• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    2012-08-22 08:32:14XIEMingxiao
    水動力學研究與進展 B輯 2012年6期

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    A process-based 3-D hydrodynamic model is established to simulate the rip current structures under irregular bathymetry. The depth-varying wave-induced residual momentum, the surface rollers, the turbulent mixing and the wave-current interactions are considered. Experimental datasets are used to validate the model, and it is shown that the model can effectively describe the 3-D structures of the rip currents in both normal and oblique wave incident cases. The flow patterns of the rip currents see various characteristics for different incident wave directions. In the normal incident case, pairs of counter-rotating primary circulation cells are formed, and an offshore rip flow occurs in the embayment troughs. The peak seaward velocities occur at the top of the bed boundary layer, and the undertow is incorporated in addition to the rip currents. In the oblique incident case, the longshore currents are dominant, which result in a meandering flow along the depth contour, and the undertow is weaker compared to that in the normal incident condition.

    rip currents, irregular bathymetry, 3-D numerical modelling

    Introduction

    The wave-induced currents generated in coastal regions are directly responsible for sediment transport and morphology evolutions. Therefore an accurate prediction of these currents is essential for coastal engineering applications. Wave-induced current phenomena were widely studied, including the wave setup[1,2], undertow[3]and longshore currents[4,5]. However, only the single-sloped plane beaches were often considered in the experiments. In real coastal areas, the underwater bathymetry is usually irregular (e.g., with rhythmic shorelines, sinuous cusps or gapped sand bars). As the waves propagate towards the shoreline, under the multiple processes of shoaling, breaking, refraction and diffraction, a more complex circulative flow could form, which is called the rip currents, which can be very intense with the highest velocity exceeding 2 m/s in sand bar gaps or cusp embayment troughs, to induce the strong seaward sediment transport, and subsequently to affect the coastal morpho-logy.

    The structure of the rip currents is extremely complicated. Under different incident wave and bathymetry conditions, the flow patterns see variable features. Due to its complex nature, there were relatively few detailed explorations of the rip currents. Haller et al.[6]measured the rip currents on an artificial barred beach in laboratory using a wave tank and ADV, Peng and Zou[7]measured the rip currents on a similar sandbar beach using video-tracked drifters. But in those experiments only the horizontal velocity distribution was measured, leaving the vertical profiles aside. In order to investigate the detailed characteristics of the rip currents, Borthwick and Foote[8]installed a tri-cuspate beach in the UK Coastal Research Facility (UKCRF), and measured the 3-D structures of the current field.

    As for numerical simulations, Bai et al.[9]modeled the rip currents under a rhythmic bathymetry using the quasi-3D SHORECIRC model, Rogers et al.[10]modeled the UKCRF experiments using the Godunovtype 2DH numerical model, Fang et al.[11]applied the Boussinesq equations to model the rip currents over the barred beach. However, as indicated by Borthwickand Foote[8], the rip currents have a significant 3-D nature, 2-D models would be inadequate, and a fully 3-D model should be used.

    Xie[12]established a fully process-based 3-D wave-induced current model, which was satisfactorily validated using a series of experimental datasets. In this paper, the Xie[12]model was applied to simulate the flow structures of the rip currents including both the horizontal flow pattern and the vertical profile.

    1. Model description

    1.1 Hydrodynamic model

    The governing equations of the hydrodynamic model are in the Reynolds form simplified from the original Navier-Stokes equations (see Eq.(1)-Eq.(4)). The contributions of the depth-varying residual momentum, the surface roller stresses and the turbulent mixings are included. Cartesian coordinates are used in the horizontal directions and the terrain-following sigma coordinate is used in the vertical direction.

    where the vertical sigma coordinate σ=(z-η)/D ranges from σ=-1 at the bottom to σ=0 at the surface, t is the time,x and y are the horizontal coordinates,η is the free surface, U and V are the velocity components in x and ydirections, respectively,ω is the velocity component in σ coordinate, D is the water depth, g is the gravity acceleration, p is the pressure,M is the depth-varying residual momentum, R is the depth-varying roller momentum,KMcand AMcare the vertical and horizontal mixing coefficients combining waves and currents, respectively, ρ is the seawater density.

    1.1.1 Wave-induced residual momentum

    The formulation proposed by Lin and Zhang[13]is applied for the vertical distribution of the wave-induced residual momentum (see Eq.(5))

    where E is the wave energy, n is the wave energy transfer rate, k is the wave number,δ is the Kronecker symbol, i and j represent the x,y directions, respectively.

