尤亞男 姜 樺
(復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院,上海200000)
腫瘤免疫抑制細(xì)胞的誘導(dǎo)和HMGB1關(guān)系①
尤亞男 姜 樺
(復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院,上海200000)
免疫系統(tǒng)通過免疫監(jiān)視、免疫自穩(wěn)、免疫防御三大功能,維持機(jī)體穩(wěn)態(tài)平衡。固有免疫是機(jī)體免疫系統(tǒng)的第一道防線,主要通過“病原體相關(guān)識(shí)別模式”(Pathogen-associated molecular patterns,PAMP)識(shí)別病原體,進(jìn)而激活適應(yīng)性免疫。然而機(jī)體存在一些特殊免疫狀態(tài),如移植器官被排斥而胎兒不被母體排斥,腎移植時(shí)活體腎源優(yōu)于尸體腎源等,據(jù)此學(xué)者提出免疫識(shí)別的“損傷相關(guān)分子模式”(Damage-associated molecular pattern,DAMP),即細(xì)胞由于病變壓力而釋放出危險(xiǎn)信號(hào),包括DNA、RNA、熱休克蛋白、S100A、IL-1等,進(jìn)一步通過固有免疫引起炎癥反應(yīng),其中最主要的損傷相關(guān)分子是DNA相關(guān)蛋白高遷移率蛋白1(High mobility group box 1,HMGB1)。HMGB1是真核細(xì)胞核內(nèi)的非組蛋白染色體結(jié)合蛋白,因在凝膠電泳中遷移快而得名,在細(xì)胞受到損傷時(shí)釋放到細(xì)胞外。
腫瘤細(xì)胞的免疫逃逸機(jī)制包括被動(dòng)機(jī)制和主動(dòng)機(jī)制,其中被動(dòng)機(jī)制主要有:腫瘤細(xì)胞表面MHC分子表達(dá)異常、抗原提呈機(jī)制的異常、共刺激分子(如B7-1、B7-2)表達(dá)的下降、抗原表位的缺失及凋亡系統(tǒng)的異常。主動(dòng)機(jī)制包括兩方面,一是抑制性細(xì)胞因子(TGF-β、IL-10)的產(chǎn)生;二是免疫抑制細(xì)胞的誘導(dǎo),如調(diào)節(jié)T細(xì)胞(Regulatory T cell,Treg)、髓源性的抑制細(xì)胞(Myeloid-derived suppressor cells,MDSCs)和漿細(xì)胞樣樹突狀細(xì)胞(plasmacytoid dendritic cells,pDCs)等[1,2],而腫瘤誘導(dǎo)免疫抑制細(xì)胞的機(jī)制,以及免疫抑制細(xì)胞在腫瘤生長(zhǎng)、侵襲和轉(zhuǎn)移中發(fā)揮作用的具體過程仍不明確。腫瘤主要通過“損傷相關(guān)的識(shí)別模式”(DAMP)誘發(fā)固有免疫,識(shí)別分子主要源于DNA,如HMGB1,近年來研究發(fā)現(xiàn)HMGB1與多種免疫抑制細(xì)胞的誘導(dǎo)有關(guān)[3]。
隨著腫瘤疫苗研究的深入,發(fā)現(xiàn)腫瘤疫苗并未能如預(yù)期發(fā)揮抗腫瘤作用,究其原因可能是腫瘤微環(huán)境中存在免疫抑制細(xì)胞,抑制了抗腫瘤免疫。腫瘤中主要的免疫抑制細(xì)胞包括Treg、pDCs、MDSCs、調(diào)節(jié)B細(xì)胞(Regulatory B cell,Breg)、腫瘤相關(guān)中性粒細(xì)胞(Tumor associated neutrophil,TAN)、腫瘤相關(guān)巨噬細(xì)胞(Tumor-associated macrophages,TAM)等,這些細(xì)胞可通過免疫抑制或者直接作用促進(jìn)腫瘤的侵襲、轉(zhuǎn)移等,在腫瘤進(jìn)展中發(fā)揮重要作用。
