• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    2012-08-22 08:32:14XIEMingxiao
    水動力學研究與進展 B輯 2012年6期

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY*

    XIE Ming-xiao

    School of Civil Engineering, Tianjin University, Tianjin 300072, China

    Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China, E-mail: crabsaver@163.com

    (Received March 30, 2012, Revised May 20, 2012)

    A process-based 3-D hydrodynamic model is established to simulate the rip current structures under irregular bathymetry. The depth-varying wave-induced residual momentum, the surface rollers, the turbulent mixing and the wave-current interactions are considered. Experimental datasets are used to validate the model, and it is shown that the model can effectively describe the 3-D structures of the rip currents in both normal and oblique wave incident cases. The flow patterns of the rip currents see various characteristics for different incident wave directions. In the normal incident case, pairs of counter-rotating primary circulation cells are formed, and an offshore rip flow occurs in the embayment troughs. The peak seaward velocities occur at the top of the bed boundary layer, and the undertow is incorporated in addition to the rip currents. In the oblique incident case, the longshore currents are dominant, which result in a meandering flow along the depth contour, and the undertow is weaker compared to that in the normal incident condition.

    rip currents, irregular bathymetry, 3-D numerical modelling

    Introduction

    The wave-induced currents generated in coastal regions are directly responsible for sediment transport and morphology evolutions. Therefore an accurate prediction of these currents is essential for coastal engineering applications. Wave-induced current phenomena were widely studied, including the wave setup[1,2], undertow[3]and longshore currents[4,5]. However, only the single-sloped plane beaches were often considered in the experiments. In real coastal areas, the underwater bathymetry is usually irregular (e.g., with rhythmic shorelines, sinuous cusps or gapped sand bars). As the waves propagate towards the shoreline, under the multiple processes of shoaling, breaking, refraction and diffraction, a more complex circulative flow could form, which is called the rip currents, which can be very intense with the highest velocity exceeding 2 m/s in sand bar gaps or cusp embayment troughs, to induce the strong seaward sediment transport, and subsequently to affect the coastal morpho-logy.

    The structure of the rip currents is extremely complicated. Under different incident wave and bathymetry conditions, the flow patterns see variable features. Due to its complex nature, there were relatively few detailed explorations of the rip currents. Haller et al.[6]measured the rip currents on an artificial barred beach in laboratory using a wave tank and ADV, Peng and Zou[7]measured the rip currents on a similar sandbar beach using video-tracked drifters. But in those experiments only the horizontal velocity distribution was measured, leaving the vertical profiles aside. In order to investigate the detailed characteristics of the rip currents, Borthwick and Foote[8]installed a tri-cuspate beach in the UK Coastal Research Facility (UKCRF), and measured the 3-D structures of the current field.

    As for numerical simulations, Bai et al.[9]modeled the rip currents under a rhythmic bathymetry using the quasi-3D SHORECIRC model, Rogers et al.[10]modeled the UKCRF experiments using the Godunovtype 2DH numerical model, Fang et al.[11]applied the Boussinesq equations to model the rip currents over the barred beach. However, as indicated by Borthwickand Foote[8], the rip currents have a significant 3-D nature, 2-D models would be inadequate, and a fully 3-D model should be used.

    Xie[12]established a fully process-based 3-D wave-induced current model, which was satisfactorily validated using a series of experimental datasets. In this paper, the Xie[12]model was applied to simulate the flow structures of the rip currents including both the horizontal flow pattern and the vertical profile.

    1. Model description

    1.1 Hydrodynamic model

    The governing equations of the hydrodynamic model are in the Reynolds form simplified from the original Navier-Stokes equations (see Eq.(1)-Eq.(4)). The contributions of the depth-varying residual momentum, the surface roller stresses and the turbulent mixings are included. Cartesian coordinates are used in the horizontal directions and the terrain-following sigma coordinate is used in the vertical direction.

    where the vertical sigma coordinate σ=(z-η)/D ranges from σ=-1 at the bottom to σ=0 at the surface, t is the time,x and y are the horizontal coordinates,η is the free surface, U and V are the velocity components in x and ydirections, respectively,ω is the velocity component in σ coordinate, D is the water depth, g is the gravity acceleration, p is the pressure,M is the depth-varying residual momentum, R is the depth-varying roller momentum,KMcand AMcare the vertical and horizontal mixing coefficients combining waves and currents, respectively, ρ is the seawater density.

