李 麗
(武漢市肺科醫(yī)院(武漢市結(jié)核病防治所)中心實(shí)驗(yàn)室,武漢430030)
結(jié)核病細(xì)胞免疫特征研究進(jìn)展①
李 麗
(武漢市肺科醫(yī)院(武漢市結(jié)核病防治所)中心實(shí)驗(yàn)室,武漢430030)
結(jié)核病是典型的胞內(nèi)寄生菌誘導(dǎo)的感染性疾病,其感染、發(fā)病及預(yù)后等都與機(jī)體免疫功能息息相關(guān)。結(jié)核分枝桿菌誘導(dǎo)的免疫應(yīng)答機(jī)制及參與因素十分復(fù)雜,目前認(rèn)為T細(xì)胞介導(dǎo)的細(xì)胞免疫應(yīng)答在其感染及發(fā)病過程中發(fā)揮關(guān)鍵作用。而T細(xì)胞無論是從表型、功能還是體內(nèi)定位來講,其異質(zhì)性特征都非常顯著。結(jié)核分枝桿菌感染機(jī)體后,多種T細(xì)胞亞群被激活,參與結(jié)核菌誘導(dǎo)的免疫應(yīng)答及免疫病理過程。本文綜述近年來結(jié)核桿菌感染或結(jié)核病發(fā)病過程中的主要T細(xì)胞亞群及其特征和功能,為深入理解結(jié)核桿菌誘導(dǎo)的免疫應(yīng)答提供參考。
1.1特異性細(xì)胞免疫應(yīng)答的啟動(dòng) 結(jié)核桿菌主要感染肺泡巨噬細(xì)胞,結(jié)核桿菌與巨噬細(xì)胞表面特異性受體結(jié)合,攝取后形成吞噬體,被加工后,分別和HLA-Ⅰ類和Ⅱ類分子結(jié)合,提呈給CD8+T和CD4+T細(xì)胞。除了直接提呈抗原,也可發(fā)生間接抗原提呈或交叉提呈,其中一個(gè)主要方式是,死亡細(xì)胞釋放的結(jié)核抗原被樹突狀細(xì)胞(DCs)攝取,然后和HLA一類分子結(jié)合從而發(fā)生交叉提呈并激活CD8+T細(xì)胞[1]。
1.2結(jié)核抗原特異性T細(xì)胞發(fā)揮關(guān)鍵保護(hù)作用 抗原特異性T細(xì)胞活化、擴(kuò)增并遷移到肺部,通過活化巨噬細(xì)胞和細(xì)胞毒性T細(xì)胞靶向殺傷結(jié)核桿菌感染的巨噬細(xì)胞,發(fā)揮有效抗結(jié)核菌免疫應(yīng)答。雖然T細(xì)胞在控制結(jié)核方面發(fā)揮關(guān)鍵作用,但具體哪個(gè)T細(xì)胞亞群或何種T細(xì)胞功能發(fā)揮關(guān)鍵保護(hù)作用還不完全清楚。有關(guān)TB-HIV共感染的流行病學(xué)研究表明,當(dāng)HIV感染導(dǎo)致CD4+T細(xì)胞數(shù)量下降時(shí),活動(dòng)性肺結(jié)核發(fā)生率顯著上升[2]。在HIV感染早期,結(jié)核菌誘導(dǎo)結(jié)核特異性T細(xì)胞CCR5表達(dá)上升,由于CCR5是HIV結(jié)合T細(xì)胞的受體,從而增加了結(jié)核特異性T細(xì)胞被HIV感染的可能性,導(dǎo)致結(jié)核特異性T細(xì)胞下降[2]。此外,結(jié)核特異性T細(xì)胞單細(xì)胞水平表達(dá)高水平IL-2,促進(jìn)T細(xì)胞增殖,也增加其被HIV感染的可能性[3]。HIV感染CD4+T細(xì)胞,其中也包括結(jié)核特異性CD4+T細(xì)胞,導(dǎo)致這些輔助性T細(xì)胞數(shù)量顯著下降從而抗結(jié)核作用下降,表明CD4+T細(xì)胞是控制結(jié)核所必需的。
1.3結(jié)核特異性Th1細(xì)胞的作用 根據(jù)其功能的不同,CD4+T細(xì)胞又可分為不同的細(xì)胞亞群,其中Th1細(xì)胞可產(chǎn)生多種關(guān)鍵的細(xì)胞因子,包括IFN-γ、IL-2和TNF-α。TNF-α對于結(jié)核肉芽腫的形成和維持非常重要,是抗結(jié)核免疫的關(guān)鍵成分。在類風(fēng)濕性關(guān)節(jié)炎(RA)或炎癥性腸炎患者,使用抗TNF抗體后結(jié)核復(fù)發(fā)危險(xiǎn)性增加[4,5]。IFN-γ是另一種抗結(jié)核關(guān)鍵細(xì)胞因子,常被作為診斷性生物標(biāo)記。IL-12/IL-23-IFN-γ細(xì)胞因子信號途徑缺陷者對于非結(jié)核分枝桿菌及結(jié)核桿菌易感性增加[6],表明IFN-γ在機(jī)體抗結(jié)核中的重要作用。最近在小鼠模型中發(fā)現(xiàn)某種CD4+Th1細(xì)胞可通過不依賴IFN-γ和TNF-α的方式控制結(jié)核感染[7],人體是否存在這種細(xì)胞還不明確。