1.1Treg與腫瘤免疫耐受 調(diào)節(jié)性T細(xì)胞是負(fù)性免疫調(diào)節(jié)的重要組成部分,轉(zhuǎn)錄因子FOXP3是Treg的特征性轉(zhuǎn)錄因子[4]。根據(jù)來源不同可以分為nTreg(natural)和iTreg(induced),分別介導(dǎo)對(duì)自身抗原和外來抗原的耐受[5]。Treg通過分泌抑制性細(xì)胞因子IL-10、IL-35和TGF-β或通過CTLA4以細(xì)胞間直接接觸來發(fā)揮抑制作用,其他抑制作用機(jī)制還包括IL-2耗竭,及分泌穿孔素、顆粒酶直接作用于目的細(xì)胞[6-9]。在多種腫瘤(如卵巢癌、乳腺癌、胰腺癌、頭頸癌)的微環(huán)境和外周血中Treg比例增高,且多數(shù)情況下Treg的浸潤(rùn)與腫瘤病人的預(yù)后成反比[10]。但結(jié)直腸癌中,Treg的浸潤(rùn)與預(yù)后成正比,可能因?yàn)槠渚植刻厥獾穆匝装Y環(huán)境使其局部存在兩種Treg亞型[11,12]。腫瘤中的Treg可能由被趨化的外周Treg在微環(huán)境中擴(kuò)增而來,或由局部CD25-的淋巴細(xì)胞轉(zhuǎn)化而來[13]。目前消除腫瘤中Treg主要通過應(yīng)用CD25抗體、CTLA4抗體、IL-2免疫毒素和OX40配體等,從不同方面阻斷Treg對(duì)抗腫瘤免疫的抑制作用[14]。
1.2pDCs與免疫耐受 1958年被發(fā)現(xiàn)的pDCs具有漿細(xì)胞的性質(zhì),但無漿細(xì)胞和B淋巴細(xì)胞的表面標(biāo)志,位于淋巴組織的T細(xì)胞區(qū)域,與骨髓單核細(xì)胞有一些共同標(biāo)志。1994年由外周血分離出來的CD11c-未成熟DC細(xì)胞,低表達(dá)MHC2和低T細(xì)胞刺激性,可分化為成熟DC。 pDCs是天然IFN-1的產(chǎn)生細(xì)胞,主要受體為TLR4、TLR7、TLR9、RAGE等,當(dāng)與同種異體CD8+T細(xì)胞共培養(yǎng)時(shí),T細(xì)胞表現(xiàn)低活化狀態(tài),并產(chǎn)生大量的IL-10,且pDCs 可以誘導(dǎo)CD4+T細(xì)胞無能,誘導(dǎo)Treg的產(chǎn)生[15,16]。pDCs表達(dá)CCR9,可將皮下注射的抗原提呈到胸腺,進(jìn)而引導(dǎo)對(duì)這種抗原的免疫耐受,這種免疫耐受機(jī)制多見于機(jī)體自身各個(gè)組織的免疫耐受;另外,TLR 受體抑制pDCs歸巢,表明pDCs與免疫耐受的誘導(dǎo)有關(guān)[17]。pDCs大量存在于卵巢癌病人腹水中,可不依賴于CD4+CD25+T細(xì)胞誘導(dǎo)免疫抑制細(xì)胞Treg的產(chǎn)生。Treg 可以通過IL-10明顯抑制腫瘤相關(guān)抗原TAA的特異性T細(xì)胞效應(yīng),進(jìn)而抑制卵巢癌細(xì)胞的抗腫瘤免疫[18]。pDCs缺陷的小鼠中Treg的產(chǎn)生大大降低,說明pDCs對(duì)于免疫抑制效應(yīng)的必要性[19]。
pDCs在多種病理生理過程中誘導(dǎo)免疫耐受,如心臟移植耐受和FoxP3+調(diào)節(jié)T細(xì)胞的誘導(dǎo)[20]。在口服耐受中,pDCs通過T細(xì)胞非依賴的途徑抑制CD4+和CD8+T細(xì)胞的激活[21]。消除pDCs會(huì)在多種疾病中干擾免疫耐受,例如造血干細(xì)胞骨髓移植中消除pDCs會(huì)加劇移植物抗宿主免疫排斥[22];pDCs的消除會(huì)誘發(fā)哮喘的發(fā)生。
