張 蕾,宋婷婷
(1.浙江科技學(xué)院,浙江 杭州 310023; 2.浙江省農(nóng)業(yè)科學(xué)院,浙江 杭州 310021)
昆蟲病原真菌遺傳改良研究進(jìn)展
張 蕾1,宋婷婷2
(1.浙江科技學(xué)院,浙江 杭州 310023; 2.浙江省農(nóng)業(yè)科學(xué)院,浙江 杭州 310021)
隨著現(xiàn)代遺傳學(xué)和分子生物學(xué)的快速進(jìn)步,現(xiàn)代基因工程技術(shù)已發(fā)展成為改良菌株最常用且最有效的途徑,為昆蟲病原真菌的遺傳改良和選育高毒力殺蟲菌株開辟了新途徑。通過對(duì)昆蟲病原真菌的遺傳改良的研究進(jìn)展的綜述,重點(diǎn)介紹了昆蟲病原真菌的篩選標(biāo)記和以根癌農(nóng)桿菌介導(dǎo)為代表的遺傳轉(zhuǎn)化體系,以及內(nèi)源、外源基因的改造工程等的國(guó)內(nèi)外研究現(xiàn)狀,進(jìn)一步分析昆蟲病原真菌遺傳改良目前存在的問題及應(yīng)用前景。
昆蟲病原真菌;遺傳轉(zhuǎn)化;基因改造工程;根癌農(nóng)桿菌
作為控制自然界昆蟲種群數(shù)量的主要天然手段之一的昆蟲病原真菌,以之為主要成分制造的微生物殺蟲劑已被廣泛使用;但其在侵染寄主昆蟲過程中仍然受到高溫、紫外等環(huán)境因素的影響,同時(shí)還需克服寄主昆蟲體壁及免疫反應(yīng)等一系列障礙,因此,昆蟲病原真菌傳統(tǒng)侵染時(shí)間較長(zhǎng)。為提高其侵染效率,并加快其侵染速度,對(duì)其進(jìn)行遺傳改良是現(xiàn)在國(guó)內(nèi)外對(duì)昆蟲病原真菌基礎(chǔ)研究的主要領(lǐng)域。目前,常用的手段主要集中在通過誘變、細(xì)胞工程或基因工程3種技術(shù)方面的遺傳改良,但國(guó)內(nèi)外大量研究證明,前兩種技術(shù)雖能達(dá)到遺傳改良的目的,但仍存在轉(zhuǎn)化效率低、目標(biāo)性狀難把握等問題。隨著分子遺傳學(xué)的不斷發(fā)展,采用基因工程技術(shù)為菌株定向改良提供了最有效的途徑。
昆蟲病原真菌常以大腸桿菌等細(xì)菌的質(zhì)粒為基礎(chǔ)構(gòu)建轉(zhuǎn)化載體。為檢測(cè)轉(zhuǎn)化后的表達(dá)情況,通常需要加入選擇性標(biāo)記到載體上,而這個(gè)選擇性標(biāo)記同時(shí)還具有確定轉(zhuǎn)化子及其遺傳特性的功能。通常在昆蟲病原真菌上使用的有兩類。一類是營(yíng)養(yǎng)缺陷型互補(bǔ)基因,是通過轉(zhuǎn)入的標(biāo)記基因與受體細(xì)胞缺陷基因互補(bǔ),使受體細(xì)胞表現(xiàn)野生型生長(zhǎng)而作為選擇標(biāo)記的。目前,編碼色氨酸生物合成酶trp-1基因、粗糙脈孢菌trp-1基因的trp-C基因等都常被用作絲狀真菌的選擇性標(biāo)記基因。另一類是抗性基因,將其轉(zhuǎn)入可以使受體細(xì)胞在一定的藥物濃度下生長(zhǎng),表現(xiàn)出藥物抗性[1-4],包括苯菌靈(Benomyl)、博來霉素(Bleomycin)、寡霉素(Oligomycine)和潮霉素(Hygromycin)等,這其中抗性基因hph的相關(guān)報(bào)道最多[5-6]??剐曰蚴秋@性選擇標(biāo)記,使用十分方便,但這類抗生素卻對(duì)昆蟲病原真菌大多不敏感,無法用于其遺傳轉(zhuǎn)化。取而代之,粗糙脈孢霉(Neurosporacrassa)中抗苯菌靈的抗性基因即β-tubulin基因可用于金龜子綠僵菌(Metarhiziumanisopliae)的遺傳轉(zhuǎn)化[7-8],卻難用于球孢白僵菌(Beauveriabassiana)。而大量的研究證實(shí),草丁膦抗性基因bar已成功應(yīng)用于金龜子綠僵菌[9]、球孢白僵菌[10-11]和玫煙色擬青霉(Paecilomycesfumosoroseu)[12]。2010年,Zhang等[13]找到了一種新的昆蟲病原真菌分子標(biāo)記,成功地將稻瘟病菌(Magnaporthegrisea)中抗磺酰脲類除草劑的基因sur運(yùn)用到白僵菌和綠僵菌的基因操作[14-18]中。
