周莉,鄭向群,丁永禎*,黃宏坤,鄭順安,師榮光,李曉華,馮人偉,王瑞剛
(1.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2.農(nóng)業(yè)部產(chǎn)地環(huán)境污染防控重點(diǎn)實(shí)驗(yàn)室,天津 300191;3.沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽(yáng) 110866;4.農(nóng)業(yè)部農(nóng)業(yè)生態(tài)與資源保護(hù)總站,北京 100125)
農(nóng)田鎘砷污染防控與作物安全種植技術(shù)探討
周莉1,2,3,鄭向群1,2,丁永禎1,2*,黃宏坤4,鄭順安4,師榮光1,2,李曉華4,馮人偉1,2,王瑞剛1,2
(1.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2.農(nóng)業(yè)部產(chǎn)地環(huán)境污染防控重點(diǎn)實(shí)驗(yàn)室,天津 300191;3.沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽(yáng) 110866;4.農(nóng)業(yè)部農(nóng)業(yè)生態(tài)與資源保護(hù)總站,北京 100125)
文章綜述了農(nóng)田鎘、砷污染現(xiàn)狀、環(huán)境風(fēng)險(xiǎn)及其來(lái)源,阻控作物鎘、砷吸收的關(guān)鍵技術(shù)環(huán)節(jié),包括農(nóng)業(yè)投入品控制、水分管理、土壤鈍化調(diào)控、葉面調(diào)理、低吸收作物品種選擇與替代種植、秸稈移除削減等。結(jié)合“土十條”,提出鎘、砷污染農(nóng)田作物安全種植的幾點(diǎn)思考:一是建立基于耕地-農(nóng)產(chǎn)品污染等級(jí)的安全種植技術(shù)體系;二是采取集成農(nóng)藝措施進(jìn)行綜合防控,重點(diǎn)提出作物安全種植VIRL(Variety-Input and Irrigation-Root zone and Removal of straw-Leaf blade)技術(shù)模式。該模式將源頭預(yù)防(農(nóng)業(yè)投入)、過(guò)程阻控(作物本身鎘、砷吸收特性,影響作物地下部與地上部鎘、砷吸收的各個(gè)環(huán)節(jié))、末端治理(秸稈移除修復(fù))高度統(tǒng)一起來(lái),然后根據(jù)耕地-農(nóng)產(chǎn)品污染等級(jí),采取或緊或松的關(guān)鍵(聯(lián)合)技術(shù)調(diào)控,實(shí)現(xiàn)鎘、砷污染農(nóng)田的安全種植;三是對(duì)鎘、砷復(fù)合污染農(nóng)田同步防控問(wèn)題進(jìn)行了探討和展望。
農(nóng)田;鎘;砷;污染防治;作物安全種植;VIP+n技術(shù)模式;VIRL技術(shù)模式
農(nóng)田土壤重金屬污染日益嚴(yán)重,特別是鎘(Cd)和砷(As),全國(guó)點(diǎn)位超標(biāo)率分別為7.0%和2.7%[1],同時(shí)被國(guó)際癌癥研究機(jī)構(gòu)定為Ⅰ類致癌物[2]。鑒于二者農(nóng)田污染的普遍性及對(duì)人體危害的突出性,本文圍繞鎘、砷,就其農(nóng)田污染現(xiàn)狀、污染防控以及污染農(nóng)田作物安全種植技術(shù)展開(kāi)綜述和探討,以期為我國(guó)農(nóng)田鎘、砷污染防治提供資料支持和參考。
1.1 我國(guó)農(nóng)田鎘、砷污染及其風(fēng)險(xiǎn)
我國(guó)農(nóng)田鎘、砷污染問(wèn)題突出。沈陽(yáng)張士灌區(qū)土壤鎘超標(biāo)嚴(yán)重,高達(dá)4.12 mg·kg-1[3],北京農(nóng)田砷超標(biāo)率達(dá)1.8%[4]。白銀郊區(qū)農(nóng)田土壤鎘、砷污染嚴(yán)重,平均含量分別高達(dá)127.3 mg·kg-1和423.5 mg·kg-1[5]。云南沘江流域農(nóng)田土壤鎘、砷超標(biāo)率分別為100%和16.67%[6]。湖北大冶農(nóng)田土壤鎘平均值高達(dá)1.41 mg· kg-1[7]。湖南采礦區(qū)、冶煉區(qū)周邊水稻土鎘、砷污染嚴(yán)重且潛在風(fēng)險(xiǎn)高[8]。珠三角350個(gè)農(nóng)田土壤代表樣品,鎘超標(biāo)率為18.28%[9]。各地區(qū)鎘、砷污染呈大面積、整體性污染態(tài)勢(shì),給農(nóng)產(chǎn)品安全造成嚴(yán)重的威脅。
農(nóng)田鎘、砷通過(guò)作物吸收與轉(zhuǎn)移,直接危害到農(nóng)產(chǎn)品質(zhì)量和人體健康。北京蔬菜砷對(duì)部分人群構(gòu)成一定的健康風(fēng)險(xiǎn)[10]。湖南稻米鎘、砷是影響人體健康的主要因子[11-12],湘江流域某縣稻米鎘超標(biāo)60%,其中11%超過(guò)國(guó)標(biāo)5倍[13]。廣東省蔬菜鎘、砷超標(biāo)率分別為21.2%和17.8%,其中韶關(guān)地區(qū)分別為58.9%和40%[14]。針對(duì)華東、東北、華中、西南、華南和華北縣級(jí)以上市場(chǎng)170份大米隨機(jī)樣品分析,發(fā)現(xiàn)大米鎘超標(biāo)率為10%[15],污染農(nóng)產(chǎn)品已成為國(guó)人鎘、砷暴露的主要途徑之一。
1.2 農(nóng)田鎘、砷污染主要來(lái)源