1.3MDSCs與免疫抑制 MDSCs存在于腫瘤微環(huán)境中,具有免疫抑制效應(yīng),其還分布于血液、淋巴結(jié)以及一些其他腫瘤位點(diǎn),被腫瘤和宿主分泌因子誘導(dǎo),誘導(dǎo)因子多為促炎因子,即炎癥促進(jìn)MDSCs的聚集,進(jìn)而下調(diào)免疫監(jiān)視和抗腫瘤免疫,促進(jìn)腫瘤生長(zhǎng)[23]。MDSCs可以抑制CD8+T細(xì)胞的作用,應(yīng)用舒尼替尼刪除腫瘤局部、肝臟和循環(huán)中的MDSCs后,CD8+T細(xì)胞上升約2倍,該作用與Treg的下調(diào)有關(guān)。舒尼替尼與腫瘤疫苗合用可使CTL升高1.5~3倍,增強(qiáng)腫瘤疫苗的抗腫瘤效果[24,25]。動(dòng)物腫瘤實(shí)驗(yàn)中發(fā)現(xiàn)MDSCs通過TGF-β1誘導(dǎo)NK細(xì)胞的無能[26]。MDSCs對(duì)免疫細(xì)胞的抑制可能還與精氨酸酶1(Arginase1)和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)作用有關(guān),在結(jié)直腸癌中,阻斷這兩種酶可以逆轉(zhuǎn)其對(duì)細(xì)胞毒性T細(xì)胞的抑制[27]。靶向MDSCs已經(jīng)比較成熟的用于抗腫瘤免疫藥物的研究,一種新型治療肽鏈可以清除荷瘤小鼠的MDSCs,發(fā)揮抑制免疫抑制細(xì)胞的作用[28]。
1.4其他免疫抑制細(xì)胞與免疫耐受 Breg是B淋巴細(xì)胞中有抑制功能的細(xì)胞亞群,目前無統(tǒng)一的表面標(biāo)志,主要通過功能定義。在自身免疫疾病,如關(guān)節(jié)炎和鼠的腦脊髓炎模型中,Breg主要通過分泌IL-10發(fā)揮免疫抑制作用[29,30];而腫瘤中,Breg主要通過轉(zhuǎn)化或者擴(kuò)增Treg來實(shí)現(xiàn)抗腫瘤免疫[31,32]。又如實(shí)體瘤中中性粒細(xì)胞的比例明顯增高,且其與總生存率呈反比,故此類中性粒細(xì)胞被稱為TAN。TAN可通過多種機(jī)制促進(jìn)腫瘤進(jìn)展,如通過分泌活性氧活性氮促進(jìn)上皮細(xì)胞向腫瘤的轉(zhuǎn)化;通過IL-1受體類似物促進(jìn)衰老的腫瘤細(xì)胞增殖;通過轉(zhuǎn)運(yùn)中性粒細(xì)胞彈性蛋白酶刺激腫瘤細(xì)胞增殖;通過分泌TGF-β抑制抗腫瘤免疫;通過BV8和MMP9促進(jìn)腫瘤血管形成等[33,34]。另外,TAM占腫瘤微環(huán)境中浸潤(rùn)白細(xì)胞的大多數(shù),在實(shí)體瘤中TAM的密度與腫瘤的臨床分期呈正比;而在胃癌、乳腺癌、膀胱癌、卵巢癌等中TAM與總生存率呈反比[35]。在腫瘤中,TAM主要通過分泌基質(zhì)金屬蛋白酶,促血管形成細(xì)胞因子,免疫抑制性細(xì)胞因子(IL-10、TGF-β),免疫抑制細(xì)胞趨化因子,活性氧等促進(jìn)腫瘤的免疫逃逸和進(jìn)展[36,37]。
HMGB1作為一種重要損傷相關(guān)分子,既可以激發(fā)固有免疫,誘導(dǎo)無菌性炎癥,又可以促進(jìn)腫瘤的增殖、侵襲和轉(zhuǎn)移。細(xì)胞壞死時(shí)HMGB1分泌到胞外,而凋亡時(shí)會(huì)留在核上,HMGB1釋放到胞外分為三個(gè)步驟,從核內(nèi)到胞漿,從胞漿到細(xì)胞器,從細(xì)胞器到胞外,在固有免疫相關(guān)炎癥誘導(dǎo)中有重要作用[38-40]。 HMGB1可在腫瘤中引起廣泛性炎癥反應(yīng),上皮性卵巢癌的炎性微環(huán)境中富含HMGB1及其受體TLR4和MyD88[41]。