    1.1.2 Surface roller evolution

    Based on the energy balance, Xie[12]derived an evolution model of the breaking-induced surface rollers, as expressed by Eq.(6). The model considers multiple factors including the roller energy transfer, the roller density, the bottom dissipation and the bed slope.

    where Cg=Cn is the wave group celerity,αis the roller energy transfer factor, T is the wave period, ER=ρARC/2T is the roller energy, KR= 3(0.3+2.4s)/8, and s is the bed slope, ARis the roller area, n =n(cosθ,sinθ) is the wave vector, andρRis the roller density.

    If the wave parameters are given, Eq.(6) can be solved by using an iteration algorithm from the brea-king point to the shoreline with an offshore boundary condition AR=0. The vertical profile of the roller momentumis expressed as an exponential function proposed by Haas and Warner[14], as expressed by Eq.(7). Note that because the depth integral of Rzshould be unity, it should be pre-normalized to Rznfollowing Eq.(8).

    OnceAR(σ)is solved,ER(σ)can be calculated explicitly. The corresponding stresses in the governing equations caused by the roller can be determined, as in Eqs.(9)-(11).

    1.1.3 Bottom shear stress

    The wave-current combined bottom shear stress τcwis determined by Eq.(12). where τc=ρCDuc2is the bed shear stress by current only, CD=[κ-1ln(h+zb)/z0]-2is the drag coefficient, in which κ=0.4 is the Von Karman constant, h is the bed elevation, zbis the elevation of the first grid point above the bottom, z0is the roughness height, ucis the current velocityat the grid point nearest the bed, τw=0.5ρfwuw2is the shear stress due to waves only,uw=Hπ/Tsinh(kD) is the nearbottom wave orbitalvelocity, fwis the wave friction factor, B, P, Q are empirical coefficients.

    The value of coefficient B is determined by Eq.(13) with analogous expressions for P and Q.

    1.1.4 Turbulence mixing

    The wave-current combined turbulent mixing

    coefficients can be expres sed as in Eqs.(14)-(15).

    where A and K represent the horizontal and the vertical turbulentmixing coefficients, respectively, and thesubscriptsM and W represent current and waves, respectively.

    The horizontal mixing coefficient AMfor currents only is given by Eq.(16).

    where ΔxandΔy are the horizontal grid steps, Csis an empirical factor. The current-induced vertica l mixingcoefficientKMis solved by using a Mellor-Yamada closure model.

    Using the linear wave theory, Xie[12]derived the horizontal mixing coefficientAWfor waves only, as in Eq.(17)

    The vertical mixing coefficient AWfor waves onlyis expressed as in Eq.(18)

    where b is a calibration coefficient.

    1.2 Wave model

    The combined refraction/diffraction wavemodel (REF/DIF) is used as the wave driver for simulating monochromatic incident waves. The REF/DIF model is based on the parabolic mild-slope equation, and it can involve many processes, e.g. shoaling, refraction, energy dissipation, and irregular bottom bathymetry.

    1.3 Wave-current interaction

    The flow pattern of the rip currents is extremely complex, and the strong opposing currents affect the wavepropagation significantly. Therefore, the mutual interaction of the waves and currents should be considered in the simulation. In this paper, the REF/DIF procedure and the hydrodynamic procedure are coupled together through an iterative algorithm. After the current field reaches a stable state, the U and V fields feed back to the wave solver, and consequently the new wave parameters are calculated forthe preparation of the wave-related stresses, which are then in-corporated into the hydrodynamic equations for the solution in the next time step.

    1.4 Solution technique

    A finite difference method and a time-splitting technique are applied to solve the governing equations. The horizontal terms are treated explicitly, and the vertical terms are treated implicitly by using a doublesweep scheme. The arrangements of the variables follow the staggered C-grid system. The OGCM approach proposed by Oey[15]is used to model the inundation.

    Fig.1 Bathymetry and the observation stations in the UKCRF experiment

    Table 1 Incident wave parameters for the normal and oblique incident cases

    2. Experimental cases of UKCRF

    Borthwick and Foote[8]carried out laboratory studies of the 3-D structure of the rip currents over a tri-cuspate beach using the UKCRF. The wave basin hasthe plan dimensions of 27 m cross-shore by 36 m alongshore, and with the still water depth at the paddles of 0.5 m. The bed slope is 1:20. The experimental bathymetry and the locations of the observation profiles are shown in Fig.1. In the experiments, 2 wave observation sections and 7 velocity observation profiles are arranged both in the embayment and on the cusp horn.

    In this paper, the normal incident case (Case B) and the oblique incident case (Case C) are considered, and the related p arameters are shown in Table 1.