昆蟲病原真菌的遺傳操作取決于高效轉(zhuǎn)化體系的建立。自1973年粗糙脈孢霉的DNA轉(zhuǎn)化方法[19]問世以來,通過生物、物理或化學(xué)等手段導(dǎo)入真菌基因組,以獲得外源基因穩(wěn)定遺傳和表達(dá)的真菌遺傳轉(zhuǎn)化體系研究越來越受到科研工作者重視。在經(jīng)歷了原生質(zhì)體轉(zhuǎn)化法、芽生孢子轉(zhuǎn)化法、限制性內(nèi)切酶介導(dǎo)轉(zhuǎn)化法(REMI)、基因槍法和電擊法等研究之后,通過借鑒植物細(xì)胞轉(zhuǎn)化的農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化法[11,20-22],因其轉(zhuǎn)基因低拷貝、遺傳穩(wěn)定等優(yōu)點(diǎn)受到了人們廣泛關(guān)注。
目前仍被應(yīng)用的經(jīng)典方法是1989年由Fincham[20]提出的基于原生質(zhì)體的遺傳轉(zhuǎn)化,即聚乙二醇(PFG)為高分子多聚物,具有細(xì)胞黏合及擾亂細(xì)胞膜的磷脂雙分子層的作用,使得外源基因沉淀在受體的原生質(zhì)體表面,并通過細(xì)胞內(nèi)壓力推動(dòng)的胞吐囊泡化而將外源基因吸入細(xì)胞體內(nèi)[11,23]??捎删z[24]或芽生孢子制備原生質(zhì)體[25],此法具有易得到純合性轉(zhuǎn)化子等優(yōu)勢(shì),但以原生質(zhì)體為受體的基因轉(zhuǎn)化方法,同時(shí)也存在原生質(zhì)體培養(yǎng)難度大、培養(yǎng)過程繁雜、培養(yǎng)工作量大、培養(yǎng)技術(shù)不易掌握、遺傳穩(wěn)定性差、再生頻率低,且再生周期長(zhǎng)、轉(zhuǎn)化率低、效果不理想等劣勢(shì)。隨著分子生物學(xué)的發(fā)展,陸續(xù)出現(xiàn)如REMI法和電擊法等將外源基因?qū)胝劝l(fā)的分生孢子[26],基因槍轟擊可將外源基因直接轉(zhuǎn)入分生孢子[27]等以分生孢子或菌絲為受體的轉(zhuǎn)化方法。這幾種轉(zhuǎn)化方法因其步驟簡(jiǎn)單,目前已廣泛應(yīng)用到包括昆蟲病原真菌在內(nèi)的完整細(xì)胞和原生質(zhì)體的轉(zhuǎn)化,但仍存在轉(zhuǎn)化效率偏低、轉(zhuǎn)化子遺傳穩(wěn)定性較差[20,28]的問題。2006年醋酸鋰介導(dǎo)的芽生孢子轉(zhuǎn)化法[11,22]成功用于球孢白僵菌外源基因的導(dǎo)入[18,29-30],操作容易且轉(zhuǎn)化效率較高,但僅局限于少數(shù)種類的昆蟲病原真菌。與其他真菌轉(zhuǎn)化體系相比,由根癌農(nóng)桿菌(Agrobacteriumtumefaciens)介導(dǎo)的遺傳轉(zhuǎn)化理論機(jī)制最清楚,技術(shù)方法最成熟,應(yīng)用也最廣泛,具有操作簡(jiǎn)便、轉(zhuǎn)化受體不受限、轉(zhuǎn)化頻率高、能導(dǎo)入大片段的DNA、外源基因多以單拷貝插入且比例高、較少出現(xiàn)基因沉默現(xiàn)象及遺傳穩(wěn)定性好等優(yōu)點(diǎn)[31],是目前用于昆蟲病原真菌基因操作的主要方法。
2.1 根癌農(nóng)桿菌介導(dǎo)真菌的遺傳轉(zhuǎn)化
在真核微生物中,由根癌農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化方法最早于1995年用于酵母[32],而1998年用于絲狀真菌[33],再于1999年移植用于工業(yè)真菌,動(dòng)植物病原真菌的遺傳轉(zhuǎn)化體系構(gòu)建[34-37]。
與農(nóng)桿菌介導(dǎo)植物遺傳轉(zhuǎn)化的機(jī)理相似,根癌農(nóng)桿菌基于help質(zhì)粒上一系列毒性基因(Vir基因)的表達(dá)產(chǎn)物將T-DNA導(dǎo)入昆蟲病原真菌細(xì)胞,但根癌農(nóng)桿菌介導(dǎo)的真菌遺傳轉(zhuǎn)化[32-33]必須在乙酰丁香酮(acetosyingone,AS)等誘導(dǎo)表達(dá)多個(gè)Vir基因,如VirA、VirB、VirC、VirD1/D2、VirE和VirH等中的任何1個(gè)未發(fā)生突變,或完整的T-DNA左右兩側(cè)未發(fā)生缺失,轉(zhuǎn)化才會(huì)發(fā)生。
2.1.1 根癌農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化方式