HMGB1存在于多種惡性腫瘤中,加速惡性腫瘤的進(jìn)展。非小細(xì)胞肺癌中的癌組織和患者血清中的HMGB1明顯高于正常對(duì)照,且在Ⅲ~Ⅳ期腫瘤中表達(dá)高于Ⅰ~Ⅱ期[42]。免疫組化檢測(cè)發(fā)現(xiàn),與正常間質(zhì)細(xì)胞(HM)中的HMGB1位于核中不同,癌細(xì)胞(MM)胞漿中存在HMGB1,而一旦分泌到胞外即可促進(jìn)癌細(xì)胞增殖、遷移、侵襲、和新生血管的形成[43]。單克隆抗體阻斷HMGB1或其受體可以減少間質(zhì)細(xì)胞瘤(MM)種植鼠腫瘤的增殖,提高宿主的存活率。在卵巢癌中采用多種方法靶向抑制HMGB1可以逆轉(zhuǎn)或者改善凋亡誘導(dǎo)的免疫耐受,降低腫瘤的生長(zhǎng)和侵襲能力,因此HMGB1成為卵巢癌無菌性炎癥的治療靶點(diǎn)之一[44,45]。而宮頸癌和結(jié)直腸癌中miR-34a通過下調(diào)HMGB1可以抑制腫瘤的增殖侵襲和轉(zhuǎn)移[46]。
HMGB1可通過促進(jìn)Treg的誘導(dǎo)來抑制抗腫瘤免疫。小鼠實(shí)驗(yàn)中,敲除腫瘤細(xì)胞的HMGB1基因能明顯抑制腫瘤對(duì)Treg的誘導(dǎo)[47]。體外研究發(fā)現(xiàn),用體外重組的HMGB1或反復(fù)融凍壞死腫瘤細(xì)胞的上清處理Treg,發(fā)現(xiàn)其對(duì)Tcon增殖的抑制作用增強(qiáng)[48,49]。另外,HMGB1對(duì)Treg有趨化作用,且能促進(jìn)趨化到腫瘤局部的Treg的抗凋亡作用,同時(shí)HMGB1也可以促進(jìn)Treg分泌IL-10,這種作用可以被HMGB1的受體TLR4和RAGE的抗體阻斷劑抑制[48]。頭頸癌患者腫瘤組織和血漿中高表達(dá)HMGB1,而且其Treg表面高表達(dá)HMGB1的受體TLR4和RAGE[49],小鼠實(shí)驗(yàn)中發(fā)現(xiàn)HMGB1對(duì)Treg 細(xì)胞的免疫抑制活性可通過TLR4介導(dǎo)[50,51]。
HMGB1可通過RAGE受體增強(qiáng)pDCs的免疫抑制作用,其抑制作用促進(jìn)腫瘤的免疫逃逸。宮頸癌中pDCs可以誘導(dǎo)免疫耐受的獲得,pDCs與腫瘤角質(zhì)細(xì)胞共培養(yǎng)可以誘導(dǎo)原始的T細(xì)胞分化為Treg,且pDCs的成熟標(biāo)志及IFN-1的表達(dá)均下降;另外,在低級(jí)上皮內(nèi)瘤變、高級(jí)上皮內(nèi)瘤變、鱗狀上皮癌中,隨著腫瘤惡性程度的增高Treg、pDCs的濃度依次上升,且均高于正常組織[52]。腫瘤細(xì)胞產(chǎn)生的HMGB1抑制pDCs的成熟,降低IFN-1的分泌,使細(xì)胞耐受。相反,HMGB1的抑制劑可以恢復(fù)pDCs的表型,降低pDCs誘導(dǎo)的免疫耐受活性,減少誘導(dǎo)的Treg。
HMGB1促進(jìn)髓源性免疫抑制細(xì)胞MDSCs的分化以及抑制抗原對(duì)CD4+T細(xì)胞和CD8+T細(xì)胞的激活。檢測(cè)發(fā)現(xiàn)HMGB1在腫瘤中廣泛分布,而且MDSCs可以連續(xù)分泌HMGB1,HMGB1的抑制劑可以明顯抑制MDSCs的產(chǎn)生,而這種作用是通過抑制祖細(xì)胞分化而不是促進(jìn)MDSCs的凋亡來實(shí)現(xiàn)的。HMGB1抑制劑丙酮酸乙酯(Ethyl pyruvate) 和甘草素(Glycyrrhizin)明顯抑制MDSCs IL-10的分泌,促進(jìn)MDSCs和巨噬細(xì)胞的交叉作用,使MDSCs下調(diào)T細(xì)胞歸巢受體L選擇素,且中和HMGB1可以抑制腫瘤的生長(zhǎng)[53]。近來有研究發(fā)現(xiàn),HMGB1促進(jìn)腫瘤微環(huán)境中MDSCs的耐受性,與其自吞噬增多凋亡減少有關(guān),且這種作用可以被HMGB1的抑制劑阻斷[54]。
