張曉杰 費洪新
(齊齊哈爾醫(yī)學院,黑龍江 齊齊哈爾 161006)
下丘腦-垂體-腎上腺軸與重度抑郁癥關(guān)系的研究進展
張曉杰 費洪新
(齊齊哈爾醫(yī)學院,黑龍江 齊齊哈爾 161006)
下丘腦-垂體-腎上腺軸;重度抑郁癥;糖皮質(zhì)激素
重度抑郁癥(MDD)主要表現(xiàn)為情緒低落、活動減少、思維減退、認知功能障礙、雙相情感障礙等〔1〕。世界衛(wèi)生組織(WTO)專家預測2020年后MDD將會成為現(xiàn)有疾病中致殘和死亡的第二大疾病之一,其終身患病率可以達到15%以上〔2,3〕,這將會給全球國家、社會和家庭帶來沉重的心理負擔和經(jīng)濟負擔〔4〕。盡管中醫(yī)藥和西藥治療MDD的研究文獻很多,但是仍然缺乏抗MDD的特效藥物,同時西藥抗MDD的治療效果還存在一定的局限性。MDD的病因和發(fā)病機制也是極其復雜的,涉及遺傳〔5,6〕、肥胖〔7〕、應激〔8〕、心理、環(huán)境、內(nèi)分泌、神經(jīng)、社會等多種因素。近幾年來關(guān)于MDD的神經(jīng)內(nèi)分泌系統(tǒng)紊亂逐漸成為研究熱點,例如機體下丘腦-垂體-腎上腺(HPA)軸的活性上調(diào)機制逐漸引起了抗MDD研究者的高度重視〔9,10〕。30%~50%的MDD患者血清伴有糖皮質(zhì)激素(GC)、促腎上腺皮質(zhì)激素(ACTH)、促腎上腺皮質(zhì)激素釋放激素(CRH)含量增加〔11〕,且伴有雌激素含量降低,海馬GC受體(GR)減少,并影響GR和鹽皮質(zhì)激素(MR)比值,造成海馬神經(jīng)元損傷并抑制HPA軸活性,同時可以使GC對HPA軸反饋抑制減弱,造成HPA軸亢奮,加重MDD病情??梢奙DD腦內(nèi)神經(jīng)元損傷機制與HPA軸失調(diào)密切相關(guān)。本文主要介紹HPA軸與MDD關(guān)系的研究進展。
HPA軸包括下丘腦、垂體、腎上腺和下游相應的靶器官等。下丘腦分泌的激素稱為下丘腦激素,下丘腦激素包括CRH、促甲狀腺激素釋放激素(TRH)〔12〕、促黃體激素釋放激素(LHRH)〔13〕、生長素釋放激素(GHRH)〔14〕、促卵泡激素釋放激素(FSHRH)、催乳素釋放因子(PRF)、促黑素細胞激素釋放因子(MRF)和部分釋放激素相關(guān)的抑制因子等。CRH通過垂體門脈系統(tǒng)運輸?shù)酱贵w的腺垂體部位,刺激腺垂體分泌ACTH,參與下游信號腎上腺分泌GC、MR、雌激素和雄激素等激素水平的調(diào)控,結(jié)合于相應的靶器官上受體而發(fā)揮作用。
1.1 下丘腦 下丘腦位于大腦的腹側(cè)面,丘腦的下方也稱為丘腦下部,主要包括視上部、結(jié)節(jié)部、乳頭部。CRH參與HPA軸的神經(jīng)、精神、內(nèi)分泌和免疫等方面的綜合性應激反應,還可以參與應急反應。CRH引起HPA軸興奮,而腎上腺分泌GC、MR、雌激素和雄激素等可以反饋抑制HPA軸。
1.2 垂體 垂體位于丘腦下部腹側(cè)面的垂體窩內(nèi),呈現(xiàn)橢圓形,主要分為腺垂體和神經(jīng)垂體。腺垂體主要分泌ACTH、促甲狀腺激素(TSH)〔15〕、卵泡刺激素(FSH)〔16〕、黃體生成素(LH)〔17〕、催乳素〔18〕、生長激素(GH)〔19〕、黑色素細胞刺激素(MSH)〔20〕;只神經(jīng)垂體并不分泌激素,只是暫時貯存下丘腦視上核和室旁核分泌的抗利尿激素(ADH)〔21〕、催產(chǎn)素。