由根癌農(nóng)桿菌介導(dǎo)的昆蟲病原真菌遺傳轉(zhuǎn)化方式,T-DNA的整合主要有兩種模式。一種是在細(xì)胞核外可自由復(fù)制,并含有起始位點(diǎn)復(fù)制質(zhì)粒(replicate plasmid)的T-DNA,且這類T-DNA一般不整合進(jìn)染色體。與之相反,另一種T-DNA并不含起始位點(diǎn)復(fù)制質(zhì)粒(integrative plasmid),其進(jìn)入宿主細(xì)胞后主要也有2種整合模式:當(dāng)宿主染色體與T-DNA中存在同源序列,就會(huì)通過同源重組(homologous recombination)以單交換或雙交換方式整合進(jìn)入基因組,即可實(shí)現(xiàn)同源重組[34];但當(dāng)宿主基因組與T-DNA中并沒有同源的片段,此時(shí)T-DNA將通過隨機(jī)的方式以非常規(guī)重組(illegitimate recombition)的形式整合進(jìn)入基因組[38]。
2.1.2 影響根癌農(nóng)桿菌介導(dǎo)真菌遺傳轉(zhuǎn)化的因素
影響根癌農(nóng)桿菌介導(dǎo)的遺傳轉(zhuǎn)化效率或者說決定轉(zhuǎn)化成敗因素較多,主要有以下3個(gè)方面。
根癌農(nóng)桿菌介導(dǎo)真菌轉(zhuǎn)化的關(guān)鍵是AS。研究證實(shí)[39-42],在與受體細(xì)胞進(jìn)行共培養(yǎng)時(shí),若未用AS誘導(dǎo),就無法獲得轉(zhuǎn)化子;且Tsuji等[43-44]研究表明,隨著AS濃度的增加,轉(zhuǎn)化效率也相應(yīng)提高。也有研究認(rèn)為,AS濃度增加到一定程度反而會(huì)降低轉(zhuǎn)化效率。對(duì)于根癌農(nóng)桿菌在預(yù)培養(yǎng)時(shí),是否需要AS的誘導(dǎo)作用仍存在爭(zhēng)議。Combier等[39]認(rèn)為,預(yù)培養(yǎng)時(shí)AS的加入,在單拷貝插入的機(jī)率增加的同時(shí)反而降低了轉(zhuǎn)化頻率。但Leclerque等[44]則意見相左。
共培養(yǎng)的時(shí)間和溫度也是影響其轉(zhuǎn)化效率的關(guān)鍵因素之一。隨著共培養(yǎng)時(shí)間的延長(zhǎng),抗性轉(zhuǎn)化子也會(huì)產(chǎn)生越多。Combier等[39]在對(duì)粘花菇(Hebelomacylindrosporum)進(jìn)行根癌農(nóng)桿菌介導(dǎo)的真菌遺傳轉(zhuǎn)化時(shí),共培養(yǎng)48 h獲得18個(gè)轉(zhuǎn)化子,當(dāng)時(shí)間延長(zhǎng)至96 h,其轉(zhuǎn)化子增至80個(gè)左右。球孢白僵菌進(jìn)行根癌農(nóng)桿菌介導(dǎo)的真菌遺傳轉(zhuǎn)化時(shí),當(dāng)共培養(yǎng)時(shí)間為3 h,其轉(zhuǎn)化效率是121個(gè)轉(zhuǎn)化子/106CFU;而當(dāng)時(shí)間延長(zhǎng)到4 h,其轉(zhuǎn)化效率提高至163個(gè)轉(zhuǎn)化子/106CFU[44]。Meyer等[41]研究表明,少于24 h或大于72 h的共培養(yǎng)時(shí)間都無法得到轉(zhuǎn)化子。Takahara等[42]則證實(shí)共培養(yǎng)時(shí)間過久反而會(huì)導(dǎo)致假陽(yáng)性克隆的產(chǎn)生。同時(shí),當(dāng)共培養(yǎng)的溫度與受體最適宜的生長(zhǎng)溫度一致時(shí)其轉(zhuǎn)化效率最高,降低或升高都降低了轉(zhuǎn)化子的數(shù)目[45]。
昆蟲病原真菌遺傳轉(zhuǎn)化的成敗和效率也會(huì)受到抗性標(biāo)記、農(nóng)桿菌、雙元載體及啟動(dòng)子的選擇等影響。Hanif等[40]研究發(fā)現(xiàn),在對(duì)乳牛肝菌(Suillusbovines)進(jìn)行農(nóng)桿菌轉(zhuǎn)化時(shí),用腐草霉素抗性基因標(biāo)記,轉(zhuǎn)化子中只有73%呈PCR陽(yáng)性,而用潮霉素磷酸轉(zhuǎn)移酶(hygromycin B phosphotransferase)基因作為選擇標(biāo)記,全部抗性轉(zhuǎn)化子均呈PCR陽(yáng)性。在紅曲霉(Monascuspurpureus)的農(nóng)桿菌轉(zhuǎn)化試驗(yàn)中發(fā)現(xiàn),利用雙元載體pUR5750比用pBGgHg的效率高出2倍,但當(dāng)雙元載體換成pBG7-1時(shí)并未獲得轉(zhuǎn)化子[45]。在進(jìn)行根癌農(nóng)桿菌LBA4404轉(zhuǎn)化黑曲霉試驗(yàn)中,當(dāng)以雙元表達(dá)載體pBI121為骨架,并未得到轉(zhuǎn)化子[46];但把根癌農(nóng)桿菌菌株換成LBA1126,并以pbin19為基本骨架時(shí)轉(zhuǎn)化獲得成功[33]。另外Godio[47]研究證實(shí),結(jié)構(gòu)完全相同、2個(gè)啟動(dòng)子部分不同的質(zhì)粒會(huì)導(dǎo)致轉(zhuǎn)化時(shí)T-DNA單鏈結(jié)構(gòu)的穩(wěn)定性不同而影響轉(zhuǎn)化結(jié)果。