HMGB1也可作用于其他免疫細(xì)胞。腫瘤自噬體上的膜連HMGB1通過活化B細(xì)胞內(nèi)的TLR2-MyD88-NF-κB信號(hào)途徑促使B細(xì)胞分化為表型為CD1d+CD5+的分泌IL-10的Breg細(xì)胞[55]。經(jīng)反復(fù)紫外照射后的表皮角質(zhì)細(xì)胞釋放HMGB1,進(jìn)而活化固有免疫系統(tǒng),招募和活化中性粒細(xì)胞,引發(fā)中性粒細(xì)胞炎癥反應(yīng),刺激血管形成,并促進(jìn)黑色素瘤向內(nèi)皮轉(zhuǎn)移[56]。再如血小板釋放的HMGB1通過RAGE受體趨化單核細(xì)胞,并通過Toll樣受體(Toll-like receptor 4,TLR4)依賴途徑激活MAPK/ERK (Extracellular signal-regulated kinase)信號(hào)通路,抑制單核細(xì)胞的凋亡[57]。
其他損傷相關(guān)分子如熱休克蛋白和S100A等,與免疫抑制細(xì)胞的誘導(dǎo)和免疫抑制作用的發(fā)揮有關(guān)。組蛋白是細(xì)胞核內(nèi)的DAMP分子,其乙?;蓽p少M(fèi)DSCs的擴(kuò)增[58];S100A9在腫瘤中可以抑制DC細(xì)胞的分化以及促進(jìn)MDSCs的募集,缺乏S100A9有抗腫瘤效應(yīng)[59];而HSP72在人和鼠中可以通過STAT3介導(dǎo)免疫抑制細(xì)胞MDSCs的免疫抑制作用[60]。
隨著腫瘤免疫治療研究的深入,腫瘤微環(huán)境中的免疫抑制細(xì)胞的作用越來越被重視。目前針對(duì)免疫抑制細(xì)胞的抗體發(fā)揮了一定抗腫瘤作用,但是因?yàn)槟[瘤微環(huán)境中存在誘導(dǎo)抑制細(xì)胞的機(jī)制,并不能完全消除免疫抑制細(xì)胞作用,所以探索免疫抑制細(xì)胞的誘導(dǎo)機(jī)制有重要意義。體外和體內(nèi)實(shí)驗(yàn)均發(fā)現(xiàn)HMGB1可以趨化Treg并促進(jìn)其分泌抑制性細(xì)胞因子;宮頸癌中HMGB1可以通過抑制pDCs的成熟來促進(jìn)pDCs誘導(dǎo)的免疫耐受;且小鼠實(shí)驗(yàn)中HMGB1可以促進(jìn)MDSCs從祖細(xì)胞的分化,促進(jìn)MDSCs免疫抑制活性的獲得,以及IL-10的分泌。說明HMGB1在腫瘤免疫微環(huán)境中對(duì)免疫抑制細(xì)胞有重要作用。HMGB1是腫瘤固有免疫識(shí)別的主要分子,且包括HMGB1在內(nèi)的多種DAMP分子均可誘導(dǎo)腫瘤相關(guān)微環(huán)境中的免疫抑制細(xì)胞。而這種誘導(dǎo)作用是否與損傷相關(guān)分子DAMP引發(fā)的固有免疫有關(guān),及其誘導(dǎo)機(jī)制,仍需要更多探索。
[1] Qi Y,Li RM,Kong FM,etal.How do tumor stem cells actively escape from host immunosurveillance?[J].Biochem Biophys Res Commun,2012,420(4):699-703.
[2] Poggi A,Musso A,Dapino I,etal.Mechanisms of tumor escape from immune system:role of mesenchymal stromal cells[J].Immunol Lett,2014,159(1-2):55-72.
[3] Matzinger P.The danger model:a renewed sense of self[J].Science,2002,296(5566):301-305.
[4] Josefowicz SZ,Lu LF,Rudensky AY.Regulatory T cells:mechanisms of differentiation and function[J].Annu Rev Immunol,2012,30:531-564.
[5] Bilate AM,Lafaille JJ.Induced CD4+Foxp3+regulatory T cells in immune tolerance[J].Annu Rev Immunol,2012,30:733-758.