其中腺垂體分泌的ACTH,通過機體的血液循環(huán)(體循環(huán)),ACTH到達腎臟上方腎上腺皮質(zhì)的束狀帶、球狀帶、網(wǎng)狀帶。ACTH刺激腎上腺皮質(zhì)束狀帶分泌GC,參與機體HPA軸的反饋調(diào)節(jié)和調(diào)節(jié)機體很多器官的合成和分解代謝。GC包括人類的皮質(zhì)醇(CORT)和嚙齒類的CORT;ACTH還能通過環(huán)磷酸腺苷(cAMP)和蛋白激酶A激活cAMP反應元件結(jié)合蛋白(CREB),進而促進醛固酮的分泌。
1.3 腎上腺 腎上腺位于機體兩側(cè)腎臟的上方,左右各一,主要分為腎上腺周圍部分的皮質(zhì)和腎上腺中央部分的髓質(zhì),腎上腺皮質(zhì)又分為球狀帶、束狀帶和網(wǎng)狀帶3個部分。腎上腺皮質(zhì)主要分泌GC、MR〔22〕、雌激素〔23〕、雄激素〔24〕。腎上腺髓質(zhì)主要分泌作用于心肌的腎上腺素(A)〔25〕、作用于小動脈的去甲腎上腺素(NA)。GC分泌受到機體生物節(jié)律和應激刺激的影響,當GC濃度快速升高可以作用于腦組織海馬區(qū)域的GR,減少腦組織垂體ACTH的釋放。另外GC的濃度慢速升高還可以作用于垂體和腎上腺的GR受體,減少腦組織垂體ACTH的釋放,以此阻斷ACTH的興奮作用。
2.1 下丘腦和MDD的關(guān)系 在HPA軸中,下丘腦分泌的CRH是參與MDD發(fā)病非常重要的內(nèi)分泌激素之一。研究表明,急性或者慢性應激可以誘發(fā)MDD,促進下丘腦分泌CRH。CRH促進腺垂體分泌ACTH,ACTH促進腎上腺皮質(zhì)束狀帶分泌GC(CORT),CORT與下丘腦GR結(jié)合進一步損傷MDD海馬的基本結(jié)構(gòu),促進MDD的病情惡化〔26〕。GR可以介導下丘腦的內(nèi)分泌應激反應,若GR基因突變,可以干擾下丘腦CRH上調(diào)〔27〕。CRH受體(CRHR)1突變會促進MDD的發(fā)生發(fā)展〔28〕,CRH多態(tài)性還會影響抗抑郁藥物對MDD的治療評價〔29〕。MDD出現(xiàn)腦組織HPA失調(diào)伴有下丘腦CRH分泌增加,促進中樞性或者周圍性胰島素抵抗(IR),進而引發(fā)2型糖尿病(T2DM)或者3型糖尿病(T3DM)〔30〕。女性妊娠期間也可以出現(xiàn)腦組織HPA失調(diào)伴有下丘腦CRH分泌增加〔31〕,通過產(chǎn)前和產(chǎn)后測定下丘腦CRH水平對MDD產(chǎn)后女性患者尤為重要〔32〕。倘若親代患有MDD,那么子代患有MDD的概率也會明顯增加,這與腦組織HPA軸的CRHR1突變有關(guān)〔33〕,而MDD伴有嚴重的精神疾患時CRHR1也可以出現(xiàn)突變〔34〕。MDD患者多伴有運動量減少、下丘腦CRH水平上調(diào),而經(jīng)過特殊的運動方式例如瑜伽鍛煉或使用非典型抗精神病藥喹硫平(QUE)可以促進MDD患者下丘腦CRH水平下調(diào)〔35,36〕。臨床研究顯示,與133例健康人相比,77例MDD患者下丘腦CRH水平上調(diào),若改善下丘腦CRH水平則有利于MDD的基礎治療〔37〕。