    Table 2 Input parameters in the numerical simulation

    Fig.2 Arrangement of the σ layers

    3. Numerical modelling of the rip currents

    3.1 Model parameters

    Table 2 shows the input parameters in the numerical simulations. In order to better describe the nearbed distributions of the current speed, the varying sigma discretization is used, where the spacing in the upper water column is selected asΔσ=0.1, and the near-bottom spacing is Δσ=0.01. The detailed arrangement for the sigma layers is illustrated in Fig.2.

    Fig.3 Comparisons between the modeled and the measured wave heights for Case B

    In order to estimate the model errors, two indices are applied, which are the root mean square (rms) errorand the correlation coefficient (COR). The former reflects the deviation between the measured and the simulated values, and the latter represents the linear correlation of two datasets. They are expressed aswhere Nis the total number of measurement points, I refers to a measurement point, meis the measurement value,om is the modeled value,N andrepresent the algebraic mean of the measured and the modeled values, respectively.

    Fig.4 Comparis ons between the modeled and the measured current velocities for Case B

    3.2 Normal incident case

    Figure 3 shows the comparisonsbetween the modeled and the observed wave heights of two representative sections for the normal incident case (Case B). It indicates that the model can describe the wave propagation, including the shoaling and breaking processes. The rms errors are confined within the range of 0.01 m-0.02 m, and the correlations between the two datasets are satisfactory (88%-97%).

    The comparisons with the observed velocities are shown in Fig.4. Theoretically, the V-velocities should be near-zero because of the symmetric nature of the bathymetry and the normal incident wave condition. However, the observed V-velocities are scattered. In fact, in the experiment, the rip current has unstable features and a trivial perturbation could lead to a deflection of the current direction. With above considerations in mind, in the comparisons, only the U-component is selected in the evaluation. As for the U-velocities, the rms errors are in the range of 0.03 m/s-0.06 m/s, and especially, the simulated velocities at sections P6 and P7 are larger than those observed. One reason is that the gradients of the observed wave heights are greater than those simulated in this area, which induces higher velocities (see Fig.3). The correlations between the two datasets seem not satisfactory, in which the lowest value is COR=12% (section P4). That is because the unstable nature of the rip currents makes the measurement data extremely scattered and their vertical variations are not smooth enough to infer the distribution trends clearly as compared to the simulation values. However, the comparisons do show that the simulated velocity profile of the rip currents captures the major distribution trend.

    Additionally, it can be observed that both the measured and the simulated results indicate that in the embayment (P1-P4), the peak seadirected velocities do not occur at the bottom, but at some distance from the bed, say 0.8z/D-0.95z/D. That is because in the surfzone, the undertow also contributes to theflow structure. It could be imposed on the rip currents and make the maximum velocity occur at the top of the bed boundary layer.

    Fig.5Planar distribution of the depth-averaged current velocities for Case B

    The horizontal distributions of the rip currents are extremely complex due to the involvement of many processes e.g. the shoaling, breaking, refraction and diffraction. Under the impact of irregular bathymetry, the wave heights differ in bothxand ydirections while propagating onshore, consequently, residual momentum gradients are formed in each direction.

    The flow field of depth-averaged rip currents for t he normal incident case is illustrated in Fig.5. It shows that pairs of counter-rotating circulation cells occur in each embayment. On the cusp horns, there is an onshore flow which fans out, divides and then feeds into the longshore currents that meet to form seaward rip currents at the embayment troughs. The rip currents are restricted in a relatively narrow zone, and then flow offshore with a large velocity (the maximum depth-averaged velocity of 0.3 m/s). The rip currents reach a short distance offshore in front of the breaking line, and die away at the rip heads. The comparison shows that the distribution of the simulated flow field agrees with that observed in the experiment.

    Fig.6Comparison between the modeled and the measuredwave heights for Case C

    3.3 Oblique incident case

    Figure 6 gives comparisons between the modeled and the observed wave heights for the oblique incident case (Case C). Similar to the normal incidentcase, it isshown that the model can effectively describe the wave propagations with the rms errors in the range of 0.01m-0.02 m, and the correlations in the range of 86%-95%.

    Fig.7 Comparis on between the modeled and the measured current velocities for Case C

    The comparisons with the observed velocities are shown in Fig.7. Unlike the normal incidentcase, in the oblique incident case, both the U andV components are significant, hence, the rms errors and the correlations for each direction are given. It is estimated t hat t he r ms errors are in th e ran ge of 0.01 m /s-0.09m/sforthe U-velocities,andinthe rangeof 0.02 m/s-0.09m/s for theV-velocities. The maximum error occurs at P6, where the model overestimates the velocity magnitude. The correlations for most datasets aresatisfactory, with the worst correlation at P7 (–6% forV-velocity) because the curvature of the measured data is opposite to that in the model. Generally, the simulated velocity profile of the rip currents captures the major distribution trendsfor both the magnitude and the distribution characteristics.