農(nóng)田鎘、砷來(lái)源主要包括采礦冶煉等工業(yè)活動(dòng)、污水灌溉、大氣沉降、農(nóng)業(yè)投入品等。Li等[16]綜述了我國(guó)22省72礦區(qū)的土壤重金屬污染狀況,發(fā)現(xiàn)砷、鎘平均值比我國(guó)Ⅱ級(jí)土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)分別高6.5、36.5倍。采礦冶煉活動(dòng)釋放的砷、鎘通過(guò)風(fēng)力、水力擴(kuò)散造成區(qū)域大面積農(nóng)田污染,典型的如湘江流域[17]、刁江流域[18]、沘江流域[6]。污水灌溉也造成嚴(yán)重污染,全國(guó)55個(gè)污灌區(qū)1378個(gè)土壤點(diǎn)位中,26.4%超標(biāo),主要為鎘、砷和多環(huán)芳烴[1]。大氣鎘、砷主要源于化石燃料燃燒、金屬冶煉以及交通廢氣排放等,大氣鎘、砷污染范圍廣泛[19]。我國(guó)鎘大氣沉降農(nóng)田年均輸入量為4 g·hm-2[20],遠(yuǎn)超歐洲平均輸入量(0.35 g·hm-2)[21]。我國(guó)耕地總砷的43%~85%來(lái)源于大氣沉降[20]。肥料與農(nóng)藥也是砷的重要來(lái)源,長(zhǎng)期使用含砷農(nóng)藥、殺蟲(chóng)劑、除草劑的農(nóng)田,殘留砷達(dá)到2 g·kg-1[22],有機(jī)肥、磷肥、污泥和畜禽糞便亦是造成耕地鎘、砷污染的重要因素[23-24]。
我國(guó)農(nóng)田鎘、砷污染主要屬于大面積的輕中度污染,限于人多地少的國(guó)情,必須走耕地安全利用途徑,主要遵循源頭預(yù)防、過(guò)程阻控和末端治理的全過(guò)程綜合防控理念。
2.1 水源與農(nóng)業(yè)投入品源頭預(yù)防
保障水源清潔是農(nóng)田安全種植的重要環(huán)節(jié)。被動(dòng)污灌帶來(lái)的鎘、砷污染越來(lái)越嚴(yán)重,洞庭湖水系所屬湘江、耒水、資水、汨羅江等支流,水和懸浮物中砷和鎘含量高[25],給流域農(nóng)田帶來(lái)大面積的污染[14,26]。應(yīng)加強(qiáng)工業(yè)、農(nóng)業(yè)、水利等部門協(xié)作,建立農(nóng)田污水準(zhǔn)入制度,加強(qiáng)灌溉水源管理,建立污水處理設(shè)施,或通過(guò)前置池(塘)等措施實(shí)現(xiàn)鎘、砷的沉淀,或根據(jù)農(nóng)作物對(duì)鎘、砷吸收能力特點(diǎn),合理地安排作物類型,將污染降到最低。
含重金屬農(nóng)業(yè)投入品的使用是造成農(nóng)田鎘、砷累積的主要原因之一。磷肥、有機(jī)-無(wú)機(jī)復(fù)混肥料等不同肥料均可導(dǎo)致土壤重金屬累積[24,27]。閆湘等[28]檢測(cè)了4027份水溶肥,發(fā)現(xiàn)砷、鎘超標(biāo)率分別為3.50%和1.27%,微量元素水溶肥超標(biāo)最為嚴(yán)重,而大量元素水溶肥料中的砷超標(biāo)率最高(11.0%)。有機(jī)肥料成分和來(lái)源復(fù)雜,普遍存在鎘、砷等重金屬含量較高的問(wèn)題[24,29],應(yīng)該加強(qiáng)肥料監(jiān)管,從源頭上預(yù)防。
2.2 水分管理減少作物鎘、砷吸收
水分管理影響土壤中鎘、砷活性,對(duì)作物吸收影響顯著。土壤淹水可通過(guò)降低氧化還原電位加強(qiáng)鎘與S2-的共沉淀、促進(jìn)有機(jī)質(zhì)、CaCO3等物質(zhì)對(duì)鎘的吸持,增加還原態(tài)鐵、錳等陽(yáng)離子,這些陽(yáng)離子與鎘形成競(jìng)爭(zhēng)吸附,增加的Mn2+還可通過(guò)OsNRAMP5轉(zhuǎn)移子抑制水稻根系鎘吸收[30]。長(zhǎng)期淹水下土壤交換態(tài)、碳酸鹽結(jié)合態(tài)鎘顯著低于常規(guī)處理[31]。水稻在淹水條件下根表形成的氧化鐵膜,在達(dá)到一定厚度時(shí)也能阻礙水稻根系鎘吸收。水作空心菜地上部和根系鎘含量較旱作處理分別降低52.2%和49.3%[32]。
水分對(duì)砷的影響與鎘幾乎完全相反。土壤砷主要以無(wú)機(jī)態(tài)的As(Ⅲ)和As(Ⅴ)存在,二者間的轉(zhuǎn)化主要受氧化-還原電位控制。氧化條件下,As(Ⅲ)氧化為As(Ⅴ),后者被吸附到粘粒礦物、鐵錳氧化物及其水化氧化物和土壤有機(jī)質(zhì)上,并且還可以和鐵礦以砷酸鐵的形式共沉淀。而淹水還原條件下,鐵、錳等氧化物/氫氧化物結(jié)合的砷因鐵、錳還原而釋放,砷化合物的溶解度增加,As(Ⅴ)逐步還原為As(Ⅲ)[33],同時(shí),水稻通過(guò)水通道和細(xì)胞膜直接滲透主動(dòng)吸收As(Ⅲ)[34]。淹水條件下稻米總砷可達(dá)富氧條件下的10~15倍,籽粒無(wú)機(jī)砷是富氧條件下的2.6~2.9倍[35]。干濕交替條件下種植出的水稻稻米砷含量較持續(xù)淹水條件下的低[36]。
針對(duì)農(nóng)田鎘、砷污染,應(yīng)視具體情況采取不同的水分管理。同時(shí),還要綜合考慮不同生育時(shí)期作物鎘、砷吸收與水分的相關(guān)關(guān)系,如水分管理對(duì)稻米鎘含量的影響大小順序?yàn)殚_(kāi)花期>抽穗期>分蘗期>乳熟期,灌漿期是糙米吸收砷的關(guān)鍵時(shí)期[37]。如果農(nóng)田涉及鎘、砷復(fù)合污染,需結(jié)合作物品種、土壤性質(zhì)等其他因素,謹(jǐn)慎權(quán)衡水分管理措施。
2.3 土壤鈍化調(diào)控抑制作物鎘、砷吸收