由于在抗結(jié)核免疫應(yīng)答中的重要作用,利用結(jié)核抗原刺激來誘導(dǎo)IFN-γ已被廣泛應(yīng)用于商業(yè)化免疫診斷測試如Quantiferon-TB Gold和T-SPOT TB。而且,在臨床疫苗試驗(yàn)中,IFN-γ也經(jīng)常被作為疫苗誘導(dǎo)應(yīng)答的指示性細(xì)胞因子。然而,也有研究表明,可產(chǎn)生IFN-γ的CD4+T和CD8+T細(xì)胞頻率并不與抗結(jié)核保護(hù)性相關(guān)[8-12]。在南非,利用卡介苗(BCG)對嬰兒進(jìn)行初免然后利用MVA85A加強(qiáng)免疫可顯著增強(qiáng)產(chǎn)生IFN-γ的T細(xì)胞頻率。但在最近的大規(guī)模Ⅱb臨床試驗(yàn)中,并未發(fā)現(xiàn)其有更好的保護(hù)效果[8,9]。T細(xì)胞來源的IFN-γ需要維生素D來刺激巨噬細(xì)胞發(fā)揮自噬作用,吞噬體成熟,以發(fā)揮抗菌活性。因此,無論固有免疫或是適應(yīng)性免疫均需維生素D來促進(jìn)巨噬細(xì)胞依賴性抗菌活性。維生素D受體及循環(huán)中維生素D的水平對于有效控制結(jié)核來說很關(guān)鍵。
1.4結(jié)核特異性多功能性Th1 細(xì)胞的作用 抗結(jié)核保護(hù)性免疫可能與多功能的可同時(shí)分泌IFN-γ、TNF-α和IL-2的細(xì)胞相關(guān)。在動(dòng)物實(shí)驗(yàn)中,這群細(xì)胞與疫苗誘導(dǎo)保護(hù)性作用相關(guān)[10,11,13-18]。然而,雖然在動(dòng)物和人體試驗(yàn)中都發(fā)現(xiàn)疫苗免疫后可誘導(dǎo)多功能性CD4+T細(xì)胞[12-18],但其在活動(dòng)性肺結(jié)核患者外周血中也大量存在[19,20],這群細(xì)胞并不與保護(hù)作用相關(guān)[12]。在TB-HIV共感染個(gè)體中多功能T細(xì)胞的作用也存在爭議,有研究報(bào)道這些患者在診斷為結(jié)核時(shí)存在多功能性CD4+T細(xì)胞[21],有的則是在接受抗逆轉(zhuǎn)錄病毒治療后發(fā)現(xiàn)多功能性CD4+T細(xì)胞[22]。因此,多功能CD4+T細(xì)胞可能只是機(jī)體免疫系統(tǒng)中控制結(jié)核感染的保護(hù)性應(yīng)答力量的一部分,而并不是一個(gè)有效的可用于衡量機(jī)體抗結(jié)核保護(hù)作用的指標(biāo)。相反,Th1和Th17應(yīng)答的強(qiáng)度、多功能T細(xì)胞的強(qiáng)度被認(rèn)為與結(jié)核活動(dòng)性相關(guān),可能反映細(xì)菌水平而非保護(hù)性免疫水平[20,23]。
1.5結(jié)核特異性CD8+T細(xì)胞的作用 通過HLA-Ⅰ類分子四聚體和生物信息學(xué)技術(shù),可詳盡研究抗結(jié)核CD8+T細(xì)胞表位、應(yīng)答及多功能細(xì)胞因子特征。大多CD8+T細(xì)胞識(shí)別HLA-Ⅰa類分子提呈抗原,這些細(xì)胞可產(chǎn)生多種細(xì)胞因子[24]。在結(jié)核患者,治療過程中產(chǎn)生IFN-γ的結(jié)核特異性CD8+T細(xì)胞水平迅速下降[25],而也有研究表明HLA-Ⅰa四聚體陽性CD8+T 細(xì)胞水平隨著抗結(jié)核治療而逐漸上升[26],導(dǎo)致這種矛盾的原因并不清楚。