl.Environ,Microbiol,2014,80,5935.
[29]Bailey CJ,Wilcock C,Scarpello JH.Metformin and the intestine[J].Diabetologia,2008,51:1552.
[30]孫 煜,孫良閣.二甲雙胍對(duì)2型糖尿病患者腸道菌群及慢性炎癥狀態(tài)的影響[D].鄭州大學(xué),2014.
[31]Jeffrey HB,Matthew J,Heiman,et al.Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Toleraing Glucose levels[J].J Diabe SciTechn,2015,9(4):808.
[32]Heetae Lee,a GwangPyo Koa,b.Effect of Metformin on Metabolic Improvement and Gut Microbiota[J].Applied & Environmental Microbiology,2014,80(19):5935.
[33]Napolitano,A.Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus[J].PloS one 9,e100778,doi:10.1371/journal.pone.0100778 (2014).
[34]Zhang,X.Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.Sci.Rep.5,14405;doi:10.1038/srep14405(2015).
[35]Karlsson FH,Tremaroli V,Nookaew I,et al.Gut metagenome in European women with normal,impaired and diabetic glucose control[J].Nature,2013,498,99.
[36]帕力萬,肖新華,利拉魯肽對(duì)糖尿病大鼠腸道菌群的影響[D].北京:北京協(xié)和醫(yī)學(xué)院,2015.
[37]Hwang,Park YJ,Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J].Faseb Journal Official Publication of the Federation of American Societies f,2015,29(6):2397.
[38]Greenhill Cut Microbiota:Firmicutes and Bacteroidetes involved in insulin resistance by mediating levels of glucagon-like peptide 1[J].Nature Reviews Endocrinology,2015,11(5):254.
[39]Catalin Chimerel,Edward Emery.Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells[J].Cell Reports,2014,9(4):1202.
[40]Cani PD,Everard A,Duparc T.Gut microbiota,enteroendocrine functions and metabolism[J].Curr Opin Pharmacol.2013;13(6):935.
[41]齊亞丹,孫良閣.沙格列汀對(duì)2型糖尿病患者腸道菌群及慢性炎癥狀態(tài)的影響[D],鄭州:鄭州大學(xué),2014.
[42]Rubino F,Schauer P R,Kaplan L M,et al.Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action[J].Annu Rev Med,2010,61(4):393.
[43]Clark SF,Murphy EF,Nilaweera K,et al.The gut microbiota and its relationship to diet and obesity:new insights[J].Gut Microbes,2012,3:186.
[44]Pontiroli AE,Morabito A.Long-term prevention of mortality in morbid obesity through bariatric surgery.a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass[J].Ann Surg,2011,253(3):484.
[45]Zhang H,DiBaise J K,Zuccolo A,et al.Human gut microbiota in obesity and after gastric bypass[J].Proc Natl Acad Sci USA,2009,106(7):2365.
[46]Liou AP,Paziuk M,Luevano JM Jr,et al.Conserved shifts in the gut microbiota due to gastric bypass reduce host weights and adiposity[J].Sci Transl Med,2013,5:178.
[47]SU De-wang,WANG Yue-sheng,The effect of Gastric Bypass on recent intestinal flora in type 2 diabetes patients[J].Chinese Joumal of Microecology,2014,26(10):1146.
[48]F.Rubino M,Gagner P,Gentileschi S,et al.The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J].Ann Surg,2004,240:236.
[49]Liou AP,Paziuk M,Luevano JM Jr,et al.Conserved shifts in the gut microbiota due to gastric bypass reduce host weights and adiposity[J].Sci Transl Med,2013,5:178.
[50]Armougom F,Henry M,Vialettes B,Raccah D,Raoult D.Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients[J].PLoS One,2009,4(9):e7125.
[51]Nadal I,Santacruz A,Marcos A,et al.Shifts in clostridia,bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents[J].Int J Obes (Lond),2009;33(7):758.
[52]Osto M,Abegg K,Bueter M,et al.Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine[J].Physiol Behav,2013,119:92.
[53]JVLi,H Ashrafian,M.Bueter,et al.“Metabolic surgery profoundly influences gut microbial—host metabolic cross-talk[J].” Gut,2011,60(9):1214.
[54]H Zhang,JK DiBaise A,Zuccolo,et al.“Human gut microbiota in obesity and after gastric bypass,” Proceedings Of the National Academy of Sciences of the United States of America[J].2009,106(7):2365
[55]Damms-Machado A,Mitra S,Schollenberger AE,et al.Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption[J].Biomed Res Int,2015;,2015:806.
[56]Sweeney TE,Morton JM.The human gut microbiome:a review ofthe effect of obesity and surgically induced weight loss[J].JAMA Surg,2013,148(6):563.
1007-4287(2017)01-0184-04
2015-10-26)
*通訊作者