土壤鈍化調(diào)控是實(shí)現(xiàn)鎘、砷污染農(nóng)田安全種植的重要途徑之一。鈍化材料分為無(wú)機(jī)、有機(jī)及無(wú)機(jī)-有機(jī)復(fù)合材料,主要通過(guò)調(diào)節(jié)土壤理化性狀,以及與重金屬發(fā)生沉淀、吸附、絡(luò)合、氧化-還原等反應(yīng),降低鎘、砷生物有效性。土壤鈍化調(diào)控成本低、見(jiàn)效快、對(duì)土壤破壞小,適合于我國(guó)大面積輕中度鎘、砷污染情況。
對(duì)鎘和砷,鈍化劑有一定的針對(duì)性和選擇性。鐵基氧化物,包括Fe2O3、Fe3O4及其水化物,表面含有豐富的羥基位點(diǎn)-OH,能以專性和非專性吸附的方式與砷酸根、亞砷酸根離子結(jié)合形成內(nèi)表面和外表面螯合物,對(duì)砷具有較高的吸附容量[38]。某些微量元素鈍化效果較好,硒[39-40]、硅[41-42]可顯著降低作物對(duì)鎘、砷吸收。秸稈、生物炭等有機(jī)鈍化材料通過(guò)含有的羧基、羥基、巰基等活性官能團(tuán)與重金屬發(fā)生絡(luò)合、螯合作用,還可通過(guò)增加CEC、穩(wěn)定土壤結(jié)構(gòu)間接固定重金屬。蠶沙生物炭可使弱酸可提取態(tài)和可還原態(tài)鎘含量分別降低42.07%和35.19%,可氧化態(tài)和殘?jiān)鼞B(tài)鎘含量分別增加292.59%和339.29%[43]。施加腐植酸對(duì)堿性土壤中砷向較穩(wěn)定形態(tài)轉(zhuǎn)化有顯著的促進(jìn)作用[44]。值得注意的是,有機(jī)肥礦化分解后易與重金屬形成有利于植物吸收的小分子有機(jī)結(jié)合態(tài)[45]。通過(guò)表面修飾得到的無(wú)機(jī)-有機(jī)復(fù)合材料具有較大的應(yīng)用價(jià)值,例如通過(guò)枝接巰基、氨基等官能團(tuán)到無(wú)機(jī)氧化物基體上,可提高鎘、砷的負(fù)載量及吸附選擇性[46]。
2.4 葉面調(diào)理阻控作物鎘、砷吸收
葉面噴施調(diào)理劑可阻控作物吸收重金屬。噴施鋅可降低番茄[47]、水稻[48]鎘吸收。噴施硅能促進(jìn)鎘、砷在細(xì)胞壁沉積,抑制作物鎘、砷吸收和向地上部遷移[49-50]。噴施硫酸亞鐵、檸檬酸鐵和EDTA二鈉亞鐵可降低菜心鎘吸收,其機(jī)理在于植物對(duì)鎘的吸收與轉(zhuǎn)運(yùn)與鐵的吸收轉(zhuǎn)運(yùn)系統(tǒng)緊密相關(guān),細(xì)胞質(zhì)膜的鐵轉(zhuǎn)運(yùn)蛋白在鎘的吸收過(guò)程中起著重要作用[51]。硫酸亞鐵、氯化錳、氯化銅、硼酸和硼砂處理都能有效地抑制鎘從秸稈向籽粒轉(zhuǎn)移[52]。徐向華等[53]研究發(fā)現(xiàn),噴施硒硅復(fù)合溶膠可有效緩解水稻砷毒害、顯著抑制稻米砷積累。李慧敏等[54]研究表明,葉面噴施不同濃度的鈰、硅溶膠及不同摻雜比的鈰硅復(fù)合溶膠,生菜的地上部鮮重升高了9%~58.8%,而砷含量降低了23%~48%。葉面調(diào)理是一種方便、可行、能有效阻控鎘、砷吸收的方法,其機(jī)理一是利用元素間的拮抗作用來(lái)抑制植物對(duì)重金屬的吸收,二是調(diào)節(jié)作物生理功能、提高抗氧化酶活性。
2.5 鎘、砷低吸收作物品種選擇與替代種植
作物對(duì)鎘、砷吸收存在顯著的種間、種內(nèi)差異。蔬菜吸收鎘按科屬可分為低鎘積累(豆科)、中鎘積累(禾本科、百合科、葫蘆科和傘形科)和高鎘積累(藜科、十字花科、茄科、菊科)三類[55]。劉維濤等[56]研究發(fā)現(xiàn)15種大白菜對(duì)鎘的吸收、轉(zhuǎn)運(yùn)差異顯著。蔣彬和張慧萍[57]研究了239份水稻品種稻米鎘、砷含量,發(fā)現(xiàn)鎘含量在0.01~1.98 mg·kg-1之間,砷含量在0.08~49.14 μg·kg-1之間,品種間差異極為顯著。Mei等[58]、談?dòng)顦s等[59]也發(fā)現(xiàn)不同稻作品種對(duì)砷的耐性和吸收具有顯著差異。其他多種作物,如小麥[60]、大豆[61]、菜心[62]等,對(duì)鎘的吸收都存在顯著的種間差異。作物低積累重金屬雖存在基因型與環(huán)境的交互作用,但亦有主要受遺傳因素控制的低積累表型品種[63-64]。對(duì)于中輕度污染農(nóng)田,可通過(guò)選育抗性強(qiáng),鎘、砷低積累作物品種實(shí)現(xiàn)污染農(nóng)田安全種植。對(duì)于重度污染土壤,可改變食用農(nóng)產(chǎn)品用途(如稻米用于釀酒),或改種非食用農(nóng)產(chǎn)品或花卉苗木,通過(guò)種植結(jié)構(gòu)調(diào)整實(shí)現(xiàn)污染農(nóng)田安全利用。
2.6 秸稈移除削減農(nóng)田鎘、砷
含鎘、砷的作物秸稈移除可逐漸減少農(nóng)田土壤重金屬總量。水稻、小麥、玉米三大作物的谷草比分別約為1.0、1.0和1.2[65],依據(jù)我國(guó)糧食平均產(chǎn)量[66],平均畝產(chǎn)秸稈量分別達(dá)到460、360、470 kg。以水稻為例,參考唐非等[67]提出的糙米與莖葉鎘含量線性關(guān)系,若糙米鎘含量按照國(guó)家標(biāo)準(zhǔn)(GB 2762—2012)0.2 mg·kg-1計(jì),一年種植早晚兩季,秸稈移除每年每667 m2能帶走鎘量為688 mg,相當(dāng)于帶走4.3 μg·kg-1土(0~20 cm耕作層),加上稻谷至少帶走1.15 μg·kg-1土,理想狀態(tài)下鎘超標(biāo)農(nóng)田(0.3 mg·kg-1)連續(xù)種植55 a可實(shí)現(xiàn)耕作層鎘的清除。當(dāng)然實(shí)際與理想相差較遠(yuǎn),但秸稈移除對(duì)削減農(nóng)田鎘、砷的貢獻(xiàn)是毋容置疑的。可篩選種植秸稈高富集、而籽粒低積累的作物品種,利用邊生產(chǎn)邊修復(fù)的方法。也可優(yōu)化種植模式,如南方水稻-油菜典型輪作模式,水稻、油菜秸稈均可高富集鎘,通過(guò)秸稈移除,在保障農(nóng)田安全生產(chǎn)基礎(chǔ)上,逐步降低土壤鎘含量。