    The flow field of the depth-averaged rip currents for the oblique incident case is illustratedin Fig.8. It is indicated that the nearshore flow pattern is significantly different from that for the normal incident case. Because the incident waves are oblique, the gradientof the alongshore residual momentum contributes most to the nearshore currents. As a result, both the cell-like circulation structure and the rip currents are smoothened due to the strong longshore currents, and the flow is meandering along the bed contours. The maximum depth-averaged velocity is 0.48 m/s. The undertow is weaker compared to that in the normal incident condition. The comparison shows that the distribution of the simulated flow filed also agrees with that observed in the experiment.

    Fig.8planar distribution of the depth-averaged current velocities for Case C.

    To summarize, the flow structure of the rip currents under irregular bathymetry is extremely complex due to the multiple coastal processes and the wavecurrent interactions. All these factors make the laboratory measurements and the simulations very difficult. However, the comparisons with data of differentwave incident cases (normal and oblique) show that the established process-based 3-D numerical model can capture the major characteristics of the rip current field effectively for both the horizontal layout and the vertical profile. Generally, the model could provide someproper hydrodynamic information for further investigation of the morphodynamics in coastal areas.

    4. Conclusions

    (1) Using the process-based 3-D wave-induced current model, the rip current structures under irregular bathymetry were simulated. In the model, many processes including the depth-varying wave residual momentum, the surface rollers, the wave turbulent mixing and the wave-current interactions are considered.

    (2) The comparisons with the laboratory measurement datasets indicate that the model can effectively describe the horizontal distribution and the vertical profile of the rip currents for both normal incident and oblique incident cases.

    (3) The rip currents under irregular bathymetry show various characteristics under different wave incident conditions. For the normal incident case, pairs of counter-rotating circulation cells form, and offshore jet flows occur in the embayment troughs. The undertow contributes to the flow in the embayment and makes the peak seaward velocities occur at the top of the boundary layer. In the oblique incident case, the longshore currents are dominant, which results in a meandering flow along the depth contour, and the unde rtow is weaker compared to that in the normal inciden t condition.

    Acknowledgements

    This work was supported by the Central Public Institute Foundation of Tianjin Research Institute for Water Transport Engineering, Ministry of Transport (Grant No. TKS100102).

    [1] HSU T., JOHN R. C. and WENG W. et al. Wave setup and setdown generated by obliquely incident waves[J]. Coastal Engineering, 2006, 53(10): 865-877.

    [2] WEBER J. E., CHRISTENSEN K. H. and DENAMIEL C. Wave-induced setup of the mean surface over a sloping beach[J]. Continental Shelf Research, 2009, 29(11-12): 1448-1453.

    [3] KURIYAMA Y., ITO Y. and YANAGISHIMA S. Cross-shore variation of long-term average longshore current velocity in the nearshore zone[J]. Continental Shelf Research, 2008, 28(3): 491-502.

    [4] KURIYAMA Y., NAKATSUKASA T. A one-dimensional model for undertow and longshore current on a barred beach[J]. Coastal Engineering, 2000, 40(1): 39- 58.

    [5] REN Chun-ping, ZOU Zhi-li and QIU Da-hong. Experimentalstudy of the instabilities of alongshore currents on plane beaches[J]. Coastal Engineering, 2012, 59(1): 72-89.

    [6] HALLER M. C., DALRYMPLE R. A. and SVENDSEN I. A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research, 2002, 107(14): 1-21.

    [7]PENG Shi, ZOU Zhi-li. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2011, 26(6): 645-651(in Chinese).

    [8]BORTHWICK A. G. L., FOOTE Y. L. M. Wave-induced currents at a tri-cuspate beach in the UKCRF[J]. Water and Maritime Engineering, 2002, 154(4): 251-263.

    [9]BAI Zhi-gang, ZHANG Zhi-xian and CHEN Zhi-chun. A Quasi-3D nearshore circulation model applied in ripcurrent research[J]. Port and Waterway Engineering, 2007, (3): 12-17(in Chinese).

    [10]ROGERS B. D., ALISTAIR G. L. and TAYLOR P. H. GODUNOV-type model of wave-induced nearshore currents at a multi-cusped beach in the UKCRF[C]. 28th International Conference of Coastal Engineering, Cardiff, Wales, UK, 2002, 760-771.