2.2 昆蟲病原真菌的基因改造工程
為提高昆蟲病原真菌的毒力或抗逆等性狀,可高表達(dá)某些基因或抑制某些基因的表達(dá),或者還可導(dǎo)入某些有用的外源基因,主要有以下兩個(gè)方面。
2.2.1 超表達(dá)或改造并超表達(dá)內(nèi)源基因
昆蟲病原真菌一般由昆蟲體壁侵入其體內(nèi)。研究證實(shí),加快穿透昆蟲體壁的速度可提高真菌的毒力,而真菌在穿透昆蟲體壁時(shí)所分泌的降解酶,為基因工程改造真菌提供了目標(biāo)基因來源,高表達(dá)這些基因就可提高體壁穿透速度。Leger等[48]通過高表達(dá)金龜子綠僵菌中Pr1類蛋白酶基因Prla來增強(qiáng)其毒力,使煙草天蛾(Manducasexta)的死亡時(shí)間縮短20%。組成性表達(dá)Prla基因不僅加快金龜子綠僵菌穿透寄主體壁的速度,且在血腔中表達(dá)的Pr1蛋白酶也會(huì)攻破寄主免疫防御系統(tǒng),如酚氧化酶的過量表達(dá)就會(huì)加速寄主死亡等。方衛(wèi)國(guó)等[49]超表達(dá)幾丁質(zhì)酶Bbchit1基因在球孢白僵菌內(nèi),對(duì)蚜蟲的致死濃度和致死時(shí)間都降低50%。同時(shí),有些抗逆相關(guān)酶系也被證明與毒力密切關(guān)聯(lián)。超表達(dá)細(xì)胞質(zhì)中的錳芯超氧化物歧化酶基因BbSod2,不僅可大幅提高球孢白僵菌的抗氧化和耐紫外的能力,同時(shí)也提高了對(duì)斜紋夜蛾(Spodopteralitura)二齡幼蟲的毒力[50]。目前,很多已知與毒力、抗逆相關(guān)的基因都有可能成為構(gòu)建工程菌株的候選基因,如與胞內(nèi)甘露醇調(diào)控相關(guān)的酶系[17,51]、抗氧化酶系[16,18]、調(diào)控抗逆性狀的若干信號(hào)傳導(dǎo)因子[14,16,52-53]以及甲酸可提取、被看成是孢壁結(jié)構(gòu)成份的一些蛋白[30]。隨著金龜子綠僵菌、球孢白僵菌等重要昆蟲病原真菌全基因組測(cè)序的完成[54-55],越來越多用于遺傳改良和工程菌株構(gòu)建的基因資源正在被發(fā)掘。
研究證實(shí),昆蟲病原真菌中的幾丁質(zhì)酶和蛋白酶基因都具有提高毒力的作用,改造并超表達(dá)這些內(nèi)源基因,均可以提升真菌的毒力。范艷華等[56-57]通過DNA shuffling和結(jié)構(gòu)域融合技術(shù)對(duì)球孢白僵菌幾丁質(zhì)酶Bbchit1和類枯草桿菌蛋白酶CDEP-1進(jìn)行基因改良,轉(zhuǎn)基因結(jié)果表明其毒力顯著提高。
2.2.2 外源毒力或抗逆基因的導(dǎo)入
近幾年,通過高表達(dá)一些外源的昆蟲毒素基因來達(dá)到大幅提高該真菌毒力的目的,已逐漸發(fā)展成為昆蟲病原真菌遺傳改良的一個(gè)方向。將外源神經(jīng)毒素北非蝎毒素基因aaIT轉(zhuǎn)入金龜子綠僵菌表達(dá)并誘導(dǎo)其在寄主血腔中表達(dá),證實(shí)該轉(zhuǎn)基因菌株對(duì)煙草天蛾(Manducasexta)幼蟲和埃及伊蚊(Aedesaegypti)雌成蟲的LC50分別降低22倍和9倍,LT50分別縮短30%和40%[23],同樣此轉(zhuǎn)基因菌株對(duì)咖啡果小蠹(Hypothenemushampei)的毒力也大幅提高[58]。而在球孢白僵菌中轉(zhuǎn)入此毒素,也增強(qiáng)了對(duì)馬尾松毛蟲(Dendrolimuspunctatus)、大蠟螟(Galleriamellonella)的殺蟲功效,對(duì)2種蟲的LT50分別下降40%和24%[59]。進(jìn)一步的研究證實(shí),蝎毒素基因的導(dǎo)入正是利用昆蟲病原真菌通過體壁侵入寄主體內(nèi),從而在寄主血腔內(nèi)表達(dá)毒素起到麻痹神經(jīng)而加速致死的作用。