3.1 建立基于耕地-農(nóng)產(chǎn)品污染等級(jí)的安全種植技術(shù)體系
我國(guó)土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)與安全利用等主要考慮土壤污染程度,但實(shí)際上,不同農(nóng)作物對(duì)鎘、砷等重金屬的敏感性與吸收特征差異迥異,農(nóng)田土壤污染分類還應(yīng)充分考慮農(nóng)作物類別。鎘、砷污染農(nóng)田安全利用,歸根結(jié)底是通過(guò)調(diào)控土壤、作物來(lái)實(shí)現(xiàn)。受污染耕地安全利用,應(yīng)遵循農(nóng)業(yè)生產(chǎn)規(guī)律,同步關(guān)注土壤與作物,結(jié)合食品污染物限量,構(gòu)建耕地-農(nóng)產(chǎn)品污染等級(jí)方案,在此基礎(chǔ)上,建立基于耕地-農(nóng)產(chǎn)品污染等級(jí)的安全種植技術(shù)體系。
湖南省于2014年啟動(dòng)的重金屬污染耕地修復(fù)及農(nóng)作物種植結(jié)構(gòu)調(diào)整試點(diǎn)工作是個(gè)較好的嘗試,修復(fù)耕地分為三類:達(dá)標(biāo)生產(chǎn)區(qū)(稻米鎘含量在0.2~0.4 mg·kg-1)、管控生產(chǎn)區(qū)(稻米鎘<0.4 mg·kg-1且土壤鎘≤1.0 mg·kg-1)、替代種植區(qū)(稻米鎘>0.4 mg·kg-1且土壤鎘>1.0 mg·kg-1)。各省市或地區(qū)土壤類型與性質(zhì)、農(nóng)作物類型有其地域差異性,可建立地方性的耕地-農(nóng)產(chǎn)品污染等級(jí)方案,然后本著技術(shù)節(jié)約、成本節(jié)約原則,采取適宜的安全種植(集成)技術(shù)。
3.2 集成農(nóng)藝措施與VIRL安全種植技術(shù)模式
大田作物在整個(gè)生育期,由于外界環(huán)境因素復(fù)雜,單獨(dú)的品種選擇、水肥管理、土壤調(diào)控或葉面調(diào)理等措施,難以確保農(nóng)產(chǎn)品達(dá)標(biāo),集成農(nóng)藝措施對(duì)于實(shí)現(xiàn)作物安全種植可能更有保障。湖南省針對(duì)鎘污染,創(chuàng)建了“VIP+n”降鎘技術(shù)模式,即“低鎘品種(Variety)+合理灌溉(Irrigation)+調(diào)節(jié)酸度(pH)”?!皀”指使用土壤鈍化劑、葉面/根際阻控劑及其復(fù)合配方等。該技術(shù)模式降鎘效果顯著[68],已成為湖南省重點(diǎn)推廣模式。但對(duì)砷污染農(nóng)田不適合。原因在于土壤砷的生物有效性隨土壤pH值升高而升高,與鎘幾乎完全相反,對(duì)于砷及砷鎘復(fù)合污染農(nóng)田,調(diào)節(jié)農(nóng)田土壤酸度基本沒(méi)必要。
根據(jù)鎘、砷的土壤環(huán)境化學(xué)行為差異,筆者在此提出一種新的普適性集成農(nóng)藝安全種植模式:VIRL技術(shù)模式,Ⅴ代表作物品種(Variety)選擇,包括低吸收品種篩選及替代作物種植;Ⅰ代表農(nóng)業(yè)投入品(Input)控制和灌溉(Irrigation)調(diào)控,鎘和砷采取相反的水分管理;R主要代表根區(qū)(Root zone)調(diào)控,即土肥調(diào)控與鈍化修復(fù),包括酸度調(diào)節(jié),同時(shí)還代表秸稈移除(Removal of straw);L代表葉面(Leaf blade)調(diào)控,主要噴施降鎘、降砷的相關(guān)元素肥料或其他物質(zhì)。該模式將源頭控制(農(nóng)業(yè)投入品)、過(guò)程阻控(作物本身鎘、砷吸收特性,影響作物地下部與地上部鎘、砷吸收的各個(gè)環(huán)節(jié))、末端治理(秸稈移除修復(fù))高度統(tǒng)一起來(lái),然后根據(jù)耕地-農(nóng)產(chǎn)品污染等級(jí),采取或緊或松的關(guān)鍵(聯(lián)合)技術(shù)調(diào)控,實(shí)現(xiàn)農(nóng)田的安全種植。VIRL英文意為金屬箍,可將此模式形象為緊箍咒技術(shù)模式,該模式亦適用于其他大部分重金屬污染及復(fù)合重金屬污染情況。
3.3 鎘、砷復(fù)合污染同步防控問(wèn)題與展望
農(nóng)田鎘、砷復(fù)合污染普遍存在,由于二者的生物有效性受土壤酸堿度和氧化-還原狀況的影響幾乎完全相反,實(shí)際防控效果往往顧此失彼。其復(fù)合污染防控,一是要加強(qiáng)共性防控關(guān)鍵技術(shù)研發(fā),包括同步鈍化土壤鎘砷材料的研制、同步阻控作物鎘砷吸收葉面調(diào)理劑研發(fā)、低吸收鎘砷作物品種篩選等。二是要根據(jù)實(shí)際情況,辨別主次矛盾,采取針對(duì)性的防控措施。如稻田、菜地、麥田等不同種植體系,要綜合權(quán)衡土壤水分狀況的影響、作物對(duì)鎘砷吸收差異的影響等,從上述VIRL安全種植技術(shù)模式中選取有效的技術(shù)措施。
參考文獻(xiàn):
[1]環(huán)境保護(hù)部,國(guó)土資源部.全國(guó)土壤污染狀況調(diào)查公報(bào)[R].2014-04-17.