    1.1.1 Wave-induced residual momentum

    The formulation proposed by Lin and Zhang[13]is applied for the vertical distribution of the wave-induced residual momentum (see Eq.(5))

    where E is the wave energy, n is the wave energy transfer rate, k is the wave number,δ is the Kronecker symbol, i and j represent the x,y directions, respectively.

    1.1.2 Surface roller evolution

    Based on the energy balance, Xie[12]derived an evolution model of the breaking-induced surface rollers, as expressed by Eq.(6). The model considers multiple factors including the roller energy transfer, the roller density, the bottom dissipation and the bed slope.

    where Cg=Cn is the wave group celerity,αis the roller energy transfer factor, T is the wave period, ER=ρARC/2T is the roller energy, KR= 3(0.3+2.4s)/8, and s is the bed slope, ARis the roller area, n =n(cosθ,sinθ) is the wave vector, andρRis the roller density.

    If the wave parameters are given, Eq.(6) can be solved by using an iteration algorithm from the brea-king point to the shoreline with an offshore boundary condition AR=0. The vertical profile of the roller momentumis expressed as an exponential function proposed by Haas and Warner[14], as expressed by Eq.(7). Note that because the depth integral of Rzshould be unity, it should be pre-normalized to Rznfollowing Eq.(8).

    OnceAR(σ)is solved,ER(σ)can be calculated explicitly. The corresponding stresses in the governing equations caused by the roller can be determined, as in Eqs.(9)-(11).

    1.1.3 Bottom shear stress

    The wave-current combined bottom shear stress τcwis determined by Eq.(12). where τc=ρCDuc2is the bed shear stress by current only, CD=[κ-1ln(h+zb)/z0]-2is the drag coefficient, in which κ=0.4 is the Von Karman constant, h is the bed elevation, zbis the elevation of the first grid point above the bottom, z0is the roughness height, ucis the current velocityat the grid point nearest the bed, τw=0.5ρfwuw2is the shear stress due to waves only,uw=Hπ/Tsinh(kD) is the nearbottom wave orbitalvelocity, fwis the wave friction factor, B, P, Q are empirical coefficients.

    The value of coefficient B is determined by Eq.(13) with analogous expressions for P and Q.

    1.1.4 Turbulence mixing

    The wave-current combined turbulent mixing

    coefficients can be expres sed as in Eqs.(14)-(15).

    where A and K represent the horizontal and the vertical turbulentmixing coefficients, respectively, and thesubscriptsM and W represent current and waves, respectively.

    The horizontal mixing coefficient AMfor currents only is given by Eq.(16).

    where ΔxandΔy are the horizontal grid steps, Csis an empirical factor. The current-induced vertica l mixingcoefficientKMis solved by using a Mellor-Yamada closure model.

    Using the linear wave theory, Xie[12]derived the horizontal mixing coefficientAWfor waves only, as in Eq.(17)

    The vertical mixing coefficient AWfor waves onlyis expressed as in Eq.(18)

    where b is a calibration coefficient.

    1.2 Wave model

    The combined refraction/diffraction wavemodel (REF/DIF) is used as the wave driver for simulating monochromatic incident waves. The REF/DIF model is based on the parabolic mild-slope equation, and it can involve many processes, e.g. shoaling, refraction, energy dissipation, and irregular bottom bathymetry.

    1.3 Wave-current interaction

    The flow pattern of the rip currents is extremely complex, and the strong opposing currents affect the wavepropagation significantly. Therefore, the mutual interaction of the waves and currents should be considered in the simulation. In this paper, the REF/DIF procedure and the hydrodynamic procedure are coupled together through an iterative algorithm. After the current field reaches a stable state, the U and V fields feed back to the wave solver, and consequently the new wave parameters are calculated forthe preparation of the wave-related stresses, which are then in-corporated into the hydrodynamic equations for the solution in the next time step.

    1.4 Solution technique

    A finite difference method and a time-splitting technique are applied to solve the governing equations. The horizontal terms are treated explicitly, and the vertical terms are treated implicitly by using a doublesweep scheme. The arrangements of the variables follow the staggered C-grid system. The OGCM approach proposed by Oey[15]is used to model the inundation.