2.2 垂體和MDD的關(guān)系 在HPA軸中,腺垂體分泌的激素ACTH參與MDD的調(diào)控。臨床研究顯示,MDD患者與健康人相比,血清ACTH含量明顯增加,降低血清ACTH水平則有利于HPA軸的調(diào)控〔38,39〕,這種調(diào)控可以使用地塞米松抑制實驗(DST)進行測定評價〔40〕。另外經(jīng)過40年18 454例MDD患者的血清ACTH含量測定,總結(jié)顯示MDD患者出現(xiàn)情緒低落等典型癥狀且伴有血清ACTH水平增加〔41〕,可見腺垂體分泌的激素ACTH在HPA軸中扮演重要的角色。動物實驗顯示,通過測定大鼠血清ACTH水平,可以評價食品添加劑味精對新生大鼠MDD的行為學指標,進而評價出腺垂體分泌的激素ACTH在HPA軸中的作用〔42〕。使用抗抑郁藥物可以降低血清ACTH含量、減弱雌激素受體(ER)β表達,進而抑制HPA通路〔43〕。通過觀察15例復發(fā)MDD與健康人的影像學和血清ACTH測定實驗顯示,MDD與HPA軸失調(diào)密切相關(guān)〔44〕。MDD經(jīng)過神經(jīng)肽(NP)Y治療后,血清ACTH水平下調(diào),提示腦組織NPY對HPA軸失調(diào)的調(diào)節(jié)效果較好〔45〕。觀察雄性MDD獼猴測定ACTH/CORT的比值顯示,MDD與HPA軸失調(diào)也是密切相關(guān),MDD獼猴血清ACTH含量增加〔46〕。通過觀察54例MDD患者,2年后進行隨訪顯示MDD患者血清ACTH水平下調(diào),預示HPA軸的功能恢復正常,也預示血清ACTH是MDD治療評價的重要指標之一〔47〕。另外,谷氨酸能系統(tǒng)在MDD中也發(fā)揮重要作用,N-甲基-D-天冬氨酸(NMDA)受體拮抗劑美金剛可以降低大鼠血清ACTH水平,改善腦組織HPA軸失調(diào),進而改善MDD動物模型的抑郁樣行為學,以此治療MDD〔48〕。
2.3 腎上腺皮質(zhì)和MDD的關(guān)系 在HPA中,腎上腺皮質(zhì)主要分泌的激素包括GC、鹽皮質(zhì)激素、雄激素和雌激素。MDD伴有GC、腦源性神經(jīng)營養(yǎng)因子(BDNF)、胰島素等失調(diào),提示GC與MDD密切相關(guān)〔49〕。GC水平增加可以破壞BDNF和酪氨酸羥化酶(TH)等靶蛋白的表達〔50〕,從而干擾神經(jīng)元的基本結(jié)構(gòu)和功能。MDD伴有CORT水平增加,同時MR表達下調(diào),影響了GR/MR的比值,干擾了糖、脂肪、蛋白質(zhì)、水、鹽等代謝,促進了MDD的發(fā)生發(fā)展〔51〕。MDD在女性產(chǎn)后出現(xiàn)較多,這與生殖激素之一雌激素在產(chǎn)后水平下降密切相關(guān),通過腦組織HPA軸間接反饋而促進MDD的病情加重〔52〕。
動物實驗顯示,GC誘導小鼠出現(xiàn)MDD行為學異常,小鼠體內(nèi)活性氧(ROS)水平增加,超氧化物歧化酶(SOD)1和SOD2可以通過腦組織HPA通路逆轉(zhuǎn)小鼠MDD行為學異?!?3〕,慢性的高水平GC可以活化細胞周期蛋白依賴性激酶(CDK)5,通過磷酸化的方式調(diào)節(jié)腦組織GR,誘導大鼠出現(xiàn)MDD〔54〕。大鼠產(chǎn)后給予高水平的CORT,依據(jù)此法建立產(chǎn)后MDD模型,實驗結(jié)果顯示行為學檢測強迫游泳試驗(FST)和形態(tài)學檢測腦組織海馬CA3區(qū)錐體細胞均出現(xiàn)異?!?5〕。