    [11] FANG Ke-zhao, ZOU Zhi-li and LIU Zhong-bo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479-486(in Chinese).

    [12] XIE Ming-xiao. Establishment, validation and discussions of a three dimensional wave-induced current model[J]. Ocean Modelling, 2011, 38(3-4): 230-243.

    [13] LIN Peng-zhi, ZHANG Dan. The depth-dependent radiation stresses and their effect on coastal currents[C]. Proceedings of the 6th International Conference of Hydrodynamics: Hydrodynamics VI Theory and Applications. Perth, Australia, 2004, 247-253.

    [14] HAAS K. A., WARNER J. C. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS[J]. Ocean Modeling, 2009, 26(1-2): 91- 103.

    [15] OEY L. Y. An OGCM with movable land-sea boundaries[J]. Ocean Modelling, 2006, 13(2): 176-195.

    10.1016/S1001-6058(11)60314-4

    * Biography: XIE Ming-xiao (1982-), Male, Ph. D.

    伦理电影免费视频| 91麻豆精品激情在线观看国产 | 男女下面进入的视频免费午夜 | 黄色片一级片一级黄色片| 在线观看午夜福利视频| 男女之事视频高清在线观看| 亚洲av电影在线进入| 亚洲精品国产精品久久久不卡| 啦啦啦 在线观看视频| 长腿黑丝高跟| 久久中文看片网| 国产成年人精品一区二区 | 成人18禁高潮啪啪吃奶动态图| 午夜成年电影在线免费观看| 中文字幕色久视频| 91麻豆av在线| 99久久精品国产亚洲精品| 两人在一起打扑克的视频| 久久久久久亚洲精品国产蜜桃av| 女人被狂操c到高潮| 色婷婷av一区二区三区视频| 97超级碰碰碰精品色视频在线观看| 日本vs欧美在线观看视频| 一进一出抽搐动态| 热99re8久久精品国产| 免费不卡黄色视频| 日本vs欧美在线观看视频| 婷婷丁香在线五月| av片东京热男人的天堂| 精品无人区乱码1区二区| 久久这里只有精品19| 日本wwww免费看| 色婷婷av一区二区三区视频| 99久久综合精品五月天人人| 免费久久久久久久精品成人欧美视频| 欧洲精品卡2卡3卡4卡5卡区| svipshipincom国产片| 精品欧美一区二区三区在线| 成人三级做爰电影| 高清av免费在线| 国产高清国产精品国产三级| 黄色a级毛片大全视频| 真人做人爱边吃奶动态| 亚洲一区二区三区不卡视频| 女人爽到高潮嗷嗷叫在线视频| 免费日韩欧美在线观看| av免费在线观看网站| 日韩中文字幕欧美一区二区| 久久婷婷成人综合色麻豆| 日本免费一区二区三区高清不卡 | 亚洲第一av免费看| 亚洲激情在线av| 国产黄a三级三级三级人| 午夜福利在线免费观看网站| 欧美日韩乱码在线| 久久亚洲真实| 青草久久国产| av福利片在线| 久久久国产成人精品二区 | 少妇被粗大的猛进出69影院| 久久中文看片网| 露出奶头的视频| 亚洲七黄色美女视频| 日韩高清综合在线| 一进一出抽搐动态| 老司机福利观看| 久久久久精品国产欧美久久久| 夜夜躁狠狠躁天天躁| 成人精品一区二区免费| 不卡av一区二区三区| 女同久久另类99精品国产91| 久久婷婷成人综合色麻豆| 色在线成人网| 少妇被粗大的猛进出69影院| 日韩三级视频一区二区三区| 天天添夜夜摸| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 国产成人av教育| 在线av久久热| 亚洲欧洲精品一区二区精品久久久| 国产在线精品亚洲第一网站| 午夜日韩欧美国产| 激情在线观看视频在线高清| 身体一侧抽搐| 女同久久另类99精品国产91| 91字幕亚洲| 国产男靠女视频免费网站| 亚洲伊人色综图| 男女做爰动态图高潮gif福利片 | 国产精品久久久av美女十八| 一进一出好大好爽视频| 淫秽高清视频在线观看| 一夜夜www| 午夜亚洲福利在线播放| 成人亚洲精品一区在线观看| 在线永久观看黄色视频| 国产高清激情床上av| 一二三四社区在线视频社区8| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 亚洲欧美激情综合另类| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩高清在线视频| 一本综合久久免费| 少妇 在线观看| 黄色 视频免费看| 亚洲自拍偷在线| 宅男免费午夜| 极品教师在线免费播放| 一区二区三区精品91| 