    Fig.1 Bathymetry and the observation stations in the UKCRF experiment

    Table 1 Incident wave parameters for the normal and oblique incident cases

    2. Experimental cases of UKCRF

    Borthwick and Foote[8]carried out laboratory studies of the 3-D structure of the rip currents over a tri-cuspate beach using the UKCRF. The wave basin hasthe plan dimensions of 27 m cross-shore by 36 m alongshore, and with the still water depth at the paddles of 0.5 m. The bed slope is 1:20. The experimental bathymetry and the locations of the observation profiles are shown in Fig.1. In the experiments, 2 wave observation sections and 7 velocity observation profiles are arranged both in the embayment and on the cusp horn.

    In this paper, the normal incident case (Case B) and the oblique incident case (Case C) are considered, and the related p arameters are shown in Table 1.

    Table 2 Input parameters in the numerical simulation

    Fig.2 Arrangement of the σ layers

    3. Numerical modelling of the rip currents

    3.1 Model parameters

    Table 2 shows the input parameters in the numerical simulations. In order to better describe the nearbed distributions of the current speed, the varying sigma discretization is used, where the spacing in the upper water column is selected asΔσ=0.1, and the near-bottom spacing is Δσ=0.01. The detailed arrangement for the sigma layers is illustrated in Fig.2.

    Fig.3 Comparisons between the modeled and the measured wave heights for Case B

    In order to estimate the model errors, two indices are applied, which are the root mean square (rms) errorand the correlation coefficient (COR). The former reflects the deviation between the measured and the simulated values, and the latter represents the linear correlation of two datasets. They are expressed aswhere Nis the total number of measurement points, I refers to a measurement point, meis the measurement value,om is the modeled value,N andrepresent the algebraic mean of the measured and the modeled values, respectively.

    Fig.4 Comparis ons between the modeled and the measured current velocities for Case B

    3.2 Normal incident case

    Figure 3 shows the comparisonsbetween the modeled and the observed wave heights of two representative sections for the normal incident case (Case B). It indicates that the model can describe the wave propagation, including the shoaling and breaking processes. The rms errors are confined within the range of 0.01 m-0.02 m, and the correlations between the two datasets are satisfactory (88%-97%).

    The comparisons with the observed velocities are shown in Fig.4. Theoretically, the V-velocities should be near-zero because of the symmetric nature of the bathymetry and the normal incident wave condition. However, the observed V-velocities are scattered. In fact, in the experiment, the rip current has unstable features and a trivial perturbation could lead to a deflection of the current direction. With above considerations in mind, in the comparisons, only the U-component is selected in the evaluation. As for the U-velocities, the rms errors are in the range of 0.03 m/s-0.06 m/s, and especially, the simulated velocities at sections P6 and P7 are larger than those observed. One reason is that the gradients of the observed wave heights are greater than those simulated in this area, which induces higher velocities (see Fig.3). The correlations between the two datasets seem not satisfactory, in which the lowest value is COR=12% (section P4). That is because the unstable nature of the rip currents makes the measurement data extremely scattered and their vertical variations are not smooth enough to infer the distribution trends clearly as compared to the simulation values. However, the comparisons do show that the simulated velocity profile of the rip currents captures the major distribution trend.

    Additionally, it can be observed that both the measured and the simulated results indicate that in the embayment (P1-P4), the peak seadirected velocities do not occur at the bottom, but at some distance from the bed, say 0.8z/D-0.95z/D. That is because in the surfzone, the undertow also contributes to theflow structure. It could be imposed on the rip currents and make the maximum velocity occur at the top of the bed boundary layer.

    Fig.5Planar distribution of the depth-averaged current velocities for Case B

    The horizontal distributions of the rip currents are extremely complex due to the involvement of many processes e.g. the shoaling, breaking, refraction and diffraction. Under the impact of irregular bathymetry, the wave heights differ in bothxand ydirections while propagating onshore, consequently, residual momentum gradients are formed in each direction.

    The flow field of depth-averaged rip currents for t he normal incident case is illustrated in Fig.5. It shows that pairs of counter-rotating circulation cells occur in each embayment. On the cusp horns, there is an onshore flow which fans out, divides and then feeds into the longshore currents that meet to form seaward rip currents at the embayment troughs. The rip currents are restricted in a relatively narrow zone, and then flow offshore with a large velocity (the maximum depth-averaged velocity of 0.3 m/s). The rip currents reach a short distance offshore in front of the breaking line, and die away at the rip heads. The comparison shows that the distribution of the simulated flow field agrees with that observed in the experiment.