體外實驗表明,依據(jù)HPA軸在MDD的作用機制,采用CORT誘導PC12細胞建立MDD細胞損傷模型,探索到MAPK信號轉(zhuǎn)導是GC影響MDD細胞損傷模型神經(jīng)元細胞活力和樹突生長的關(guān)鍵信號靶點〔56〕。另外,CORT誘導HT-22海馬神經(jīng)元也可以建立MDD海馬HT-22細胞損傷模型,雌激素通過HPA軸可以上調(diào)GR的表達,顯示雌激素在MDD中具有重要作用〔57〕。抗MDD藥物丁螺環(huán)酮是5-羥色胺(5-HT)1A受體的激動劑,丁螺環(huán)酮除了通過5-HT1A發(fā)揮抗MDD作用外,還可以通過降低機體HPA軸的活性,減少GC水平來,以此來發(fā)揮抗MDD的積極作用〔58〕。
臨床研究顯示,依據(jù)抗MDD藥物的HPA軸通路機制,目前GR是抗MDD治療的重要靶點蛋白之一〔59〕,CORT使用過多可以誘導MDD的發(fā)生,并導致MDD患者出現(xiàn)應激障礙和人格障礙〔60〕。MDD伴有邊緣性人格障礙時,通過機體HPA軸觀察到GC對T細胞功能的敏感性較差〔61〕,長效GC的DST顯示MDD青少年可以出現(xiàn)自我傷害等等極端行為〔62〕。MDD伴有心血管疾病(CVD)時女性的致殘風險比男性高,尤其是女性絕經(jīng)期后,伴有女性激素水平明顯下降的時候致殘風險會更高〔63〕。MDD伴有創(chuàng)傷后應激障礙(PTSD)時DST顯示50例住院患者血清C反應蛋白(CRP)升高,進而加快MDD的病情發(fā)展〔64〕;具有復發(fā)性的73例MDD患者唾液CORT與脂肪酸(FA)變化趨勢同步〔65〕。通過837例MDD患者與正常人進行比較顯示唾液CORT水平增加且伴有睡眠障礙、焦慮等MDD典型癥狀〔66〕,MDD可以出現(xiàn)GC水平增加且伴有血清炎癥介質(zhì)白細胞介素(IL)-6、IL-1水平上調(diào),進而預示GC和炎癥反應均參與MDD的發(fā)病機制當中〔67〕。門診87例MDD患者DST和CRH實驗顯示CORT和CRH的變化趨勢高度相關(guān)〔68〕?;跈C體HPA通路,長效GC之一地塞米松可以抑制腦組織BDNF誘導的神經(jīng)元樹突生長和突觸形成,促進MDD的病情發(fā)展〔69〕。通過選擇64例MDD患者和49例健康人的DST進行對比,顯示MDD與機體HPA也是高度相關(guān)的,且DST顯示經(jīng)過2 w后GC水平的變化與MDD病情的好轉(zhuǎn)正相關(guān),但是隨著時間的進一步延長,DST顯示GC水平的變化與MDD病情的相關(guān)系數(shù)則就會變小〔70〕。
綜上所述,HPA軸失調(diào)是MDD非常重要的病理生理機制之一,CRH、ACTH、GC參與調(diào)控MDD的發(fā)病進程,且可作為MDD的生物學檢測靶點蛋白。推測調(diào)控HPA軸或許是治療MDD的新策略之一。隨著MDD研究的不斷深入,必將進一步揭示MDD的病理生理機制,這會為MDD的治療和干預策略提供理論依據(jù)。
1 Muneer A.The neurobiology of bipolar disorder:an integrated approach〔J〕.Chonnam Med J,2016;52(1):18-37.
2 Ng M,F(xiàn)leming T,Robinson M,etal.Global,regional,and national prevalence of overweight and obesity in children and adults during 1980-2013:a systematic analysis for the Global Burden of Disease Study 2013〔J〕.Lancet,2014;384(9945):766-81.