研究證實(shí),通過導(dǎo)入外源基因可大幅提高昆蟲病原真菌口服毒力,而轉(zhuǎn)基因工程菌可通過昆蟲取食而快速殺死鱗翅目暴食性害蟲。蘇云金芽孢桿菌是經(jīng)昆蟲口器攝入到達(dá)中腸后,通過破壞腸壁細(xì)胞從而引發(fā)壞血癥而起到殺蟲作用的,其能產(chǎn)生對(duì)鱗翅目、直翅目、鞘翅目等咀嚼式口器害蟲有胃毒殺活性[60-63]的殺蟲蛋白。秦毅等[29]在球孢白僵菌中組成性表達(dá)1種蘇云金芽孢桿菌腸毒蛋白基因Vip3Aa1,結(jié)果顯示,工程菌株BbV28對(duì)斜紋夜蛾二齡幼蟲的毒力大幅增強(qiáng),第3天提高了17.2倍;王正亮等[64]通過優(yōu)化球孢白僵菌疏水蛋白基因的啟動(dòng)子,并利用其超高表達(dá)Vip3Aa1基因,所得到的工程菌BbHV8的腸毒蛋白表達(dá)量比之前的秦毅等的工程菌BbV28提高近10倍,對(duì)斜紋夜蛾二、三齡的口服殺蟲效果大幅提高,而對(duì)BbV28不能有效毒殺的四、五齡蟲也能100%致死。這些研究證實(shí),通過體壁侵染寄主的昆蟲病原真菌一般對(duì)蔬菜暴食性咀嚼式口器害蟲無能為力,但通過高表達(dá)某些毒蛋白,如腸毒蛋白的工程菌株,不僅可作用于這幾類害蟲的防治,且其原本具備的體壁侵染能力仍可協(xié)同對(duì)付刺吸式口器害蟲如蚜蟲(Aphidoidea)[65]、粉虱(Aleyrodidae)[66]、葉蟬(Cicadellidae)[67]、飛虱(Delphacidae)[68]、葉螨(Tetranychidae)[69]等。
導(dǎo)入外源基因除了提高真菌毒力之外,還可增強(qiáng)昆蟲病原真菌對(duì)環(huán)境脅迫的抵抗力,因此增強(qiáng)其對(duì)不利環(huán)境的適應(yīng)能力與其在田間應(yīng)用中的穩(wěn)定性有緊密的關(guān)聯(lián)。應(yīng)盛華等[70]在球孢白僵菌中高表達(dá)大腸桿菌硫氧還原蛋白(trxA)基因,該轉(zhuǎn)基因菌在耐紫外輻射和48 ℃高溫的能力分別提高12%~16%和15%~17%的同時(shí)其抗氧化能力也顯著提高18%~20%。
隨著基因操作技術(shù)的不斷發(fā)展,對(duì)昆蟲病原真菌進(jìn)行基因操作和遺傳改良的研究近年來捷報(bào)頻傳,并顯示出良好應(yīng)用前景。尤其是近幾年將腸毒蛋白VipAa1轉(zhuǎn)入球孢白僵菌、金龜子綠僵菌高表達(dá)的工程菌株,其對(duì)靶標(biāo)害蟲的胃毒殺蟲活性和口服毒力為研制新一代雙途徑侵染的安全高效廣譜真菌殺蟲劑帶來了希望。但目前相關(guān)報(bào)道仍較為基礎(chǔ),基因的篩選、改良及功能基因驗(yàn)證仍有待于深入研究,以期為改造高毒力、高抗性的昆蟲病原真菌工程菌株提供理論依據(jù)。
[1] 張愛文,鄧春生,農(nóng)向群. 蟲生真菌育種方法的進(jìn)展[J]. 微生物學(xué)雜志,1991(11):89-92.
[2] 李增智,樊美珍. 真菌生物技術(shù)與真菌殺蟲劑的發(fā)展:微生物農(nóng)藥及其產(chǎn)業(yè)化[M]. 北京:科學(xué)出版社,2002.
[3] SANDHU S S,UNKLES S E,RAJAK R C,et al. Generation of benomy1 resistantBeauveriabassianastrains and their infectivity againstHelicoverpaarmigera[J].Biocontrol Sci Technol,2001,11:250-254.
[4] KRAPPMANN S. Tools to study molecular mechanisms of Aspergillus pathogenicity[J].Trends Microbiol,2006,14:356-364.
[5] DABOUSSI M J,DJEBALLI A,GERLINGER C,et al. Transformation of seven species of filamentous fungi using the nitrate reductase gene ofAspergillusnidulans[J].Curr Genet,1989,15:453-456.
[6] LECLERQUE A,WAN H,ABSCHüTZ A,et al.Agrobacterium-mediatedinsertional mutagenesis (AIM) of the entomopathogenic fungusBeauveriabassiana[J].Curr Genet,2004,45:111-119.