    Fig.6Comparison between the modeled and the measuredwave heights for Case C

    3.3 Oblique incident case

    Figure 6 gives comparisons between the modeled and the observed wave heights for the oblique incident case (Case C). Similar to the normal incidentcase, it isshown that the model can effectively describe the wave propagations with the rms errors in the range of 0.01m-0.02 m, and the correlations in the range of 86%-95%.

    Fig.7 Comparis on between the modeled and the measured current velocities for Case C

    The comparisons with the observed velocities are shown in Fig.7. Unlike the normal incidentcase, in the oblique incident case, both the U andV components are significant, hence, the rms errors and the correlations for each direction are given. It is estimated t hat t he r ms errors are in th e ran ge of 0.01 m /s-0.09m/sforthe U-velocities,andinthe rangeof 0.02 m/s-0.09m/s for theV-velocities. The maximum error occurs at P6, where the model overestimates the velocity magnitude. The correlations for most datasets aresatisfactory, with the worst correlation at P7 (–6% forV-velocity) because the curvature of the measured data is opposite to that in the model. Generally, the simulated velocity profile of the rip currents captures the major distribution trendsfor both the magnitude and the distribution characteristics.

    The flow field of the depth-averaged rip currents for the oblique incident case is illustratedin Fig.8. It is indicated that the nearshore flow pattern is significantly different from that for the normal incident case. Because the incident waves are oblique, the gradientof the alongshore residual momentum contributes most to the nearshore currents. As a result, both the cell-like circulation structure and the rip currents are smoothened due to the strong longshore currents, and the flow is meandering along the bed contours. The maximum depth-averaged velocity is 0.48 m/s. The undertow is weaker compared to that in the normal incident condition. The comparison shows that the distribution of the simulated flow filed also agrees with that observed in the experiment.

    Fig.8planar distribution of the depth-averaged current velocities for Case C.

    To summarize, the flow structure of the rip currents under irregular bathymetry is extremely complex due to the multiple coastal processes and the wavecurrent interactions. All these factors make the laboratory measurements and the simulations very difficult. However, the comparisons with data of differentwave incident cases (normal and oblique) show that the established process-based 3-D numerical model can capture the major characteristics of the rip current field effectively for both the horizontal layout and the vertical profile. Generally, the model could provide someproper hydrodynamic information for further investigation of the morphodynamics in coastal areas.

    4. Conclusions

    (1) Using the process-based 3-D wave-induced current model, the rip current structures under irregular bathymetry were simulated. In the model, many processes including the depth-varying wave residual momentum, the surface rollers, the wave turbulent mixing and the wave-current interactions are considered.

    (2) The comparisons with the laboratory measurement datasets indicate that the model can effectively describe the horizontal distribution and the vertical profile of the rip currents for both normal incident and oblique incident cases.

    (3) The rip currents under irregular bathymetry show various characteristics under different wave incident conditions. For the normal incident case, pairs of counter-rotating circulation cells form, and offshore jet flows occur in the embayment troughs. The undertow contributes to the flow in the embayment and makes the peak seaward velocities occur at the top of the boundary layer. In the oblique incident case, the longshore currents are dominant, which results in a meandering flow along the depth contour, and the unde rtow is weaker compared to that in the normal inciden t condition.

    Acknowledgements

    This work was supported by the Central Public Institute Foundation of Tianjin Research Institute for Water Transport Engineering, Ministry of Transport (Grant No. TKS100102).

    [1] HSU T., JOHN R. C. and WENG W. et al. Wave setup and setdown generated by obliquely incident waves[J]. Coastal Engineering, 2006, 53(10): 865-877.

    [2] WEBER J. E., CHRISTENSEN K. H. and DENAMIEL C. Wave-induced setup of the mean surface over a sloping beach[J]. Continental Shelf Research, 2009, 29(11-12): 1448-1453.

    [3] KURIYAMA Y., ITO Y. and YANAGISHIMA S. Cross-shore variation of long-term average longshore current velocity in the nearshore zone[J]. Continental Shelf Research, 2008, 28(3): 491-502.

    [4] KURIYAMA Y., NAKATSUKASA T. A one-dimensional model for undertow and longshore current on a barred beach[J]. Coastal Engineering, 2000, 40(1): 39- 58.