[6] Shevach EM.Mechanisms of Foxp3+T regulatory cell-mediated suppression[J].Immunity,2009,30(5):636-645.
[7] von Boehmer H.Mechanisms of suppression by suppressor T cells[J].Nat Immunol,2005,6(4):338-344.
[8] Turnis ME,Sawant DV,Szymczak-Workman AL,etal.Interleukin-35 limits anti-tumor immunity[J].Immunity,2016,44(2):316-329.
[9] Cao X,Cai SF,Fehniger TA,etal.Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J].Immunity,2007,27(4):635-646.
[10] Shang B,Liu Y,Jiang SJ,etal.Prognostic value of tumor-infiltrating FoxP3+regulatory T cells in cancers:a systematic review and meta-analysis[J].Sci Rep,2015,5:15179.
[11] Ladoire S,Martin F,Ghiringhelli F.Prognostic role of FOXP3+regulatory T cells infiltrating human carcinomas:the paradox of colorectal cancer[J].Cancer Immunol Immunother,2011,60(7):909-918.
[12] Saito T,Nishikawa H,Wada H,etal.Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers[J].Nat Med,2016,22(6):679-684.
[13] Zou W.Regulatory T cells,tumour immunity and immunotherapy[J].Nat Rev Immunol,2006,6(4):295-307.
[14] Liu C,Workman CJ,Vignali DA.Targeting regulatory T cells in tumors[J].FEBS J,2016,283(14):2731-2748.
[15] Mckenna K,Beignon AS,Bhardwaj N.Plasmacytoid dendritic cells:linking innate and adaptive immunity[J].J Virol,2005,79(1):17-27.
[16] Colonna M,Trinchieri G,Liu Y.Plasmacytoid dendritic cells in immunity[J].Nat Immunol,2004,5(12):1219-1226.
[17] Hadeiba H,Lahl K,Edalati A,etal.Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance[J].Immunity,2012,36(3):438-450.
[18] Wei S,Kryczek I,Zou L,etal.Plasmacytoid dendritic cells induce CD8+regulatory T cells in human ovarian carcinoma[J].Cancer Res,2005,65(12):5020-5026.