精品无人区乱码1区二区| 成人18禁在线播放| 看片在线看免费视频| 国产精品国产高清国产av| 久久婷婷成人综合色麻豆| 国产一区在线观看成人免费| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品一区二区三区在线| 一级作爱视频免费观看| 亚洲精品国产一区二区精华液| 人人澡人人妻人| 欧美人与性动交α欧美软件| 国产亚洲av高清不卡| 亚洲精品在线观看二区| 91麻豆精品激情在线观看国产 | 一本综合久久免费| 亚洲一区二区三区色噜噜 | 人成视频在线观看免费观看| 日韩高清综合在线| 亚洲成国产人片在线观看| 淫妇啪啪啪对白视频| 不卡av一区二区三区| 女人被躁到高潮嗷嗷叫费观| 无遮挡黄片免费观看| 欧美午夜高清在线| videosex国产| 日韩高清综合在线| 中出人妻视频一区二区| 搡老乐熟女国产| 精品高清国产在线一区| 黄网站色视频无遮挡免费观看| 免费看a级黄色片| 久久精品国产清高在天天线| 午夜福利在线免费观看网站| 国产精品偷伦视频观看了| 午夜老司机福利片| 天堂影院成人在线观看| 91九色精品人成在线观看| 亚洲三区欧美一区| 美女午夜性视频免费| 亚洲av成人av| 一级,二级,三级黄色视频| e午夜精品久久久久久久| xxxhd国产人妻xxx| 亚洲一区二区三区不卡视频| 亚洲成人久久性| 久久国产精品男人的天堂亚洲| 国产一区二区三区综合在线观看| 久久久久久久精品吃奶| 国产97色在线日韩免费| 国产成人av激情在线播放| 亚洲av五月六月丁香网| 日本免费一区二区三区高清不卡 | 国产一区二区激情短视频| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 中文字幕人妻丝袜一区二区| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类 | 国产成人精品久久二区二区91| 国产成人一区二区三区免费视频网站| 黑人猛操日本美女一级片| 99国产精品99久久久久| 欧美日韩黄片免| 国产精品久久久人人做人人爽| 亚洲av第一区精品v没综合| 精品国产一区二区久久| 国产高清videossex| 亚洲欧美一区二区三区久久| 国产成人欧美| 黄色女人牲交| 精品久久久久久久毛片微露脸| 欧美在线一区亚洲| 女人精品久久久久毛片| 黄色毛片三级朝国网站| 久久中文看片网| 男女之事视频高清在线观看| 日本wwww免费看| 一级毛片女人18水好多| 一本综合久久免费| 高清欧美精品videossex| 一级毛片精品| 欧美 亚洲 国产 日韩一| 国产深夜福利视频在线观看| 亚洲av美国av| 亚洲黑人精品在线| 欧美一级毛片孕妇| av电影中文网址| 日本免费一区二区三区高清不卡 | av在线播放免费不卡| 香蕉丝袜av| 视频区图区小说| 免费观看精品视频网站| 天堂俺去俺来也www色官网| 国产精品香港三级国产av潘金莲| 久久久久久久午夜电影 | 久久精品91蜜桃| 亚洲激情在线av| 亚洲精华国产精华精| 大码成人一级视频| 国产免费av片在线观看野外av| 天堂中文最新版在线下载| 亚洲欧美激情综合另类| 热re99久久国产66热| 少妇粗大呻吟视频| 亚洲av成人av| 如日韩欧美国产精品一区二区三区| 欧美中文综合在线视频| 热99国产精品久久久久久7| 亚洲自拍偷在线| 91av网站免费观看| 亚洲欧美激情综合另类| 精品国产国语对白av| 亚洲精品中文字幕在线视频| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕人妻熟女| 亚洲色图 男人天堂 中文字幕| 午夜成年电影在线免费观看| 老司机在亚洲福利影院| av欧美777| 久久人妻熟女aⅴ| 成人国语在线视频| 亚洲国产欧美网| 夜夜看夜夜爽夜夜摸 | 亚洲一码二码三码区别大吗| 三级毛片av免费| 亚洲国产欧美网| 免费看a级黄色片| 久久中文字幕一级| 欧美精品一区二区免费开放| 久久热在线av| 午夜激情av网站| 婷婷六月久久综合丁香| 18美女黄网站色大片免费观看| 日韩欧美在线二视频| 精品福利观看| 少妇被粗大的猛进出69影院| 国产黄色免费在线视频| 最新美女视频免费是黄的| 精品国产超薄肉色丝袜足j| 美女高潮喷水抽搐中文字幕| 嫁个100分男人电影在线观看| 在线播放国产精品三级| 亚洲精品成人av观看孕妇| 亚洲激情在线av| 国产色视频综合| 免费在线观看日本一区| 18禁观看日本| 日本欧美视频一区| 18禁美女被吸乳视频| 国产97色在线日韩免费| 一本综合久久免费| 91成人精品电影| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 久久精品亚洲熟妇少妇任你| 亚洲av成人不卡在线观看播放网| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 国产精品国产高清国产av| 日韩 欧美 亚洲 中文字幕| 天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 三级毛片av免费| 精品国产国语对白av| 亚洲成人免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 欧美一级毛片孕妇| 亚洲午夜精品一区,二区,三区| 久久久国产欧美日韩av| 