3 Ching-Lopez A,Cervilla J,Rivera M,etal.Epidemiological support for genetic variability at hypothalamic pituitary adrenal axis and serotonergic system as risk factors for major depression 〔J〕.Neuropsychiatr Dis Treat,2015;22(11):2743-54.
4 Rosenblat JD,Gregory JM,Carvalho AF,etal.Depression and disturbed bone metabolism:a narrative review of the epidemiological findings and postulated mechanisms〔J〕.Curr Mol Med,2016;16(2):165-78.
5 Hamm AO,Richter J,Pane-Farre C,etal.Panic disorder with agoraphobia from a behavioral neuroscience perspective:applying the research principles formulated by the research domain criteria (RDoC) initiative〔J〕.Psychophysiology,2016;53(3):312-22.
6 Grabe HJ,Wittfeld K,Van der Auwera S,etal.Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample〔J〕.Hum Brain Mapp,2016;37(4):1602-13.
7 Lee SH,Paz-Filho G,Mastronardi C,etal.Is increased antidepressant exposure a contributory factor to the obesity pandemic〔J〕?Transl Psychiatry,2016;15(6):e759.
8 Dieleman GC,Huizink AC,Tulen JH,etal.Stress reactivity predicts symptom improvement in children with anxiety disorders〔J〕.J Affect Disord,2016;15(196):190-9.
9 Kim LU,Dorsogna MR,Chou T.Onset,timing,and exposure therapy of stress disorders:mechanistic insight from a mathematical model of oscillating neuroendocrine dynamics〔J〕.Biol Direct,2016;11(1):13.
10 Saiyudthong S,Mekseepralard C.Effect of inhaling bergamot oil on depression related behaviors in chronic stressed rats 〔J〕.J Med Assoc Thai,2015;98(19):S152-9.
11 Naughton M,Dinan TG,Scott LV.Corticotropin-releasing hormone and the hypothalamic pituitary adrenal axis in psychiatric disease〔J〕.Handb Clin Neurol,2014;124:69-91.
12 Meena CL,Thakur A,Nandekar PP,etal.Synthesis and biology of ring-modified l-Histidine containing thyrotropin-releasing hormone (TRH) analogues〔J〕.Eur J Med Chem,2016;111:72-83.
13 Iversen P,Damber JE,Malmberg A,etal.Degarelix monotherapy compared with luteinizing hormone releasing hormone (LHRH) agonists plus anti-androgen flare protection in advanced prostate cancer:an analysis of two randomized controlled trials〔J〕.Ther Adv Urol,2016;8(2):75-82.
14 Zhang L,Cao J,Wang Z,etal.Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks〔J〕.Acta Histochem,2016;118(3):286-92.
15 Ozemir IA,Gurbuz B,Bayraktar B,etal.The effect of thyroid-stimulating hormone on tumor size in differentiated thyroid carcinoma〔J〕.Indian J Surg,2015;77(Suppl 3):967-70.
16 Bramble MS,Goldstein EH,Lipson A,etal.A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure:a fertility application of whole exome sequencing〔J〕.Hum Reprod,2016;31(4):905-14.
17 Xia L,Wen H,Han X,etal.Luteinizing hormone inhibits cisplatin-induced apoptosis in human epithelial ovarian cancer cells〔J〕.Oncol Lett,2016;11(3):1943-7.
18 Soto L,Lagos AF,Isla A,etal.Immunostimulatory effects of prolactin on TLR1 and TLR5M in SHK-1 cells infected with Piscirickettsia salmonis〔J〕.Dis Aquat Organ,2016;118(3):237-45.