    [5] REN Chun-ping, ZOU Zhi-li and QIU Da-hong. Experimentalstudy of the instabilities of alongshore currents on plane beaches[J]. Coastal Engineering, 2012, 59(1): 72-89.

    [6] HALLER M. C., DALRYMPLE R. A. and SVENDSEN I. A. Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research, 2002, 107(14): 1-21.

    [7]PENG Shi, ZOU Zhi-li. Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics, 2011, 26(6): 645-651(in Chinese).

    [8]BORTHWICK A. G. L., FOOTE Y. L. M. Wave-induced currents at a tri-cuspate beach in the UKCRF[J]. Water and Maritime Engineering, 2002, 154(4): 251-263.

    [9]BAI Zhi-gang, ZHANG Zhi-xian and CHEN Zhi-chun. A Quasi-3D nearshore circulation model applied in ripcurrent research[J]. Port and Waterway Engineering, 2007, (3): 12-17(in Chinese).

    [10]ROGERS B. D., ALISTAIR G. L. and TAYLOR P. H. GODUNOV-type model of wave-induced nearshore currents at a multi-cusped beach in the UKCRF[C]. 28th International Conference of Coastal Engineering, Cardiff, Wales, UK, 2002, 760-771.

    [11] FANG Ke-zhao, ZOU Zhi-li and LIU Zhong-bo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479-486(in Chinese).

    [12] XIE Ming-xiao. Establishment, validation and discussions of a three dimensional wave-induced current model[J]. Ocean Modelling, 2011, 38(3-4): 230-243.

    [13] LIN Peng-zhi, ZHANG Dan. The depth-dependent radiation stresses and their effect on coastal currents[C]. Proceedings of the 6th International Conference of Hydrodynamics: Hydrodynamics VI Theory and Applications. Perth, Australia, 2004, 247-253.

    [14] HAAS K. A., WARNER J. C. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS[J]. Ocean Modeling, 2009, 26(1-2): 91- 103.

    [15] OEY L. Y. An OGCM with movable land-sea boundaries[J]. Ocean Modelling, 2006, 13(2): 176-195.

    10.1016/S1001-6058(11)60314-4

    * Biography: XIE Ming-xiao (1982-), Male, Ph. D.