The Ministry of Environmental Protection,The Ministry of Land and Resources.Report on the national soil contamination survey[R].2014-04-17.
[2]章海波,駱永明,李遠(yuǎn),等.中國(guó)土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)中重金屬指標(biāo)的篩選研究[J].土壤學(xué)報(bào),2014,51(3):429-438.
ZHANG Hai-bo,LUO Yong-ming,LI Yuan,et al.Screening of criteria for heavy metals for revision of the National Standard for Soil Environmental Quality of China[J].Acta Pedologica Sinica,2014,51(3):429-438.
[3]徐晟徽,郭書(shū)海,胡筱敏,等.沈陽(yáng)張士灌區(qū)重金屬污染再評(píng)價(jià)及鎘的形態(tài)分析[J].應(yīng)用生態(tài)學(xué)報(bào),2007,18(9):2144-2148.
XU Sheng-hui,GUO Shu-hai,HU Xiao-min,et al.Revaluation of soil heavy metals pollution in Zhangshi irrigation area of Shenyang and analysis of Cd forms in soil[J].ChineseJournal of Applied Ecology, 2007,18(9):2144-2148.
[4]Chen T B,Zheng Y M,Chen H,et al.Arsenic accumulation in soils for different land use types in Beijing[J].Geographical Research,2005,24(2):229-235.
[5]趙保衛(wèi),王剛.白銀市郊區(qū)農(nóng)田土壤重金屬污染初步調(diào)查與評(píng)價(jià)[J].環(huán)境科學(xué)與技術(shù),2010,33(11):79-105.
ZHAO Bao-wei,WANG Gang.Preliminary investigation and assessment of farmland soils contaminated by heavy metal around Baiyin City[J].Environmental Science&Technology,2010,33(11):79-105.
[6]趙筱青,李麗嬌,楊紅輝,等.云南沘江流域農(nóng)田土壤重金屬Pb、Zn、Cd、As的地球化學(xué)特征[J].地球?qū)W報(bào),2012,33(3):331-340.
ZHAO Xiao-qing,LI Li-jiao,YANG Hong-hui,et al.The geochemical characteristics of heavy metals in agricultural soils of the Bijiang Watershed in Yunnan Province[J].Acta Geoscientica Sinica,2012,33(3): 331-340.
[7]杜平,趙歡歡,王世杰,等.大冶市農(nóng)田土壤中鎘的空間分布特征及污染評(píng)價(jià)[J].土壤,2013,45(6):1028-1035.
DU Ping,ZHAO Huan-huan,WANG Shi-jie,et al.Spatial distribution and assessment of cadmium pollution in farmland soils,Daye City[J]. Soils,2013,45(6):1028-1035.
[8]雷鳴,曾敏,鄭袁明,等.湖南采礦區(qū)和冶煉區(qū)水稻土重金屬污染及其潛在風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué)學(xué)報(bào),2008,28(6):1212-1220.
LEI Ming,ZENG Min,ZHENG Yuan-ming,et al.Heavy metals pollution and potential ecological risk in paddy soils around mine areas and smelting areas in Hunan Province[J].Acta Scientiae Circumstantiae, 2008,28(6):1212-1220.
[9]楊國(guó)義,張?zhí)毂?萬(wàn)洪富,等.廣東省典型區(qū)域農(nóng)業(yè)土壤中重金屬污染空間差異及原因分析[J].土壤,2007,39(3):387-392.
YANG Guo-yi,ZHANG Tian-bin,WAN Hong-fu,et al.Spatial distribution and sources of heavy metal pollution of agricultural soils in the typical areas of Guangdong Province,China[J].Soils,2007,39(3): 387-392.
[10]陳同斌,宋波,鄭袁明,等.北京市蔬菜和菜地土壤砷含量及其健康風(fēng)險(xiǎn)分析[J].地理學(xué)報(bào),2006,61(3):297-310.
CHEN Tong-bin,SONG Bo,ZHENG Yuan-ming,et al.A survey of arsenic concentrations in vegetables and soils in Beijing and the potential risks to human health[J].Acta Geographica Sinica,2006,61(3):297-310.
[11]Liao X Y,Chen T B,Xie H,et al.Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City,Southern China[J].Environment International,2005,31(6):791-798.
[12]雷鳴,曾敏,王利紅,等.湖南市場(chǎng)和污染區(qū)稻米中As、Pb、Cd污染及其健康風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué)學(xué)報(bào),2010,30(11):2314-2320.
LEI Ming,ZENG Min,WANG Li-hong,et al.Arsenic,lead,and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment[J].Acta Scientiae Circumstantiae, 2010,30(11):2314-2320.
[13]Zhao F J,Ma Y B,Zhu Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental Science and Technology,2014,49(2):750-759.
[14]王旭.廣東省蔬菜重金屬風(fēng)險(xiǎn)評(píng)估研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
WANG Xu.Study on vegetable heavy metals risk assessment in Guangdong Province[D].Wuhan:Huazhong Agricultural University, 2012.
[15]甄燕紅,成顏君,潘根興,等.中國(guó)部分市售大米中Cd、Zn、Se的含量及其食物安全評(píng)價(jià)[J].安全與環(huán)境學(xué)報(bào),2008,8(1):119-122.
ZHEN Yan-hong,CHENG Yan-jun,PAN Gen-xing,et al.Cd,Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety[J].Journal of Safety and Environment,2008,8(1):119-122.
[16]Li Z Y,Ma Z W,van der Kuijp T J,et al.A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J].Science of the Total Environment,2014,468:843-853.
[17]劉耀馳,高栗,李志光,等.湘江重金屬污染現(xiàn)狀、污染原因分析與對(duì)策探討[J].環(huán)境保護(hù)科學(xué),2010,36(4):26-29.
LIU Yao-chi,GAO Li,LI Zhi-guang,et al.Analysis on heavy metals pollution status and reasons in Xiangjiang River and discussion on its countermeasures[J].Environmental Protection Science,2010,36(4): 26-29.
[18]宋書(shū)巧,吳浩東,藍(lán)唯源.刁江沿岸土壤重金屬污染狀況及土地的合理利用模式[J].環(huán)境與健康雜志,2008,25(4):317-319.