19 Singh PP,Tomar SS,Thakur MS,etal.Polymorphism and association of growth hormone gene with growth traits in Sirohi and Barbari breeds of goat〔J〕.Vet World,2015;8(3):382-7.
20 Suzuki H,Yamamoto T.Localization of amylin-like immunoreactivity in melanocyte stimulating hormone containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary 〔J〕.Acta Histochem,2016;118(3):213-8.
21 Boursiquot R,Krol D,Hanif S,etal.Syndrome of inappropriate antidiuretic hormone in a patient with leptomeningeal carcinomatosis〔J〕.J Med Case Rep,2016;10(1):73.
22 Senft RA,Meddle SL,Baugh AT.Distribution and abundance of glucocorticoid and mineralocorticoid receptors throughout the brain of the great tit (Parus major) 〔J〕.PLoS One,2016;11(2):e0148516.
23 Cacioppo JA,Koo Y,Lin PC,etal.Generation of an estrogen receptor beta-iCre knock-in mouse〔J〕.Genesis,2016;54(1):38-52.
24 Davis SR,Worsley R,Miller KK,etal.Androgens and female sexual function and dysfunction-findings from the fourth international consultation of sexual medicine〔J〕.J Sex Med,2016;13(2):168-78.
25 Hardig BM,G?tberg M,Rundgren M,etal.Physiologic effect of repeated adrenaline (epinephrine) doses during cardiopulmonary resuscitation in the cath lab setting:a randomised porcine study〔J〕.Resuscitation,2016;101:77-83.
26 Wiley JW,Higgins GA,Athey BD.Stress and glucocorticoid receptor transcriptional programming in time and space:implications for the brain-gut axis〔J〕.Neurogastroenterol Motil,2016;28(1):12-25.
27 Bockmuhl Y,Patchev AV,Madejska A,etal.Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress〔J〕.Epigenetics,2015;10(3):247-57.
28 Geng LY,Ye DQ,Shi YY,etal.Influence of genetic polymorphisms involved in the hypothalamic pituitary adrenal axis and their interactions with environmental factors on antidepressant response〔J〕.CNS Neurosci Ther,2014;20(3):237-43.
29 Chang HS,Won E,Lee HY,etal.Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants〔J〕.Behav Brain Res,2015;292:116-24.
30 Yokoyama K,Yamada T,Mitani H,etal.Relationship between hypothalamic pituitary adrenal axis dysregulation and insulin resistance in elderly patients with depression〔J〕.Psychiatry Res,2015;226(2-3):494-8.
31 Gelman PL,F(xiàn)lores-Ramos M,Lopez-Martinez M,etal.Hypothalamic-pituitary-adrenal axis function during perinatal depression〔J〕.Neurosci Bull,2015;31(3):338-50.
32 Glynn LM,Davis EP,Sandman CA.New insights into the role of perinatal HPA-axis dysregulation in postpartum depression〔J〕.Neuropeptides,2013;47(6):363-70.
33 Woody ML,Kudinova AY,McGeary JE,etal.Influence of maternal depression on childrens brooding rumination:moderation by CRHR1 TAT haplotype〔J〕.Cogn Emot,2016;30(2):302-14.
34 Schatzberg AF.Anna-Monika Award Lecture,DGPPN Kongress,2013:the role of the hypothalamic pituitary adrenal (HPA) axis in the pathogenesis of psychotic major depression〔J〕.World J Biol Psychiatry,2015;16(1):2-11.
35 Sarubin N,Nothdurfter C,Schüle C,etal.The influence of Hatha yoga as an add-on treatment in major depression on hypothalamic-pituitary-adrenal-axis activity:a randomized trial〔J〕.J Psychiatr Res,2014;53:76-83.
36 Nothdurfter C,Schmotz C,Sarubin N,etal.Effects of escitalopram/quetiapine combination therapy versus escitalopram monotherapy on hypothalamic-pituitary-adrenal-axis activity in relation to antidepressant effectiveness〔J〕.J Psychiatr Res,2014;52:15-20.