但有可能是結(jié)核特異性CD8+T細(xì)胞并不完全具有功能性或者抗結(jié)核化療后功能并不能完全恢復(fù)[27]。動(dòng)物實(shí)驗(yàn)表明,CD8+T細(xì)胞應(yīng)答強(qiáng)度與細(xì)菌水平相關(guān)[28-30]。CD8+T細(xì)胞分泌的IFN-γ和穿孔素對于發(fā)揮抗結(jié)核保護(hù)作用來說是必需的[28-30]。CD4+T細(xì)胞可促進(jìn)細(xì)胞毒性CD8+T細(xì)胞的活化,也可激活巨噬細(xì)胞,其活化后提呈抗原給T細(xì)胞的功能增加,促進(jìn)肉芽腫形成及殺菌機(jī)制激活以殺傷結(jié)核菌。
除了激活效應(yīng)性免疫應(yīng)答,結(jié)核菌還激活調(diào)節(jié)性T細(xì)胞(Treg),抑制炎癥、限制組織損傷,去除這群細(xì)胞可增強(qiáng)抗結(jié)核效應(yīng)免疫。Treg和效應(yīng)T細(xì)胞之間的平衡對疾病的發(fā)展和結(jié)局非常重要,過強(qiáng)的效應(yīng)性應(yīng)答會(huì)導(dǎo)致強(qiáng)烈炎癥反應(yīng)、組織損傷;而過強(qiáng)的Treg應(yīng)答則會(huì)下調(diào)效應(yīng)免疫導(dǎo)致結(jié)核菌免疫逃逸、大量復(fù)制。
Th17可分泌IL-17A/F和IL-22,有強(qiáng)促炎作用,在黏膜免疫中發(fā)揮重要作用。結(jié)核患者外周血可見Th17細(xì)胞,為長壽命記憶性細(xì)胞,而在發(fā)病局部較難檢測到IL-17,卻可發(fā)現(xiàn)大量IL-22[31]。有研究表明IL-17在抗高毒性結(jié)核分枝桿菌中發(fā)揮重要保護(hù)作用[32]。而且,Th17的強(qiáng)度對于感染結(jié)局非常重要,當(dāng)小鼠反復(fù)暴露于結(jié)核分枝桿菌和BCG,產(chǎn)生大量IL-23,誘導(dǎo)Th17應(yīng)答,其中IL-17/巨噬細(xì)胞炎性蛋白2(MIP-2)激活中性粒細(xì)胞,誘導(dǎo)肺臟病理改變,這種反應(yīng)并非保護(hù)性免疫[33]。因此,Th1和Th17之間的平衡對于保護(hù)性或是病理性免疫來說至關(guān)重要。類似,在BCG誘導(dǎo)靈長類動(dòng)物保護(hù)性模型中,Th1和Th17之間的平衡對于控制結(jié)核分枝桿菌非常重要,與保護(hù)性相關(guān)[34]。
3.1結(jié)核桿菌誘導(dǎo)的黏膜相關(guān)恒定T細(xì)胞(MAIT細(xì)胞) 其他非經(jīng)典限制性T細(xì)胞亞群,包括非多態(tài)性Ⅰb分子MHC相關(guān)蛋白1(MR1)限制性T細(xì)胞,也稱作MAIT,表達(dá)半保守Vα7.2T細(xì)胞受體[35],與iNKT細(xì)胞類似。人體MAIT主要存在于CD4-CD8-雙陰性細(xì)胞或CD8+T細(xì)胞[35-37],其在胸腺中發(fā)育和在外周的活化受MR1限制[38]。除了分泌TNF-α和IFN-γ外,MAIT還分泌IL-17A和IL-22,發(fā)揮抗菌活性。MR1提呈維生素代謝物,大多為細(xì)菌和酵母所特有的VitB產(chǎn)物[39],MAIT可能利用這些代謝物來感知感染細(xì)胞。MAIT可由結(jié)核感染肺上皮細(xì)胞所激活[40,41]。相比野生型小鼠,MAIT缺陷小鼠感染卡介苗后早期肺部結(jié)核菌數(shù)量更高,表明其在抗結(jié)核早期固有免疫中發(fā)揮重要作用[42]。通過表型CD161highCD8+分析MAIT,提示這些細(xì)胞在HIV感染患者中下降,這與其黏膜免疫抵抗力下降相關(guān),導(dǎo)致其對結(jié)核易感性增加[43]。此外,也有研究發(fā)現(xiàn),活動(dòng)性結(jié)核患者,由于MAIT遷移到疾病局部[35,44],從而導(dǎo)致外周MAIT細(xì)胞頻率下降。最新研究發(fā)現(xiàn),結(jié)核患者和非結(jié)核分枝桿菌(NTM)感染患者M(jìn)AIT數(shù)量和功能均存在缺陷,MAIT表達(dá)PD-1水平上升,導(dǎo)致IFN-γ分泌功能缺陷,抗結(jié)核保護(hù)作用下降[45]。阻斷PD-1信號導(dǎo)致IFN-γ產(chǎn)生顯著增加,因此,這可能是結(jié)核免疫治療的重要靶點(diǎn)[46]。