[7] BOGO M R,VAINSTEIN M H,ARAGO F J L,et al. High frequency gene conversion among benomy1 resistance transformants in the entomopathogenic fungusMetarhiziumanisopliae[J].FEMS Microbiol Lett,1996,142:123-127.
[8] St Leger R J,Joshi L,Bidochka M J,et al. Characterization and ultrastructural localization of chitinases fromMetarhiziumanisopliae,M.flavoviride,andBeauveriabassianaduring fungal invasion of host(Manducasexta)cuticle[J].Appl Environ Microbiol,1996,162:907-912.
[9] INGLIS P W,ARAGO F J L,F(xiàn)RAZO H,et al. Biolistic cotransformation ofMetarhiziumanisopliaevar. acridum strain CG423 with green fuorescent protein and resistance to glufosinate ammonium[J].FEMS Microbiol Lett,2000,191:249-254.
[10] FANG W,ZHANG Y,YANG X,et al.Agrobacteriumtumefaciem-mediatedtransformation ofBeauveriabassianausing an herbicide resistance gene as a selection maker[J].J Invertebr Pathol,2004,85:18-24.
[11] YING S H,F(xiàn)ENG M G. Novel blastospore-bassd transformation system for integration of phosphinothricin resistance and green fluorescence protein genes intoBeauveriabassiana[J].Appl Microbiol Biotechnol,2006,72:206-210.
[12] CANTONE F A,VANDENBERG J D. Genetic transformation and mutagenesis of the entomopathogenic fungusPaecilomycesfumosoroseus[J].J Invertebr Pathol,1999,74:281-288.
[13] ZHANG S,F(xiàn)AN Y,XIA Y X,et al. Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungusBeauveriabassiana[J].Appl Microbiol Biotechno,2010,l87:1151-1156.
[14] ZHOU G,WANG J,QIU L,et al. A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation,multi-stress tolerance and virulence ofMetarhiziumrobertsii,a fungal entomopathogen[J].Environm Microbiol,2012,14:817-829.
[15] XIE XQ,LI F,YING S H,et al. Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation,UV tolerance and virulence ofBeauveriabassiana[J].PLoS One,2012,7(1):e30298.
[16] XIE X Q,GUAN Y,YING S H,et al. Differentiated functions of Ras1 and Ras2 proteins in regulating the germination,growth,conidiation,multi-stress tolerance and virulence ofBeauveriabassiana[J].Environ Microbiol,2013,15:447-462.
[17] WANG Z L,LU J D,F(xiàn)ENG M G. Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungusBeauveriabassiana[J].Environm Microbiol,2012,14:2139-2150.
[18] WANG Z L,YING S H,F(xiàn)ENG M G. Recognition of a core fragment ofBeauveriabassianahydrophobin gene promoter (Phyd1) and its special use in improving fungal biocontrol potential[J].Microb Biotechnol,2013,6:27-35.
[19] MISHRA N C,TATUM E L. Non-mendelian inheritance to DNA-induced inositol independence inNeurosporacrassa[J]. ProcNatlAca Sci USA,1973,70:3875-3879.
[20] FINCHAM J R S. Transformation in fungi[J].Microbiol Rev,1989,53:148-170.
[21] BROWN J S,AUFAUVRE-BROWN A,HOLDEN D W. Insertional mutagenesis ofAspergillusfumigatus[J].Mol Gen Genet,1998,259:327-335.
[22] JIANG Q,YING S H,F(xiàn)ENG M G. Enhanced frequency ofBeauveriabassianablastospore transformation by restriction enzyme-mediated integration and electroporation[J].J Microbiol Meth,2007,69:512-517.
[23] WANG C S,ST LEGER R J. TheMetarhiziumanisopliaeperilipin homolog MPL1 regulates lipid metabolism,appressorial turgor pressure,and virulence[J].J BiolChem,2007,282:21110-21115.
[24] MANCZINGER L,KOMONYI O,ANTAL Z,et al.A method for high-frequency transformation ofTrichodermaviride[J].J Microbiol Meth,1997,29:207-210.
[25] KOUKAKI M,GIANNOUTSOU E,KARAGOUNI A,et al. A novel improved method for Aspergillus nidulans transformation[J].J Microbiol Meth,2003,55:687-695.
[27] FUNGARO M H P,RECH E,MOHLEN G S,et al. Transformation ofAspergillusnidulansby microprojectile bombardment on intact conidia[J]. FEMS Microbiol Lett,1995,125:293-298.
[28] KRUSZEWSLCA J S. Heterologous expression of genes in filamentous fungi[J].Acta Biochim Pol,1999,46:181-195.
[29] QIN Y,YING S H,CHEN Y,et al. Integration of insecticidal protein Vip3Aa1 intoBeauveriabassianaenhances fungal virulence toSpodopteralituralarvae by cuticle and per os infection[J].Appl EnvironMicrobiol,2010,76:4611-4618.
[30] YING S H,F(xiàn)ENG M G. A conidial protein (CP15) ofBeauveriabassianacontributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses[J].Appl Microbiol Biotechnol,2010,90:1711-1720.
[31] 黃亞麗,潘瑋,蔣細(xì)良,等.根癌農(nóng)桿菌介導(dǎo)絲狀真菌遺傳轉(zhuǎn)化的研究進(jìn)展[J].生物技術(shù)通報(bào),2007(3):111-114.