37 Hori H,Teraishi T,Ota M,etal.Psychological coping in depressed outpatients:association with cortisol response to the combined dexamethasone/CRH test〔J〕.J Affect Disord,2014;152-154:441-7.
38 Hohne N,Poidinger M,Merz F,etal.Increased HPA axis response to psychosocial stress in remitted depression:the influence of coping style〔J〕.Biol Psychol,2014;103:267-75.
39 Sher L,Oquendo MA,Burke AK,etal.Combined dexamethasone suppression corticotrophin releasing hormone stimulation test in medication-freemajor depression and healthy volunteers〔J〕.J Affect Disord,2013;151(3):1108-12.
40 Tajima-Pozo K,Montes-Montero A,Güemes I,etal.Contributions of cortisol suppression tests to understanding of psychiatric disorders:a narrative review of literature〔J〕.Endocrinol Nutr,2013;60(7):396-403.
41 Stetler C,Miller GE.Depression and hypothalamic-pituitary-adrenal activation:a quantitative summary of four decades of research〔J〕.Psychosom Med,2011;73(2):114-26.
42 Quines CB,Rosa SG,Da Rocha JT,etal.Monosodium glutamate,a food additive,induces depressive like and anxiogenic like behaviors in young rats〔J〕.Life Sci,2014;107(1-2):27-31.
43 Kudwa AE,McGivern RF,Handa RJ.Estrogen receptor β and oxytocin interact to modulate anxiety like behavior and neuroendocrine stress reactivity in adult male and female rats〔J〕.Physiol Behav,2014;129:287-96.
44 Holsen LM,Lancaster K,Klibanski A,etal.HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression〔J〕.Neuroscience,2013;250:733-42.
45 Serova LI,Tillinger A,Alaluf LG,etal.Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats〔J〕.Neuroscience,2013;236:298-312.
46 Ferguson B,Hunter JE,Luty J,etal.Genetic load is associated with hypothalamic pituitary adrenal axis dysregulation in macaques〔J〕.Genes Brain Behav,2012;11(8):949-57.
47 Pintor L,Torres X,Bailles E,etal.CRF test in melancholic depressive patients with partial versus complete relapses:a 2-year follow-up study〔J〕.Nord J Psychiatry,2013;67(3):177-84.
48 Tokita K,F(xiàn)ujita Y,Yamaji T,etal.Depressive-like behavior in adrenocorticotropic hormone treated rats blocked by memantine〔J〕.Pharmacol Biochem Behav,2012;102(2):329-34.
49 Lee RS,Sawa A.Environmental stressors and epigenetic control of the hypothalamic pituitary adrenal axis〔J〕.Neuroendocrinology,2014;100(4):278-87.
50 Liu CS,Carvalho AF,McIntyre RS.Towards a metabolic subtype of major depressive disorder:shared pathophysiological mechanisms may contribute to cognitive dysfunction〔J〕.CNS Neurol Disord Drug Targets,2014;13(10):1693-707.
51 Juruena MF,Pariante CM,Papadopoulos AS,etal.The role of mineralocorticoid receptor function in treatment-resistant depression〔J〕.J Psychopharmacol,2013;27(12):1169-79.
52 Schiller CE,Meltzer-Brody S,Rubinow DR.The role of reproductive hormones in postpartum depression〔J〕.CNS Spect,2015;20(1):48-59.
53 Uchihara Y,Tanaka K,Asano T,etal.Superoxide dismutase overexpression protects against glucocorticoid induced depressive-like behavioral phenotypes in mice〔J〕.Biochem Biophys Res Commun,2016;469(4):873-7.
54 Papadopoulou A,Siamatras T,Delgado-Morales R,etal.Acute and chronic stress differentially regulate cyclin dependent kinase 5 in mouse brain:implications to glucocorticoid actions and major depression〔J〕.Transl Psychiatry,2015;9(5):e578.