[19] Takagi H,Fukaya T,Eizumi K,etal.Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo[J].Immunity,2011,35(6):958-971.
[20] Ochando JC,Homma C,Yang Y,etal.Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts[J].Nat Immunol,2006,7(6):652-662.
[21] Goubier A,Dubois B,Gheit H,etal.Plasmacytoid dendritic cells mediate oral tolerance[J].Immunity,2008,29(3):464-475.
[22] Banovic T,Markey KA,Kuns RD,etal.Graft-versus-host disease prevents the maturation of plasmacytoid dendritic cells[J].J Immunol,2009,182(2):912-920.
[23] Ostrand-Rosenberg S,Sinha P.Myeloid-derived suppressor cells:linking inflammation and cancer[J].J Immunol,2009,182(8):4499-4506.
[24] Draghiciu O,Nijman HW,Hoogeboom BN,etal.Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication[J].Onco Immunol,2015,4(3):e989764.
[25] Chen HM,Ma G,Gildener-Leapman N,etal.Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy[J].Clin Cancer Res,2015,21(18):4073-4085.
[26] Li H,Han Y,Guo Q,etal.Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J].J Immunol,2009,182(1):240-249.
[27] Dufait I,Schwarze JK,Liechtenstein T,etal.Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer[J].Oncotarget,2015,6(14):12369-12382.
[28] Qin H,Lerman B,Sakamaki I,etal.Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice[J].Nat Med,2014,20(6):676-681.
[29] Mauri C,Gray D,Mushtaq N,etal.Prevention of arthritis by interleukin 10-producing B cells[J].J Exp Med,2003,197(4):489-501.
[30] Fillatreau S,Sweenie CH,Mcgeachy MJ,etal.B cells regulate autoimmunity by provision of IL-10.[J].Nat Immunol,2002,3(10):944-950.
[31] Olkhanud PB,Damdinsuren B,Bodogai M,etal.Tumor-evoked regulatory b cells promote breast cancer metastasis by converting resting CD4+T cells to T-regulatory cells[J].Cancer Res,2011,71(10):3505-3515.
[32] Zhang Y,Eliav Y,Shin S,etal.B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion[J].Cancer Immunol Immunotherapy,2013,62(1):87-99.
[33] Templeton AJ,Mcnamara MG,Seruga B,etal.Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors:a systematic review and meta-analysis[J].J Nat Cancer Inst,2014,106(6):u124.
[34] Coffelt SB,Wellenstein MD,de Visser KE.Neutrophils in cancer:neutral no more[J].Nat Rev Cancer,2016,16(7):431-446.
[35] Zhang QW,Liu L,Gong CY,etal.Prognostic significance of tumor-associated macrophages in solid tumor:a meta-analysis of the literature[J].PLoS One,2012,7(12):e50946.
[36] Bingle L,Brown NJ,Lewis CE.The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies[J].J Pathol,2002,196(3):254-265.
[37] Williams CB,Yeh ES,Soloff AC.Tumor-associated macrophages:unwitting accomplices in breast cancer malignancy[J].NPJ Breast Cancer,2016,2:15025.
[38] Bianchi ME.DAMPs,PAMPs and alarmins:all we need to know about danger[J].J Leukoc Biol,2007,81(1):1-5.
[39] Pouwels SD,Nawijn MC,Bathoorn E,etal.Increased serum levels of LL37,HMGB1 and S100A9 during exacerbation in COPD patients[J].Eur Respir J,2015,45(5):1482-1485.
[40] 張國(guó)俊.HMGB1與脂肪組織炎癥[J].中國(guó)免疫學(xué)雜志,2016,32(8):1233-1236.
[41] Li Z,Block MS,Vierkant RA,etal.The inflammatory microenvironment in epithelial ovarian cancer:a role for TLR4 and MyD88 and related proteins[J].Tumour Biol,2016,37(10):13279-13286.
[42] Xia Q,Xu J,Chen H,etal.Association between an elevated level of HMGB1 and non-small-cell lung cancer:a meta-analysis and literature review[J].Onco Targets Ther,2016,9:3917-3923.