国产亚洲精品久久久久5区| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 一夜夜www| 男女高潮啪啪啪动态图| 少妇 在线观看| 亚洲av美国av| 欧美成狂野欧美在线观看| 免费观看精品视频网站| 日本免费一区二区三区高清不卡 | 狠狠狠狠99中文字幕| 久久久国产成人精品二区 | 五月开心婷婷网| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 1024视频免费在线观看| 9色porny在线观看| 午夜视频精品福利| av在线天堂中文字幕 | 色婷婷久久久亚洲欧美| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区视频了| 国产精品日韩av在线免费观看 | 日韩欧美在线二视频| 一区二区三区激情视频| 国产午夜精品久久久久久| 精品久久久久久电影网| 老司机深夜福利视频在线观看| 黄色女人牲交| 中文字幕人妻熟女乱码| 国产成+人综合+亚洲专区| 久久精品国产亚洲av香蕉五月| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 国产在线观看jvid| 电影成人av| 免费观看精品视频网站| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 最新美女视频免费是黄的| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 午夜久久久在线观看| 亚洲 欧美 日韩 在线 免费| 91精品三级在线观看| x7x7x7水蜜桃| 国产精品99久久99久久久不卡| 亚洲男人天堂网一区| 午夜老司机福利片| 亚洲av五月六月丁香网| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 免费在线观看亚洲国产| 欧美日韩精品网址| 欧美日本中文国产一区发布| 久久久国产成人精品二区 | 日韩大码丰满熟妇| 色综合婷婷激情| 亚洲激情在线av| 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 久久这里只有精品19| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 老司机福利观看| 身体一侧抽搐| 午夜亚洲福利在线播放| 久久热在线av| 国产野战对白在线观看| a级毛片在线看网站| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 欧美乱妇无乱码| 国产免费男女视频| 亚洲成av片中文字幕在线观看| 在线av久久热| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 欧洲精品卡2卡3卡4卡5卡区| 丰满饥渴人妻一区二区三| 国产一区二区三区在线臀色熟女 | 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 亚洲男人的天堂狠狠| 在线观看www视频免费| 亚洲九九香蕉| 久久人妻av系列| 国产男靠女视频免费网站| 亚洲人成电影观看| 一本综合久久免费| 男女床上黄色一级片免费看| 国产97色在线日韩免费| 亚洲 欧美 日韩 在线 免费| 欧美日韩乱码在线| 日韩大尺度精品在线看网址 | 午夜免费观看网址| 久久久精品国产亚洲av高清涩受| 美女国产高潮福利片在线看| 久久香蕉国产精品| 夫妻午夜视频| 日韩欧美国产一区二区入口| 日韩高清综合在线| 无限看片的www在线观看| 免费在线观看完整版高清| www国产在线视频色| 丝袜在线中文字幕| 免费搜索国产男女视频| 亚洲 欧美一区二区三区| 男人舔女人下体高潮全视频| 精品国产一区二区久久| 亚洲欧美激情在线| 精品国产乱码久久久久久男人| 高潮久久久久久久久久久不卡| 天天影视国产精品| 一进一出抽搐动态| 午夜两性在线视频| 国产伦人伦偷精品视频| 可以在线观看毛片的网站| 国产av一区二区精品久久| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂| 成人三级黄色视频| 操出白浆在线播放| 黄色成人免费大全| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 在线永久观看黄色视频| 女人被狂操c到高潮| 国产高清视频在线播放一区| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| 天堂√8在线中文| 久久伊人香网站| 久久国产乱子伦精品免费另类| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 国产欧美日韩一区二区三| 中文字幕色久视频| 大型黄色视频在线免费观看| 国产精品偷伦视频观看了| 激情在线观看视频在线高清| 大陆偷拍与自拍| 夜夜躁狠狠躁天天躁| 国产精品久久久人人做人人爽| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 视频在线观看一区二区三区| 一本大道久久a久久精品| 视频区欧美日本亚洲| 91老司机精品| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 