SONG Shu-qiao,WU Hao-dong,LAN Wei-yuan.The status of heavy metals pollution in soil along Diaojiang River sides[J].Journal of Environment and Health,2008,25(4):317-319.
[19]鄒天森,康文婷,張金良,等.我國(guó)主要城市大氣重金屬的污染水平及分布特征[J].環(huán)境科學(xué)研究,2015,28(7):1053-1061.
ZOU Tian-sen,KANG Wen-ting,ZHANG Jin-liang,et al.Concentrations and distribution characteristics of atmospheric heavy metals in urban areas of China[J].Research of Environmental Sciences,2015,28(7):1053-1061.
[20]Luo L,Ma Y B,Zhang S Z,et al.An inventory of trace element inputs to agricultural soils in China[J].Environ Manage,2009,90(8),2524-2530.
[21]Six L,Smolders S.Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils[J].Science of the Total Environment,2014,485/486(3):319-328.
[22]Rehman K,Naranmandura H.Arsenic metabolism and thioarsenicals[J].Metallomics,2012,4(9):881-892.
[23]朱永官,等.農(nóng)業(yè)環(huán)境中的砷及其對(duì)人體的健康風(fēng)險(xiǎn)[M].北京:科學(xué)出版社,2013.
ZHU Yong-guan,et al.Arsenic in the agricultural environment and its potential risk to humans[M].Beijing:Science Press,2013.
[24]王美,李書(shū)田.肥料重金屬含量狀況及施肥對(duì)土壤和作物重金屬富集的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(2):466-480.
WANG Mei,LI Shu-tian.Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops[J].Journal of Plant Nutrition and Fertilizer,2014,20(2):466-480.
[25]楊忠芳,夏學(xué)齊,余濤,等.湖南洞庭湖水系A(chǔ)s和Cd等重金屬元素分布特征及輸送通量[J].現(xiàn)代地質(zhì),2008,22(6):897-908.
YANG Zhong-fang,XIA Xue-qi,YU Tao,et al.Distribution and fluxes of As and trace metals in the Dongting Lake water system,Hunan-Province,China[J].Geoscience,2008,22(6):897-908.
[26]劉春早,黃益宗,雷鳴,等.湘江流域土壤重金屬污染及其生態(tài)環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境科學(xué),2012,33(1):260-265.
LIU Chun-zao,HUANG Yi-zong,LEI Ming,et al.Analysis on heavy metals pollution status and reasons in Xiangjiang River and discussion on its countermeasures[J].Environmental Science,2012,33(1):260-265.
[27]Atafar Z,Mesdaghinia A,Nouri J.Effect of fertilizer application on soil heavy metal concentration[J].Environmental Monitoring and Assessment,2010,160(1):83-89.
[28]閆湘,王旭,李秀英,等.我國(guó)水溶肥料中有毒有害重金屬含量、來(lái)源及安全現(xiàn)狀[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(1):8-18.
YAN Xiang,WANG Xu,LI Xiu-ying,et al.Contents,source and safety status of major heavy metals in water-soluble fertilizers in China[J].Journal of Plant Nutrition and Fertilizer,2016,22(1):8-18.
[29]程旭艷,王定美,喬玉輝,等.中國(guó)商品有機(jī)肥重金屬分析[J].環(huán)境污染與防治,2012,34(2):72-76.
CHENG Xu-yan,WANG Ding-mei,QIAO Yu-hui,et al.Analyze on the heavy metals content in China commodity organic fertilizer[J].Environmental Pollution and Control,2012,34(2):72-76.
[30]Yang M,Zhang Y Y,Zhang L,et al.OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J].Journal of Experimental Botany,2014,65(17):4849-4861.
[31]李劍睿,徐應(yīng)明,林大松,等.水分管理對(duì)硫鐵鎘在水稻根區(qū)變化規(guī)律及其在水稻中積累的影響[J].環(huán)境科學(xué),2014,33(7):1316-1321.
LI Jian-rui,XU Ying-ming,LIN Da-song,et al.Accumulation of S,Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements[J].Environmental Science,2014,33(7):1316-1321.
[32]王艷紅,李盟軍,唐明燈,等.水作和旱作對(duì)葉菜吸收鎘的影響差異研究[J].生態(tài)環(huán)境學(xué)報(bào),2012,21(4):770-774.
WANG Yan-hong,LI Meng-jun,TANG Ming-deng,et al.Comparison between water-submerging-cultivation and dry farming in reducing Cd concentration in waterspinach[J].Ecology and Environmental Sciences, 2012,21(4):770-774.
[33]Li R Y,Stroud J L,Ma J F,et al.Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J].Environmental Science and Technology,2009,43(10):3778-3783.
[34]Zhu Y G,Yoshinaga M,Zhao F J,et al.Earth abides arsenic biotransformations[J].Annual Review of Earth and Planetary Sciences,2014, 42(1):443-467.
[35]Xu X Y,McGrath S P,Meharg A A,et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science and Technology,2008,42(15):5574-5579.
[36]Somenahally A C,Hollister E B,Yan W G,et al.Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments[J].Environmental Science and Technology,2011,45(19):8328-8335.
[37]龍水波,曾敏,周航,等.不同水分管理模式對(duì)水稻吸收土壤砷的影響[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(4):1003-1008.
LONG Shui-bo,ZENG Min,ZHOU Hang,et al.Effects of different water management modes on soil arsenic uptake by rice plants[J].Acta Scientiae Circumstantiae,2014,34(4):1003-1008.
[38]Miretzky P,Cirelli A F.Remediation of arsenic-contaminated soils by iron amendments:A review[J].Critical Reviews in Environmental Science and Technology,2010,40(2):93-115.
[39]Ding Y Z,Feng R W,Wang R G,et al.A dual role of Se on Cd toxicity: Evidence from plant growth,root morphology and responses of the antioxidative systems of paddy rice[J].Plant and Soil,2014,375(1/2): 289-301.
[40]胡瑩,黃益宗,劉云霞.砷-硒交互作用對(duì)水稻吸收轉(zhuǎn)運(yùn)砷和硒的影響[J].環(huán)境化學(xué),2013,32(6):952-958.
HU Ying,HUANG Yi-zong,LIU Yun-xia.Interactions between arsenic and selenium uptake and translocation in rice(Oryza sativa L.)seedlings[J].Environmental Chemistry,2013,32(6):952-958.