除了經(jīng)典HLA-Ⅰa類分子,結(jié)核抗原也可通過非經(jīng)典HLA-Ⅰb分子,如CD1、HLA-E和MR1提呈給CD8+T細(xì)胞。識(shí)別HLA-E分子提呈的結(jié)核抗原肽的CD8+T細(xì)胞具有殺傷或調(diào)節(jié)功能。HIV-nef不能結(jié)合HLA-E胞內(nèi)部分,因此HIV感染對HLA-E提呈抗原功能影響并不十分顯著,而HLA-Ⅰa提呈抗原能力則受到較大影響[47]。此外,結(jié)核分枝桿菌脂質(zhì)抗原經(jīng)CD1分子提呈,被CD4+T細(xì)胞識(shí)別,誘導(dǎo)細(xì)胞因子和細(xì)胞毒性殺傷感染靶細(xì)胞[48]。
隨著結(jié)核合并其他疾病(如HIV/AIDS、糖尿病)、耐藥結(jié)核甚至耐多藥結(jié)核的出現(xiàn),有關(guān)結(jié)核免疫功能的研究面臨越來越復(fù)雜的形勢,這也使得我們對于結(jié)核誘導(dǎo)免疫應(yīng)答的多面性、階段性及異質(zhì)性有更清晰的認(rèn)識(shí)。有關(guān)結(jié)核免疫功能研究不應(yīng)是孤立的,應(yīng)綜合代謝組學(xué)、基因組學(xué)、蛋白質(zhì)組學(xué)、表觀遺傳學(xué)等不同學(xué)科、多種技術(shù)手段加以綜合分析以獲得更全面、客觀的信息。深入理解結(jié)核桿菌誘導(dǎo)的免疫功能特征,對于結(jié)核的早期診斷、有效免疫干預(yù)措施的制訂、預(yù)后判斷及新型結(jié)核疫苗的設(shè)計(jì)都十分重要。
[1] Srivastava S,Ernst JD.Cell-to-cell transfer of M.tuberculosis antigens optimizes CD4 T cell pri ming [J].Cell Host Microbe,2014,15(6):741-752.
[2] Geldmacher C,Zumla A,Hoelscher M.Interaction between HIV and Mycobacterium tuberculosis:HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis [J].Curr Opin HIV AIDS,2012,7(3):268-275.
[3] Walker NF,Meintjes G,Wilkinson RJ.HIV-1 and the immune response to TB [J].Future Virol,2013,8(1):57-80.
[4] Thalayasingam N,Isaacs JD.Anti-TNF therapy [J].Best Practice Res Clin Rheumatol,2011,25(4):549-567.
[5] Shim TS.Diagnosis and treatment of latent tuberculosis infection due to initiation of anti-TNF therapy [J].Tuberc Respir Dis,2014,76(6):261-268.
[6] van de Vosse E,van Dissel JT,Ottenhoff TH.Genetic deficiencies of innate immune signalling in human infectious disease [J].Lancet Infectious Diseases,2009,9(11):688-698.