欧美一区二区精品小视频在线| 欧美一区二区精品小视频在线| 精品免费久久久久久久清纯| 久久 成人 亚洲| 精品国产美女av久久久久小说| 老司机福利观看| 午夜影院日韩av| 国产成人一区二区三区免费视频网站| 日韩中文字幕欧美一区二区| 免费女性裸体啪啪无遮挡网站| 精品国内亚洲2022精品成人| 一区福利在线观看| x7x7x7水蜜桃| 悠悠久久av| 青草久久国产| 亚洲欧美激情在线| 亚洲精华国产精华精| 日韩国内少妇激情av| 久久精品人人爽人人爽视色| 亚洲在线自拍视频| 国产精品久久久人人做人人爽| 久久久国产成人精品二区 | 男人的好看免费观看在线视频 | 他把我摸到了高潮在线观看| www国产在线视频色| 最好的美女福利视频网| av福利片在线| 亚洲精品国产区一区二| 超色免费av| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 超碰成人久久| 叶爱在线成人免费视频播放| 男男h啪啪无遮挡| 国产三级黄色录像| 欧美最黄视频在线播放免费 | 国产国语露脸激情在线看| 亚洲一区二区三区色噜噜 | 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 中文字幕最新亚洲高清| av视频免费观看在线观看| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 国产精品影院久久| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 欧美一区二区精品小视频在线| 久9热在线精品视频| 热re99久久精品国产66热6| 男人的好看免费观看在线视频 | 91麻豆精品激情在线观看国产 | 国产一卡二卡三卡精品| 夫妻午夜视频| av视频免费观看在线观看| 黑人猛操日本美女一级片| 精品一区二区三卡| 久久久久国产一级毛片高清牌| 人人妻,人人澡人人爽秒播| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 欧美不卡视频在线免费观看 | 性欧美人与动物交配| 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 涩涩av久久男人的天堂| 欧美成人性av电影在线观看| 国产精品久久久久成人av| 精品免费久久久久久久清纯| 热99国产精品久久久久久7| 精品久久久久久久毛片微露脸| 国产亚洲精品综合一区在线观看 | 久久久精品国产亚洲av高清涩受| 久久人人97超碰香蕉20202| 操出白浆在线播放| 国产精品影院久久| 免费不卡黄色视频| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色 | 香蕉国产在线看| 777久久人妻少妇嫩草av网站| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 满18在线观看网站| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 美女国产高潮福利片在线看| 久久久久久久久久久久大奶| 在线观看66精品国产| 桃红色精品国产亚洲av| 老汉色∧v一级毛片| 后天国语完整版免费观看| 亚洲一区二区三区色噜噜 | 黑人操中国人逼视频| 亚洲狠狠婷婷综合久久图片| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 水蜜桃什么品种好| 久久精品成人免费网站| 亚洲三区欧美一区| 麻豆国产av国片精品| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 国产xxxxx性猛交| 午夜久久久在线观看| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 免费av毛片视频| 黄片播放在线免费| 久久精品国产清高在天天线| 亚洲情色 制服丝袜| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 五月开心婷婷网| 亚洲自偷自拍图片 自拍| 日韩av在线大香蕉| www日本在线高清视频| 日韩欧美免费精品| 欧美日韩av久久| 一夜夜www| 精品少妇一区二区三区视频日本电影| 两性夫妻黄色片| 成人国产一区最新在线观看| 中文字幕色久视频| 少妇被粗大的猛进出69影院| 夜夜躁狠狠躁天天躁| 国产一区二区三区在线臀色熟女 | 国产精品av久久久久免费| 久久精品亚洲熟妇少妇任你| 最近最新中文字幕大全免费视频| www日本在线高清视频| 国产精品 国内视频| 在线观看www视频免费| 久久久精品国产亚洲av高清涩受| 一级a爱片免费观看的视频| 熟女少妇亚洲综合色aaa.| 欧美午夜高清在线| 国产成人免费无遮挡视频| 香蕉丝袜av| 在线观看66精品国产| 99香蕉大伊视频| 午夜影院日韩av| 丰满人妻熟妇乱又伦精品不卡| 另类亚洲欧美激情| 精品国内亚洲2022精品成人| 99国产综合亚洲精品| 黑人操中国人逼视频| 大型av网站在线播放| 精品国产超薄肉色丝袜足j| aaaaa片日本免费| 久热这里只有精品99| 亚洲 欧美一区二区三区| 免费观看人在逋| 好男人电影高清在线观看| 欧美黄色淫秽网站| 少妇被粗大的猛进出69影院|