[41]郭偉,朱永官,梁永超,等.土壤施硅對(duì)水稻吸收砷的影響[J].環(huán)境科學(xué),2006,27(7):1393-1397.
GUO Wei,ZHU Yong-guan,LIANG Yong-chao,et al.Effect of application of silicon on arsenic uptake by rice seedlings in soil[J].Environmental Science,2006,27(7):1393-1397.
[42]陳喆,鐵柏清,雷鳴,等.施硅方式對(duì)稻米鎘阻隔潛力研究[J].環(huán)境科學(xué),2014,35(7):2762-2770.
CHEN Zhe,TIE Bo-qing,LEI Ming,et al.Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J].Environmental Science,2014,35(7):2762-2770.
[43]楊惟薇,張超蘭,曹美珠,等.4種生物炭對(duì)鎘污染潮土鈍化修復(fù)效果研究[J].水土保持學(xué)報(bào),2015,29(1):239-243.
YANG Wei-wei,ZHANG Chao-lan,CAO Mei-zhu,et al.Immobilization and remediation of cadmium contaminated soil with four kinds of biochars[J].Journal of Soil and Water Conservation,2015,29(1):239-243.
[44]劉利軍,洪堅(jiān)平,閆雙堆,等.不同pH條件下腐植酸對(duì)土壤中砷形態(tài)轉(zhuǎn)化的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(1):134-141.
LIU Li-jun,HONG Jian-ping,YAN Shuang-dui,et al.Effects of humic acid on transformation of soil As in different pH conditions[J].Plant Nutrition and Fertilizer Science,2013,19(1):134-141.
[45]曹心德,魏曉欣,代革聯(lián),等.土壤重金屬?gòu)?fù)合污染及其化學(xué)鈍化修復(fù)技術(shù)研究進(jìn)展[J].環(huán)境工程學(xué)報(bào),2011,5(7):1441-1453.
CAO Xin-de,WEI Xiao-xin,DAI Ge-lian,et al.Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils:A review[J].Chinese Journal of Environmental Engineering, 2011,5(7):1441-1453.
[46]Sierra I,Perez-Quintanilla D.Heavy metal complexation on hybridmesoporous silicas:An approach to analytical applications[J].Chemical Society Reviews,2013,42(9):3792-3807.
[47]周坤,劉俊,徐衛(wèi)紅,等.外源鋅對(duì)不同番茄品種抗氧化酶活性、鎘積累及化學(xué)形態(tài)的影響[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(6):1592-1599.
ZHOU Kun,LIU Jun,XU Wei-hong,et al.Effect of exogenous zinc on activity of antioxidant enzyme,accumulation and chemical forms of cadmium in different varieties of tomato[J].Acta Scientiae Circumstantiae,2014,34(6):1592-1599.
[48]索炎炎.鎘污染條件下葉面噴施鋅肥對(duì)水稻鋅鎘積累的影響[D].杭州:浙江大學(xué),2012.
SUO Yan-yan.Effects of foliar zinc application on cadmium and zinc accumulation of rice grown in cadmium contaminated soil[D].Hangzhou: Zhejiang University,2012.
[49]Liu C P,Li F B,Luo C L,et al.Foliar application of two silica sols reduced cadmium accumulation in rice grains[J].Journal of Hazardous Materials,2009,161(2/3),1466-1472.
[50]Liu C P,Wei L,Zhang S R,et al.Effects of nanoscale silica sol foliar application on arsenic uptake,distribution and oxidative damage defense in rice(Oryza sativa L.)under arsenic stress[J].RSC Advances, 2014,4(100):57227-57234.
[51]許超,歐陽(yáng)東盛,朱乙生,等.葉面噴施鐵肥對(duì)菜心重金屬累積的影響[J].環(huán)境科學(xué)與技術(shù),2014,37(11):20-25.
XU Chao,OUYANG Dong-sheng,ZHU Yi-sheng,et al.Influence of foliar application of iron fertilizer on heavy metal accumulation in Brassica parachinensis[J].Environmental Science&Technology,2014, 37(11):20-25.
[52]胡坤,喻華,馮文強(qiáng),等.中微量元素和有益元素對(duì)水稻生長(zhǎng)和吸收鎘的影響[J].生態(tài)學(xué)報(bào),2011,31(8):2341-2348.
HU Kun,YU Hua,FENG Wen-qiang,et al.Effects of secondary,micro-and beneficial elements on rice growth and cadmium uptake[J].Acta Ecologica Sinica,2011,31(8):2341-2348.
[53]徐向華,劉傳平,唐新蓮,等.葉面噴施硒硅復(fù)合溶膠抑制水稻砷積累效應(yīng)研究[J].生態(tài)環(huán)境學(xué)報(bào),2014,23(6):1064-1069.
XU Xiang-hua,LIU Chuan-ping,TANG Xin-lian,et al.Foliar application of selenium-silicon sol reduced arsenic accumulation in rice[J].Ecology and Environmental Sciences,2014,23(6):1064-1069.
[54]李慧敏,劉傳平,李芳柏,等.葉面噴施鈰硅復(fù)合溶膠抑制生菜砷積累效應(yīng)研究[J].生態(tài)環(huán)境學(xué)報(bào),2010,19(5):1108-1113.
LI Hui-min,LIU Chuan-ping,LI Fang-bai,et al.Foliar application of ceria-silica sol reduced arsenic accumulation in lettuce[J].Ecology and Environmental Sciences,2010,19(5):1108-1113.
[55]Arthur E,Crews H,Morgan C.Optimizing plant genetic strategies for minimizing environmental contamination in the food chain[J].International Journal of Phytoremediation,2000,2(1):1-21.
[56]劉維濤,周啟星,孫約兵,等.大白菜(Brassica pekinensis L.)對(duì)鎘富集基因型差異的研究[J].應(yīng)用基礎(chǔ)與工程學(xué)報(bào),2010,18(2):227-235.
LIU Wei-tao,ZHOU Qi-xing,SUN Yue-bing,et al.Genotypic variation of cadmium accumulation in Chinese cabbage(Brassica pekinensis L.)[J].Journal of Basic Science and Engineering,2010,18(2):227-235.
[57]蔣彬,張慧萍.水稻精米中鉛鎘砷含量基因型差異的研究[J].云南師范大學(xué)學(xué)報(bào),2002,22(3):37-40.
JIANG Bin,ZHANG Hui-ping.Genotypic differences in concentrations of plumbum,cadmium and arsenicum in polished rice grains[J].Journal of Y unnan Normal University,2002,22(3):37-40.