[7] Gallegos AM,van Heijst JW,Samstein M,etal.A gamma interferon independent mechanism of CD4 T cell mediated control of M.tuberculosis infection in vivo [J].PLoS Pathogens,2011,7(5):e1002052.
[8] Tameris M,Geldenhuys H,Luabeya AK,etal.The candidate TB vaccine,MVA85A,induces highly durable Th1 responses [J].PLoS One,2014,9(2):e87340.
[9] Tameris MD,Hatherill M,Landry BS,etal.Safety and efficacy of MVA85A,a new tuberculosis vaccine,in infants previously vaccinated with BCG:a randomised,placebo-controlled phase 2b trial [J].Lancet,2013,381(9871):1021-1028.
[10] Lindenstrom T,Aagaard C,Christensen D,etal.High-frequency vaccine-induced CD8(+) T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection [J].Eur J Immunol,2014,44(6):1699-709.
[11] Darrah PA,Bolton DL,Lackner AA,etal.Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge [J].J Immunol,2014,193(4):1799-1811.
[12] Kagina BM,Abel B,Scriba TJ,etal.Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns [J].Am J Respiratory Crit Care Med,2010,182(8):1073-1079.
[13] Darrah PA,Patel DT,De Luca PM,etal.Multifunctional Th1 cells define a correlate of vaccine-mediated protection against Leishmania major [J].Nature Med,2007,13(7):843-850.
[14] Forbes EK,Sander C,Ronan EO,etal.Multifunctional,high-level cytokine-producing Th1 cells in the lung,but not spleen,correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice [J].J Immunol,2008,181(7):4955-4964.
[15] Lindenstrom T,Agger EM,Korsholm KS,etal.Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells [J].J Immunol,2009,182(12):8047-8055.
[16] Abel B,Tameris M,Mansoor N,etal.The novel tuberculosis vaccine,AERAS-402,induces robust and polyfunctional CD4+and CD8+T cells in adults [J].Am J Respiratory Critical Care Med,2010,181(12):1407-1417.
[17] Scriba TJ,Tameris M,Mansoor N,etal.Modified vaccinia Ankara-expressing Ag85A,a novel tuberculosis vaccine,is safe in adolescents and children,and induces polyfunctional CD4+T cells [J].Eur J Immunol,2010,40(1):279-290.
[18] Beveridge NE,Price DA,Casazza JP,etal.Immunisation with BCG and recombinant MVA85A induces long-lasting,polyfunctional Mycobacterium tuberculosis-specific CD4+memory T lymphocyte populations [J].Eur J Immunol,2007,37(11):3089-3100.
[19] Sutherland JS,Adetifa IM,Hill PC,etal.Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease [J].Eur J Immunol,2009,39(3):723-729.
[20] Caccamo N,Guggino G,Joosten SA,etal.Multifunctional CD4(+) T cells correlate with active Mycobacterium tuberculosis infection [J].Eur J Immunol,2010,40(8):2211-2220.
[21] Chiacchio T,Petruccioli E,Vanini V,etal.Polyfunctional T-cells and effector memory phenotype are associated with active TB in HIV-infected patients [J].J Infection,2014,69(6):533-545.
[22] Sutherland JS,Young JM,Peterson KL,etal.Polyfunctional CD4(+) and CD8(+) T cell responses to tuberculosis antigens in HIV-1-infected patients before and after anti-retroviral treatment [J].J Immunol,2010,184(11):6537-6544.
[23] Day CL,Abrahams DA,Lerumo L,etal.Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load [J].J Immunol,2011,187(5):2222-2232.
[24] Tang ST,van Meijgaarden KE,Caccamo N,etal.Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+T cells in human tuberculosis [J].J Immunol,2011,186(2):1068-1080.
[25] Nyendak MR,Park B,Null MD,etal.Mycobacterium tuberculosis specific CD8(+) T cells rapidly decline with antituberculosis treatment [J].PLoS One,2013,8(12):e81564.
[26] Caccamo N,Guggino G,Meraviglia S,etal.Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection [J].PLoS One,2009,4(5):e5528.
[27] Day CL,Moshi ND,Abrahams DA,etal.Patients with tuberculosis disease have Mycobacterium tuberculosis-specific CD8 T cells with a pro-apoptotic phenotype and impaired proliferative capacity,which is not restored following treatment [J].PLoS One,2014,9(4):e94949.