55 Workman JL,Brummelte S,Galea LA.Postpartum corticosterone administration reduces dendritic complexity and increases the density of mushroom spines of hippocampal CA3 arbours in dams〔J〕.J Neuroendocrinol,2013;25(2):119-30.
56 Li M,Zhou J,Qian J,etal.Target genes involved in corticosterone-induced PC12 cell viability and neurite disorders:a potential molecular mechanism of major depressive disorder〔J〕.Psychiatry Res,2016;235:206-8.
57 Malviya SA,Kelly SD,Greenlee MM,etal.Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model〔J〕.Physiol Behav,2013;122:187-92.
58 Kirilly E,Gonda X,Bagdy G.Antidepressants,stressors and the serotonin 1A receptor〔J〕.Neuropsycho Pharmacol Hung,2015;17(2):81-9.
59 Maric NP,Adzic M.Pharmacological modulation of HPA axis in depression new avenues for potential therapeutic benefits〔J〕.Psychiatr Danub,2013;25(3):299-305.
60 Wingenfeld K,Wolf OT.Effects of cortisol on cognition in major depressive disorder,posttraumatic stress disorder and borderline personality disorder 2014 Curt Richter Award Winner〔J〕.Psychoneuro Endocrinol,2015;51:282-95.
61 Fischer A,Grundmann J,Gold SM,etal.Steroid regulation of T cell function appears unaltered in borderline personality disorder〔J〕.J Pers Disord,2015;29(2):241-7.
62 Beauchaine TP,Crowell SE,Hsiao RC.Post-dexamethasone cortisol,self-inflicted injury,and suicidal ideation among depressed adolescent girls〔J〕.J Abnorm Child Psychol,2015;43(4):619-32.
63 Goldstein JM,Handa RJ,Tobet SA.Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease〔J〕.Front Neuroendocrinol,2014;35(1):140-58.
64 Spitzer C,Wibisono D,Terfehr K,etal.C-reactive protein,pre-and postdexamethasone cortisol levels in post-traumatic stress disorder〔J〕.Nord J Psychiatry,2014;68(5):296-9.
65 Mocking RJ,Ruhe HG,Assies J,etal.Relationship between the hypothalamic pituitary adrenal-axis and fatty acid metabolism in recurrent depression〔J〕.Psychoneuroendocrinology,2013;38(9):1607-17.
66 Vreeburg SA,Hoogendijk WJ,DeRijk RH,etal.Salivary cortisol levels and the 2-year course of depressive and anxiety disorders〔J〕.Psychoneuroendocrinology,2013;38(9):1494-502.
67 Horowitz MA,Zunszain PA,Anacker C,etal.Glucocorticoids and inflammation:a double-headed sword in depression.How do neuroendocrine and inflammatory pathways interact during stress to contribute to the pathogenesis of depression〔J〕.Mod Trends Pharmacopsychiatri,2013;28:127-43.
68 Hori H,Teraishi T,Sasayama D,etal.Relationship of temperament and character with cortisol reactivity to the combined dexamethasone/CRH test in depressed outpatients〔J〕.J Affect Disord,2013;147(1-3):128-36.
69 Kunugi H,Hori H,Numakawa T,etal.The hypothalamic-pituitary-adrenal axis and depressive disorder:recent progress〔J〕.Nihon Shinkei Seishin Yakurigaku Zasshi,2012;32(4):203-9.
70 Douglas KM,Porter RJ.Associations between hypothalamic-pituitary-adrenal axis function and facial emotion processing in depressed and control participants〔J〕.Psychiatry Clin Neurosci,2012;66(5):442-50.
〔2016-12-10修回〕
(編輯 曲 莉)
國家自然科學基金 (81173576,81373777,81173599);黑龍江省自然基金 (H201354);黑龍江省教育廳 (12521624,12531790,11521323)
張曉杰(1965-),女,博士,教授,博士生導師,主要從事抑郁、阿爾茨海默病、腫瘤、痛風、肝纖維化研究。
R749
A
1005-9202(2017)11-2839-05;
10.3969/j.issn.1005-9202.2017.11.106