[58]Mei X Q,Ye Z H,Wong M H.The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J].Environmental Pollution,2009,157(8/9):2550-2557.
[59]談?dòng)顦s,徐曉燕,丁永禎,等.旱稻吸收砷鎘的基因型差異研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(8):1436-1443.
TAN Yu-rong,XU Xiao-yan,DING Yong-zhen,et al.Genotypic variation of arsenic and cadmium uptake by upland rice[J].Journal of Agro-Environment Science,2016,35(8):1436-1443.
[60]Gao X P,Mohr R M,McLaren D L,et al.Grain cadmium and zinc concentrations in wheat as affected by genotypic variation and potassium chloride fertilization[J].Field Crops Research,2011,122(2):95-103.
[61]Sugiyama M,Ae N,Hajika M.Developing of a simple method for screening soybean seedling cadmium accumulation to select soybean genotypes with low seed cadmium[J].Plant and Soil,2011,341(1/2): 413-422.
[62]邱丘.菜心Cd累積的品種間差異及Cd污染控制方法研究[D].廣州:中山大學(xué),2011.
QIU Qiu.Genotype variation of Cd accumulation and control methods for Cd pollution in Chinese flowering cabbage(Brassica parachinensis)[D].Guangzhou:Sun Yat-Sen University,2011.
[63]Norton G J,Pinson S R M,Alexander J,et al.Variation in grain arsenic assessed in a diverse panel of rice(Oryza sativa)grown in multiple sites[J].New Phytologist,2012,193(3):650-664.
[64]溫娜,王景安,劉仲齊.利用AMMI模型分析稻米鎘含量的基因型與環(huán)境互作效應(yīng)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(5):817-823.
WEN Na,WANG Jing-an,LIU Zhong-qi.Analysis of genotypic and environmental effects on cadmium content in rice by AMMI model[J].Journal of Agro-Environment Science,2015,34(5):817-823.
[65]畢于運(yùn),高春雨,王亞靜,等.中國(guó)秸稈資源數(shù)量估算[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):211-217.
BI Yu-yun,GAO Chun-yu,WANG Ya-jing,et al.Estimation of straw resources in China[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(12):211-217.
[66]國(guó)家統(tǒng)計(jì)局.2015年糧食產(chǎn)量的公告[R].2015-12-08.
National Bureau of Statistics of the People′s Republic of China.2015 grain yield announcement[R].2015-12-08.
[67]唐非,雷鳴,唐貞,等.不同水稻品種對(duì)鎘的積累及其動(dòng)態(tài)分布[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(6):1092-1098.
TANG Fei,LEI Ming,TANG Zhen,et al.Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice(Oryza sativa L.)[J].Journal of Agro-Environment Science,2013,32(6): 1092-1098.
[68]沈欣,朱奇宏,朱捍華,等.農(nóng)藝調(diào)控措施對(duì)水稻鎘積累的影響及其機(jī)理研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(8):1449-1454.
SHEN Xin,ZHU Qi-hong,ZHU Han-hua,et al.Effects of agronomic measures on accumulation of Cd in rice[J].Journal of Agro-Environment Science,2015,34(8):1449-1454.
Probes of prevention and control of farmland pollution by cadmium&arsenic and crop production safety
ZHOU Li1,2,3,ZHENG Xiang-qun1,2,DING Yong-zhen1,2*,HUANG Hong-kun4,ZHENG Shun-an4,SHI Rong-guang1,2,LI Xiao-hua4, FENG Ren-wei1,2,WANG Rui-gang1,2
(1.Agro-Environmental Protection Institute,Ministry of Agriculture,Tianjin 300191,China;2.Key Laboratory of Agro-Environmental Pollution Control and Prevention,Ministry of Agriculture,Tianjin 300191,China;3.College of Land and Environment,Shenyang Agricultural University,Shenyang 110866,China;4.Rural Energy&Environment Agency,Ministry of Agriculture,Beijing 100125,China)
Farmland pollution by cadmium and arsenic,at present,is one of the major environmental problems confronting agricultural production.In this paper,the situation of farmland pollution by cadmium and arsenic and its risks to health are reviewed and the key technologies to obstruct and control cadmium and arsenic from being absorbed by crops are observed,such as agricultural input control,water management,soil passivant regulation,leaf surface conditioning,selection and substitute planting of low absorption crop varieties,and removal of straws.Combining the Soil Pollution Prevention Action Plan,the following ideas are proposed in this paper regarding the production safety on cadmium-and arsenic-polluted farmland:(1)determine an appropriate technology for safe production according to the farmland pollution index and(2)control and prevent pollution in comprehensive ways using integrated agronomic measures.In this paper,the control and prevention of farmland pollution by cadmium and arsenic is explained,and regarding crop production safety,a technical mode,VIRL(Variety-Input and Irrigation-Root zone and Removal of Straw-Leaf blade),is presented.This mode highly integrates source control(agricultural inputs),process control(crops′native characteristics of cadmium and arsenic absorption,various elements in both underground andaboveground parts affecting cadmium and arsenic absorption),and terminal control of farmland.Then,a key(joint)technical regulation, strict or loose,is carried out based on the farmland pollution level,thus securing safe production on cadmium-and arsenic-polluted farmland.
farmland;cadmium;arsenic;pollution prevention and control;crops′production safety;VIP+n technical mode;VIRL technical mode
X53
A
1672-2043(2017)04-0613-07
10.11654/jaes.2016-1518
2016-11-29
周莉(1980—),女,湖北麻城人,副研究員,從事農(nóng)業(yè)環(huán)境學(xué)研究。E-mail:zhouli@aepi.org.cn
*通信作者:丁永禎E-mail:dingyongzhen@caas.cn。
國(guó)家自然科學(xué)基金項(xiàng)目(41471274,41371463,41101306);國(guó)家科技支撐計(jì)劃課題(2015BAL01B01)
Project supported:The National Natural Science Foundation of China(41471274,41371463,41101306);The National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAL01B01)
周莉,鄭向群,丁永禎,等.農(nóng)田鎘砷污染防控與作物安全種植技術(shù)探討[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(4):613-619.
ZHOU Li,ZHENG Xiang-qun,DING Yong-zhen,et al.Probes of prevention and control of farmland pollution by cadmium&arsenic and crop production safety[J].Journal of Agro-Environment Science,2017,36(4):613-619.