[32] BUNDOCK P,DULK-RAS A,BEIJERSBERGEN A G M,et al. Trans-kingdom T-DNA transfer fromAgrobacteriumtumefacienstosaccharomycescerevisiae[J].EMBOJ,1995,14:3206-3214.
[33] DE GROOT M J A,BUNDOCK P,HOOYKAAS P J J,et al.Agrobacteriumtumefaciens-mediatedtransformation of filamentous fungi[J].Nat Biotechnol,1998,16:839-842.
[34] GOUKA R J,GERK C,HOOYKAAS P J J,et al. Transformation ofAspergillusawamoribyAgrobacteriumtumefaciens-mediatedhomologous recombination[J]. Nat Biotechnol,1999,17:598-601.
[35] BUNDOCK P,MROCZEK K,WINKLER A,et al. T-DNA fromAgrobacteriumtumefaciensas efficient tool for gene targeting inKluyveromyceslactis[J]. Mol Gen Genet,1999,261:115-121.
[36] MULLINS E D,CHEN X,ROMAINE P,et al.Agrobacterium-mediatedtransformation ofFusariumoxysporum:an efficient tool for insertional mutagenesis and gene transfer[J].Phytopathology,2001,91:173-180.
[37] ZWIERS L H,DE WAARD M A. EfficientAgrobacteriumtumefaciens-mediatedgene disruption in the phytopathogenMycosphaerellagraminicola[J].Curr Genet,2001,39:388-393.
[38] BUNDOCK P,HOOYKAAS P J J. Integration ofAgrobacteriumtumefaciensT-DNA in the saccharomyces cerevisiae genome by illegitimate recombination[J]. Proc Natl Acad Sci USA,1996,93:15272-15275.
[39] COMBIER J P,MELAYAH D,RAFFIER C.Agrobacteriumtumefaciens-mediatedtransformation as a too,for insertional mutagenesis in the symbiotic ectomycorrhizal fungusHebelomacylindrosporum[J]. FEMS Microbiol Lett,2003,220:141-148.
[40] HANIF M,PARDO A G,GORFER M. T-DNA transfer and integration in the ectomycorrhizal fungusSuillusbovinususing hygromycin B as a selectable marker[J].Curr Genet,2002,41:183-188.
[41] MEYER V,MUELLER D,STROWING T,et al. Comparison of different transformation methods forAspergillusgiganteus[J].Curr Genet,2003,43:371-377.
[42] TAKAHARA H,TSUJI G,KUBO Y,et al.Agrobacteriumtumefaciens-mediatedtransformation as a tool for random mutagenesis ofColletotrichumtrifolii[J].J Gen Plant Pathol,2004,70:93-96.
[43] TSUJI G,F(xiàn)UJII S,F(xiàn)UJIHARA N.Agrobacteriumtumefaciens-mediatedtransformation for random insertional mutagenesis inColletotrichumlagenarium[J].J Gen Plant Pathol,2003,69:230-239.
[44] LECLERQUE A,WAN H,ABSCHüTZ A,et al.Agrobacterium-mediatedinsertional mutagenesis (AIM) of the entomopathogenic fungusBeauveriabassiana[J].Curr Genet,2004,45:111-119.
[45] CAMPOY S,PEREZ F,MARTIN J F. Stable transformants of the azaphilong pigment-producingMonascuspurpureusobtained by protoplast transformation andAgrobacterium-mediatedDNA transfer[J].Curr Gene,2003,43:447-452.
[46] 方衛(wèi)國(guó). 昆蟲病原真菌降解寄主體壁酶基因的克隆及球孢白僵菌高毒力重組菌株的獲得[D]. 重慶:西南農(nóng)業(yè)大學(xué),2003.
[47] GODIO R P,F(xiàn)OUCES R,GUDINA E J.Agrobacteriumtumefaciens-mediatedtransformation of the antitumor clavaric acid-producing basidiomyceteHypholomasublateritium[J].Curr Genet,2004,46:287-294.
[48] ST LEGER R J,JOSHI L,BIDOCHKA M J,et al. Construction of an improved mycoinsecticide overexpressing a toxic protease[J].P Natl Aca Sci USA,1996,93:6349-6354.
[49] FANG W,LENG B,XIAO Y,et al. Cloning ofBeauveriabassianachitinase geneBbchit1 and its application to improve fungal strain virulence[J]. Appl Environ Microb,2005,71:363-370.
[50] XIE X Q,WANG J,YING S H,et al. A new manganese superoxide dismutase identified fromBeauveriabassianaenhances virulence and stress tolerance when overexpressed in the fungal pathogen[J].Appl Microbiol Biotechnol,2010,86:1543-1553.
[51] LIU X H,YANG J,HE R L,et al. An autophagy gene,TrATG5,affects conidiospore differentiation inTrichodermareesei[J]. Res Microbiol,2011,162:756-763.
[52] LUO X D,KEYHANI N O,YU X D,et al. The MAP kinase Bbslt2 controls growth,conidiation,cell wall integrity,and virulence in the insect pathogenic fungusBeauveriabassiana[J]. Fungal Genet Biol,2012,49:544-555.