    美女福利国产在线| 91老司机精品| 国产区一区二久久| 欧美精品av麻豆av| 亚洲av国产av综合av卡| 国产精品美女特级片免费视频播放器 | 免费一级毛片在线播放高清视频 | avwww免费| 国产免费现黄频在线看| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 淫妇啪啪啪对白视频| 亚洲欧美日韩高清在线视频 | 欧美黑人欧美精品刺激| 黄色视频,在线免费观看| 交换朋友夫妻互换小说| 国产97色在线日韩免费| 怎么达到女性高潮| 成人av一区二区三区在线看| 久久毛片免费看一区二区三区| 90打野战视频偷拍视频| 国产黄频视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 在线十欧美十亚洲十日本专区| 动漫黄色视频在线观看| av在线播放免费不卡| 亚洲av美国av| av网站免费在线观看视频| 欧美日韩视频精品一区| 黑人猛操日本美女一级片| 大片免费播放器 马上看| 亚洲专区国产一区二区| 免费少妇av软件| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 久久这里只有精品19| 成人18禁在线播放| 五月天丁香电影| 国产欧美日韩一区二区三区在线| a级片在线免费高清观看视频| 久久国产精品大桥未久av| 亚洲av国产av综合av卡| 国产成人欧美在线观看 | 国产三级黄色录像| 男女边摸边吃奶| 最黄视频免费看| 国产精品免费大片| 99国产精品99久久久久| 妹子高潮喷水视频| 国产91精品成人一区二区三区 | 天堂8中文在线网| 又黄又粗又硬又大视频| 日韩欧美国产一区二区入口| 国产精品二区激情视频| 视频在线观看一区二区三区| 亚洲avbb在线观看| 免费日韩欧美在线观看| 久久久国产欧美日韩av| 露出奶头的视频| 亚洲人成电影观看| 午夜久久久在线观看| 热re99久久国产66热| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 久久久水蜜桃国产精品网| 69av精品久久久久久 | 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 俄罗斯特黄特色一大片| 亚洲国产av影院在线观看| 黄片播放在线免费| 一区二区三区激情视频| 国产欧美日韩一区二区三| 免费观看av网站的网址| 亚洲成a人片在线一区二区| 人人澡人人妻人| a级毛片黄视频| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| 男女边摸边吃奶| 首页视频小说图片口味搜索| 精品久久久精品久久久| 男人舔女人的私密视频| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 精品少妇久久久久久888优播| 国产成人啪精品午夜网站| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 国产成人欧美| 免费高清在线观看日韩| 一区二区av电影网| 色播在线永久视频| 日本五十路高清| www.999成人在线观看| 亚洲精华国产精华精| 桃花免费在线播放| 久久久久网色| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区在线臀色熟女 | www.999成人在线观看| 亚洲一区二区三区欧美精品| 成人影院久久| 成人特级黄色片久久久久久久 | 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区 | 亚洲成人免费av在线播放| 精品国产乱码久久久久久男人| 性少妇av在线| 一本综合久久免费| 亚洲国产毛片av蜜桃av| 男女之事视频高清在线观看| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 宅男免费午夜| 成人手机av| 我的亚洲天堂| 久久人人97超碰香蕉20202| 日韩欧美三级三区| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 亚洲精品在线美女| 亚洲九九香蕉| 人妻久久中文字幕网| 在线观看免费高清a一片| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品古装| 宅男免费午夜| 99香蕉大伊视频| 日本av手机在线免费观看| 成人特级黄色片久久久久久久 | 精品免费久久久久久久清纯 | 国产精品亚洲av一区麻豆| 精品卡一卡二卡四卡免费| 中文字幕制服av| 欧美激情极品国产一区二区三区| 国产一区二区在线观看av| 一区二区三区国产精品乱码| 无遮挡黄片免费观看| 国产精品自产拍在线观看55亚洲 | 少妇裸体淫交视频免费看高清 | 欧美日韩国产mv在线观看视频| 欧美 日韩 精品 国产| 亚洲久久久国产精品| 久久精品亚洲av国产电影网| 国产在线精品亚洲第一网站| 国产成人欧美| 亚洲性夜色夜夜综合| 免费不卡黄色视频| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 国产精品久久久久久人妻精品电影 | 精品熟女少妇八av免费久了| 窝窝影院91人妻| 老司机靠b影院| 深夜精品福利| 国产精品美女特级片免费视频播放器 | 成年人黄色毛片网站| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免费看| a级毛片在线看网站| 美女扒开内裤让男人捅视频| 成年版毛片免费区| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9 | 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 国产精品久久电影中文字幕 | 亚洲va日本ⅴa欧美va伊人久久| www.自偷自拍.com| 俄罗斯特黄特色一大片| 欧美日韩亚洲国产一区二区在线观看 | 国产精品 国内视频| 国产区一区二久久| 一本综合久久免费| 日韩精品免费视频一区二区三区| 天天操日日干夜夜撸| 天堂8中文在线网| 亚洲国产欧美日韩在线播放| 老司机影院毛片| 人人妻人人澡人人看| www日本在线高清视频| 精品视频人人做人人爽| 一区二区三区精品91| 日日爽夜夜爽网站| av在线播放免费不卡| 欧美乱妇无乱码| 法律面前人人平等表现在哪些方面| 黄片播放在线免费| 在线亚洲精品国产二区图片欧美| 中文字幕人妻丝袜一区二区| 91国产中文字幕| 黄色a级毛片大全视频| 激情视频va一区二区三区| 亚洲性夜色夜夜综合| 免费不卡黄色视频| 一级a爱视频在线免费观看| 黄色视频不卡| 欧美亚洲 丝袜 人妻 在线| 9色porny在线观看| av天堂在线播放| 国产精品av久久久久免费| 少妇的丰满在线观看| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 女警被强在线播放| 午夜91福利影院| 欧美精品高潮呻吟av久久| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 亚洲精品国产区一区二| 日本黄色日本黄色录像| 天天操日日干夜夜撸| 久久国产精品人妻蜜桃| av线在线观看网站| 电影成人av| 青青草视频在线视频观看| 国产高清视频在线播放一区| 亚洲av第一区精品v没综合| www.