[28] Brighenti S,Andersson J.Induction and regulation of CD8+cytolytic T cells in human tuberculosis and HIV infection [J].Biochem Biophys Res Commun,2010,396(1):50-57.
[29] Chen CY,Huang D,Wang RC,etal.A critical role for CD8 T cells in a nonhuman primate model of tuberculosis [J].PLoS Pathogens,2009,5(4):e1000392.
[30] Mazzaccaro RJ,Stenger S,Rock KL,etal.Cytotoxic T lymphocytes in resistance to tuberculosis [J].Advances Exp Med Biol,1998,452:85-101.
[31] Matthews K,Wilkinson KA,Kalsdorf B,etal.Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis [J].Tuberculosis (Edinburgh,Scotland),2011,91(6):587-593.
[32] Gopal R,Monin L,Slight S,etal.Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection [J].PLoS Pathogens,2014,10(5):e1004099.
[33] Cruz A,Fraga AG,Fountain JJ,etal.Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis [J].J Exp Med,2010,207(8):1609-1616.
[34] Wareham AS,Tree JA,Marsh PD,etal.Evidence for a role for interleukin-17,Th17 cells and iron homeostasis in protective immunity against tuberculosis in cynomolgus macaques [J].PLoS One,2014,9(2):e88149.
[35] Gold MC,Cerri S,Smyk-Pearson S,etal.Human mucosal associated invariant T cells detect bacterially infected cells [J].PLoS Biology,2010,8(6):e1000407.
[36] Martin E,Treiner E,Duban L,etal.Stepwise development of MAIT cells in mouse and human [J].PLoS Biology,2009,7(3):e54.
[37] Tilloy F,Treiner E,Park SH,etal.An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals [J].J Exp Med,1999,189(12):1907-1921.
[38] Treiner E,Duban L,Bahram S,etal.Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1 [J].Nature,2003,422(6928):164-169.
[39] Kjer-Nielsen L,Patel O,Corbett AJ,etal.MR1 presents microbial vitamin B metabolites to MAIT cells [J].Nature,2012,491(7426):717-723.
[40] Harriff MJ,Cansler ME,Toren KG,etal.Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8(+) T cells [J].PLoS One,2014,9(5):e97515.
[41] Gold MC,McLaren JE,Reistetter JA,etal.MR1-restricted MAIT cells display ligand discri mination and pathogen selectivity through distinct T cell receptor usage [J].J Exp Med,2014,211(8):1601-1610.
[42] Chua WJ,Truscott SM,Eickhoff CS,etal.Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection [J].Infection Immunity,2012,80(9):3256-3267.
[43] Wong EB,Akilimali NA,Govender P,etal.Low levels of peripheral CD161++ CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection [J].PLoS One,2013,8(12):e83474.
[44] Le Bourhis L,Martin E,Peguillet I,etal.Antimicrobial activity of mucosal-associated invariant T cells [J].Nat Immunol,2010,11(8):701-708.
[45] Kwon YS,Cho YN,Kim MJ,etal.Mucosal-associated invariant T cells are numerically and functionally deficient in patients with mycobacterial infection and reflect disease activity [J].Tuberculosis,2015,95(3):267-274.
[46] Jiang J,Wang X,An H,etal.Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis [J].Am J Respiratory Critical Care Med,2014,190(3):329-339.
[47] Cohen GB,Gandhi RT,Davis DM,etal.The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells [J].Immunity,1999,10(6):661-671.
[48] Bastian M,Braun T,Bruns H,etal.Mycobacterial lipopeptides elicit CD4+CTLs in Mycobacterium tuberculosis-infected humans [J].J Immunol,2008,180(5):3436-3446.
[收稿2016-09-12 修回2016-12-21]
(編輯 倪 鵬)
10.3969/j.issn.1000-484X.2017.06.032
①本文受湖北省自然科學(xué)基金項(xiàng)目(2015CFB255)、武漢市中青年醫(yī)學(xué)骨干人才培養(yǎng)工程(武衛(wèi)生計(jì)生通[2015]9號)和武漢市黃鶴英才(醫(yī)療衛(wèi)生)計(jì)劃(武人才辦2016[1]號)資助。
李 麗(1980年-),女,博士,副主任技師,主要從事結(jié)核病免疫學(xué)方面的研究,E-mail:ly_li@aliyun.com。
R392
A
1000-484X(2017)06-0955-04