[43] Jube S,Rivera ZS,Bianchi ME,etal.Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma[J].Cancer Res,2012,72(13):3290-3301.
[44] Chen J,Xi B,Zhao Y,etal.High-mobility group protein B1 (HMGB1) is a novel biomarker for human ovarian cancer[J].Gynecol Oncol,2012,126(1):109-117.
[45] Chen J,Liu X,Zhang J,etal.Targeting HMGB1 inhibits ovarian cancer growth and metastasis by lentivirus-mediated RNA interference[J].J Cell Physiol,2012,227(11):3629-3638.
[46] Chandrasekaran KS,Sathyanarayanan A,Karunagaran D.Downr-egulation of HMGB1 by miR-34a is sufficient to suppress proliferation,migration and invasion of human cervical and colorectal cancer cells[J].Tumour Biol,2016,37(10):13155-13166.
[47] Liu Z,Falo LJ,You Z.Knockdown of HMGB1 in tumor cells attenuates their ability to induce regulatory T cells and uncovers naturally acquired CD8 T cell-dependent antitumor immunity[J].J Immunol,2011,187(1):118-125.
[48] Wild CA,Bergmann C,Fritz G,etal.HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells[J].Int Immunol,2012,24(8):485-494.
[49] Wild CA,Brandau S,Lotfi R,etal.HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer[J].Oral Oncol,2012,48(5):409-416.
[50] Zhang Y,Yao YM,Huang LF,etal.The potential effect and mechanism of high-mobility group box 1 protein on regulatory T cell-mediated immunosuppression[J].J Interferon Cytokine Res,2011,31(2):249-257.
[51] Zhu XM,Yao YM,Liang HP,etal.High mobility group box-1 protein regulate immunosuppression of regulatory T cells through toll-like receptor 4[J].Cytokine,2011,54(3):296-304.
[52] Demoulin S,Herfs M,Somja J,etal.HMGB1 secretion during cervical carcinogenesis promotes the acquisition of a tolerogenic functionality by plasmacytoid dendritic cells[J].Int J Cancer,2015,137(2):345-358.
[53] Parker KH,Sinha P,Horn LA,etal.HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells[J].Cancer Res,2014,74(20):5723-5733.
[54] Parker KH,Horn LA,Ostrand-Rosenberg S.High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy[J].J Leukoc Biol,2016,100(3):463-470.
[55] Zhou M,Wen Z,Cheng F,etal.Tumor-released autophagosomes induce IL-10-producing B cells with suppressive activity on T lymphocytes via TLR2-MyD88-NF-kappaB signal pathway[J].Oncoimmunology,2016,5(7):e1180485.
[56] Bald T,Quast T,Landsberg J,etal.Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma[J].Nature,2014,507(7490):109-113.
[57] Vogel S,Rath D,Borst O,etal.Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes[J].Biochem Biophys Res Commun,2016,478(1):143-148.
[58] Rosborough BR,Castellaneta A,Natarajan S,etal.Histone deacetylase inhibition facilitates GM-CSF-mediated expansion of myeloid-derived suppressor cells in vitro and in vivo[J].J Leukoc Biol,2012,91(5):701-709.
[59] Cheng P,Corzo CA,Luetteke N,etal.Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein[J].J Exp Med,2008,205(10):2235-2249.
[60] Chalmin F,Ladoire S,Mignot G,etal.Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells[J].J Clin Invest,2010,120(2):457-471.
[收稿2016-09-22 修回2016-10-25]
(編輯 許四平)
10.3969/j.issn.1000-484X.2017.06.028
①本文受國(guó)家自然科學(xué)基金(31371452)資助。
尤亞男(1989年-),女,在讀碩士,主要從事腫瘤免疫學(xué)研究,E-mail:14211250011@fudan.edu.cn。
及指導(dǎo)教師:姜 樺(1970年-),男,博士,主任醫(yī)師,博士生導(dǎo)師,主要從事婦科腫瘤研究,E-mail:jianghua@fudan.edu.cn。
R392
A
1000-484X(2017)06-0939-05