精华液| 亚洲欧美激情在线| 露出奶头的视频| 777米奇影视久久| 九色亚洲精品在线播放| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 757午夜福利合集在线观看| 欧美午夜高清在线| 99香蕉大伊视频| 9191精品国产免费久久| 他把我摸到了高潮在线观看 | 变态另类成人亚洲欧美熟女 | 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 久久av网站| 美女主播在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲视频免费观看视频| 精品国产乱码久久久久久小说| 亚洲午夜理论影院| 国产又爽黄色视频| 日本av免费视频播放| 国产1区2区3区精品| tube8黄色片| 久久亚洲真实| 久久热在线av| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| av又黄又爽大尺度在线免费看| 亚洲欧美日韩高清在线视频 | 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| av线在线观看网站| 中国美女看黄片| 亚洲欧美日韩高清在线视频 | 欧美精品人与动牲交sv欧美| 一级毛片精品| 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| 99九九在线精品视频| 国产淫语在线视频| 国产精品成人在线| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| 一本综合久久免费| 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 欧美日韩精品网址| 国产精品九九99| 亚洲第一欧美日韩一区二区三区 | 色94色欧美一区二区| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 91成年电影在线观看| av网站在线播放免费| 国产亚洲一区二区精品| 一边摸一边抽搐一进一小说 | 国产成人精品久久二区二区免费| 他把我摸到了高潮在线观看 | 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| netflix在线观看网站| 国产精品久久久人人做人人爽| 亚洲熟女精品中文字幕| 久久久精品区二区三区| cao死你这个sao货| 久久青草综合色| 丝袜喷水一区| 欧美黄色淫秽网站| 精品国产亚洲在线| 欧美在线一区亚洲| 丰满少妇做爰视频| 女人久久www免费人成看片| 夫妻午夜视频| 国产野战对白在线观看| 国产av又大| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| av天堂在线播放| 高清毛片免费观看视频网站 | 成人亚洲精品一区在线观看| 国产高清videossex| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 日日摸夜夜添夜夜添小说| 免费在线观看完整版高清| 国产97色在线日韩免费| 日韩免费av在线播放| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频 | 三级毛片av免费| 777久久人妻少妇嫩草av网站| 亚洲中文av在线| 我的亚洲天堂| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 久久久久久久国产电影| 亚洲av成人不卡在线观看播放网| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 亚洲九九香蕉| 91精品国产国语对白视频| 久久精品国产亚洲av香蕉五月 | 国产精品免费大片| 大型黄色视频在线免费观看| 视频在线观看一区二区三区| 99精品在免费线老司机午夜| 深夜精品福利| 免费av中文字幕在线| 韩国精品一区二区三区| 日韩人妻精品一区2区三区| 久久久久久久久免费视频了| 国产在线一区二区三区精| 国产av精品麻豆| 天堂8中文在线网| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 久久久精品94久久精品| 日本五十路高清| 如日韩欧美国产精品一区二区三区| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频| 美女国产高潮福利片在线看| 亚洲性夜色夜夜综合| 色视频在线一区二区三区| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| www.精华液| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 亚洲国产看品久久| 一进一出抽搐动态| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 日本av手机在线免费观看| 国产高清激情床上av| 亚洲成a人片在线一区二区| 麻豆乱淫一区二区| 久久国产精品大桥未久av| 精品第一国产精品| 一区福利在线观看| 久久精品国产99精品国产亚洲性色 | 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 亚洲全国av大片| 又大又爽又粗| 手机成人av网站| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 999精品在线视频| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 国产精品成人在线| 久久婷婷成人综合色麻豆| 两性夫妻黄色片| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 久久久久久久国产电影| 在线观看免费日韩欧美大片| 飞空精品影院首页| 久久精品91无色码中文字幕| 美女国产高潮福利片在线看| 亚洲av日韩在线播放| 黑人操中国人逼视频| 十八禁网站免费在线| 