[53] ZHANG Y J,ZHAO J H,F(xiàn)ANG W G,et al. Mitogen-acticated protein kinase hog1 in the entomopathogenic fungusBeauveriabassianaregulates environmental stress responses and virulence to insects[J].Appl Environ Microbiol,2009,75:3787-3795.
[54] GAO Q,JIN K,YING S H,et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungiMetarhiziumanisopliaeandM.acridum[J].PLoS Genet,2011,7:e1001264.
[55] XIAO G H,YING S H,ZHENG P,et al. Genomic perspectives on the evolution of fungal entomopathogenicity inBeauveriabassiana[J]. Sci Rep,2012,2:483.
[56] FAN Y,F(xiàn)ANG W,GUO S,et al. Increased insect virulence inBeauveriabassianastrains over -expressing an engineered chitinase[J].Appl Environ Microbiol,2007,73:295-302.
[57] ZHANG Y J,F(xiàn)ENG M G,F(xiàn)AN Y H,et al. A cuticle-degrading protease (CDEP-1) ofBeauveriabassianaenhances virulence[J]. Biocontrol Sci Technol,2008,18:551-563.
[58] PAVA-RIPOLL M,POSADA F,MOMEN B,et al. Increased pathogenicity against coffee berry borer,Hypothenemushampei(Coleoptera:Curculionidae)byMetarhiziumanisopliaeexpressing the scorpion toxin(AaIT)gene[J].J Invertebr Pathol,2008,99:220-226.
[59] LU D,PAVA-RIPOLL M,LI Z,et al. Insecticidal evaluation ofBeauveriabassianaengineered to express a scorpin neurotoxin and a cuticle degrading protease[J].Appl Microbiol Biot,2008,81:515-522.
[60] ESTRUCH J J,WARREN G W. Vip3A,a novelBacillusthuringiensisvegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J].P Natl Acad Sci USA,1996,93:5389-5394.
[61] SELVAPANDIYAN A,ARORA N. Toxicity analysis of N- and C-terminus-deleted vegetative insecticidal protein fromBacillusthuringiensis[J].Appl Environ Microbiol,2001,67:5855-5858.
[62] BEARD C E,COURT L,BOETS A,et al. Unusually high frequency of genes encoding vegetative insecticidal proteins in an AustralianBacillusthuringiensiscollection[J].Curr Microbiol,2008,57:195-199.
[63] RAMASAMY R,NADARAJAH V D. A preliminary study of the bioactivity of vegetative proteins extracted from MalaysianBacillusthuringiensisisolates[J].Trop Biomed,2008,25:64-74.
[64] WANG Z L,ZHANG L B,YING S H,et al. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses[J].Environ Microbiol,2013,15:409-418.
[65] YE S D,DUN Y H,F(xiàn)ENG M G. Time and concentration dependent interactions ofBeauveriabassianawith sublethal rates of imidacloprid against the aphid pestsMacrosiphoniellasanborniandMyzuspersicae[J].Ann Appl Biol,2005,146:459-468.
[66] FENG M G,CHEN B,YING S H. Trials ofBeauveriabassiana,Paecilomycesfumosoroseusand imidacloprid for management ofTrialeurodesvaporariorum(Homoptera:Aleyrodidae) on greenhouse grown lettuce[J].Biocontrol Sci Techn,2004,14:531-544.
[67] PU X Y,F(xiàn)ENG M G,SHI C H. Impact of three application methods on the field efficacy of aBeauveriabassiana-basedmycoinsecticide against the false-eye leafhopper,Empoascavitis(Homoptera:Cicadellidae) in tea canopy[J].Crop Protect,2005,24:167-175.
[68] JIN S F,F(xiàn)ENG M G,YING S H,et al. Evaluation of alternative rice planthopper control by the combined action of oil-formulatedMetarhiziumanisopliaeand low-rate buprofezin[J]. Pest Manag Sci,2011,67:36-43.
[69] SHI W B,ZHANG L L,F(xiàn)ENG M G. Field trials of four formulations ofBeauveriabassianaandMetarhiziumanisoplaefor control of cotton spider mites (Acari:Tetranychidae) in the Tarim Basin of China[J]. Biol Control,2008,45:48-55.
[70] YING S H,F(xiàn)ENG M G. Integration ofEscherichiacolithioredoxin (trxA) intoBeauveriabassianaenhances the fungal tolerance to the stresses of oxidation,heat and UV-B irradiation[J]. Biol Control,2011,59:255-260.
(責(zé)任編輯:張瑞麟)
2017-01-03
浙江省自然科學(xué)基金(LQ14C140005)
張 蕾(1981—),女,浙江杭州人,副研究員,博士,研究方向?yàn)槔ハx病原真菌基因改造工程,E-mail:papaver_rhoeas@126.com。
10.16178/j.issn.0528-9017.20170440
S433
A
0528-9017(2017)04-0679-06
文獻(xiàn)著錄格式:張蕾,宋婷婷. 昆蟲病原真菌遺傳改良研究進(jìn)展[J].浙江農(nóng)業(yè)科學(xué),2017,58(4):679-684.