欧美大码av| av欧美777| 精品欧美一区二区三区在线| 免费看a级黄色片| av福利片在线| 老司机靠b影院| 一边摸一边抽搐一进一小说 | 久久久精品区二区三区| a级毛片在线看网站| 热99国产精品久久久久久7| 久久国产精品大桥未久av| 脱女人内裤的视频| kizo精华| av一本久久久久| 久久狼人影院| 极品人妻少妇av视频| 在线亚洲精品国产二区图片欧美| 亚洲av欧美aⅴ国产| 我的亚洲天堂| 美女午夜性视频免费| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 两性夫妻黄色片| 天堂俺去俺来也www色官网| 人成视频在线观看免费观看| 9色porny在线观看| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 亚洲精品成人av观看孕妇| 男女免费视频国产| 一本大道久久a久久精品| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| 18禁国产床啪视频网站| 久久精品国产亚洲av香蕉五月 | 欧美午夜高清在线| 久久ye,这里只有精品| 欧美在线黄色| 日本wwww免费看| 韩国精品一区二区三区| 免费在线观看黄色视频的| 不卡一级毛片| 汤姆久久久久久久影院中文字幕| 亚洲成人免费电影在线观看| 欧美亚洲 丝袜 人妻 在线| 在线观看66精品国产| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www | 狠狠婷婷综合久久久久久88av| 一区二区三区国产精品乱码| 少妇被粗大的猛进出69影院| 亚洲精品国产一区二区精华液| h视频一区二区三区| 国产单亲对白刺激| 久久久国产欧美日韩av| 国产精品免费大片| 欧美变态另类bdsm刘玥| 成人三级做爰电影| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 久热这里只有精品99| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 50天的宝宝边吃奶边哭怎么回事| 男女床上黄色一级片免费看| av国产精品久久久久影院| 精品乱码久久久久久99久播| 国产精品电影一区二区三区 | 国产精品偷伦视频观看了| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 咕卡用的链子| av在线播放免费不卡| 久久久久久亚洲精品国产蜜桃av| 老熟妇仑乱视频hdxx| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 亚洲九九香蕉| 欧美精品啪啪一区二区三区| 99国产精品一区二区蜜桃av | 国产亚洲精品一区二区www | 亚洲精华国产精华精| 国产精品久久久久久精品电影小说| 国产成人精品无人区| www日本在线高清视频| 啪啪无遮挡十八禁网站| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 国产精品久久久久成人av| 男女之事视频高清在线观看| 超碰成人久久| 亚洲av第一区精品v没综合| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 成年版毛片免费区| 最近最新中文字幕大全免费视频| 九色亚洲精品在线播放| 大香蕉久久成人网| 美女国产高潮福利片在线看| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| 亚洲精华国产精华精| 麻豆成人av在线观看| 天天操日日干夜夜撸| 国产精品一区二区精品视频观看| 十八禁人妻一区二区| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 精品国产亚洲在线| 国产黄色免费在线视频| 妹子高潮喷水视频| 久久久国产成人免费| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 三上悠亚av全集在线观看| 人人妻人人澡人人看| 亚洲中文字幕日韩| 免费观看a级毛片全部| 老司机靠b影院| 久9热在线精品视频| 天天躁夜夜躁狠狠躁躁| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 操美女的视频在线观看| 搡老岳熟女国产| 国产单亲对白刺激| 波多野结衣av一区二区av| 国产精品亚洲av一区麻豆| 涩涩av久久男人的天堂| 一本—道久久a久久精品蜜桃钙片| 国产在线一区二区三区精| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 日韩中文字幕欧美一区二区| 免费观看a级毛片全部| 韩国精品一区二区三区| 久久久久视频综合| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 一本一本久久a久久精品综合妖精| 9色porny在线观看| 亚洲熟妇熟女久久| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 亚洲av日韩在线播放| 欧美 日韩 精品 国产| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 午夜免费鲁丝| 满18在线观看网站| 纯流量卡能插随身wifi吗| www.精华液| 天天添夜夜摸| 欧美成人午夜精品| 一本色道久久久久久精品综合| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 麻豆国产av国片精品| 久热这里只有精品99| 丰满少妇做爰视频| 青草久久国产| 精品国产一区二区三区四区第35| 99精品在免费线老司机午夜| 色精品久久人妻99蜜桃| 十八禁高潮呻吟视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 夫妻午夜视频| 国产男女超爽视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲精品乱久久久久久| 国产在线视频一区二区| 久热爱精品视频在线9| 免费不卡黄色视频| 十八禁网站网址无遮挡| 成年人午夜在线观看视频| 日本一区二区免费在线视频| 少妇被粗大的猛进出69影院| 又黄又粗又硬又大视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久热这里只有精品99| 亚洲欧美一区二区三区久久| 成人黄色视频免费在线看| 国产主播在线观看一区二区| 黑人操中国人逼视频| 亚洲天堂av无毛| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲|