張毓森,葉軍,蘇建強(qiáng)
細(xì)菌對抗生素的耐藥性極大地阻礙了抗生素對病原菌感染的治療效果,危害人類健康[1],如耐甲氧西林金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)、抗萬古霉素腸球菌(vancomycin-resistantEnterococcus,VRE)、抗碳青霉烯抗性菌(New Delhi metallo-β-lactamase1,NDM-1)[2]、多黏菌素抗性菌(polymyxin resistance bacteria)[3]等,不斷地挑戰(zhàn)著人們防御細(xì)菌感染的防線。2014年世界衛(wèi)生組織的一份調(diào)查報(bào)告顯示,全球范圍內(nèi)多數(shù)人類病原菌對于常見的人用抗生素敏感性均有不同程度的下降,抗生素抗性已成為全球關(guān)注的重大問題[4],并于2015年提出建立細(xì)菌耐藥性全球監(jiān)控體系[5]。我國也于2016年由國家衛(wèi)生計(jì)生委、發(fā)展改革委等14個(gè)部門聯(lián)合印發(fā)了《遏制細(xì)菌耐藥國家行動(dòng)計(jì)劃(2016—2020年)》,以遏制細(xì)菌耐藥性的蔓延,維護(hù)人民群眾健康,促進(jìn)經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展[6]。
除了在醫(yī)療領(lǐng)域外,人們在不同環(huán)境中均檢測到大量的多種抗生素抗性基因(以下簡稱抗性基因)[7-10]。人類活動(dòng),包括生活、工業(yè)廢水廢物的排放,養(yǎng)殖業(yè)動(dòng)物糞便和污水處理廠污泥的排放和施用,農(nóng)業(yè)生產(chǎn)活動(dòng)中抗生素的使用等,均是導(dǎo)致環(huán)境中抗生素抗性細(xì)菌和抗性基因富集和擴(kuò)散的主要原因[11-16]。因此,近年來各國科學(xué)家在環(huán)境中抗生素和抗性基因的殘留、豐度、遷移和擴(kuò)散等方面開展了一系列深入的研究,以應(yīng)對抗生素抗性在環(huán)境中的傳播,從而減少抗性基因擴(kuò)散到人類病原菌的風(fēng)險(xiǎn),保護(hù)人類健康[17-18]。
農(nóng)田生態(tài)系統(tǒng)中抗生素抗性研究受到了廣泛的關(guān)注。首先,農(nóng)田生態(tài)系統(tǒng)是環(huán)境中抗生素和抗性基因的源與匯。抗生素大量使用于動(dòng)物養(yǎng)殖業(yè)來預(yù)防和治療疾病,促進(jìn)動(dòng)物生長,使得動(dòng)物腸道富含抗性細(xì)菌和抗性基因[19-20],同時(shí)大量未被代謝的抗生素殘留經(jīng)糞便排放到動(dòng)物體外,導(dǎo)致施用了動(dòng)物糞便的農(nóng)田土壤產(chǎn)生抗生素和抗性基因污染[21-23]。人類和工業(yè)生活污水含有大量殘留抗生素、抗性細(xì)菌和抗性基因[13,24],污水的排放以及污泥的長期施用也可導(dǎo)致抗生素和抗性基因在農(nóng)田中富集,進(jìn)而可能通過滲漏和地表徑流擴(kuò)散到周邊環(huán)境中[18,25-27]。
其次,農(nóng)田生態(tài)系統(tǒng)是抗生素和抗性基因暴露的重要環(huán)境,其中農(nóng)產(chǎn)品的食用是抗性基因暴露的主要途徑之一,食品安全是關(guān)乎國計(jì)民生的重大問題。2011年德國爆發(fā)了“毒黃瓜”事件,引起本次疫情的O104:H4血清型腸出血性大腸桿菌攜帶有氨基糖苷類、大環(huán)內(nèi)酯類、磺胺類等抗生素的耐藥基因[28]。農(nóng)產(chǎn)品尤其是生食產(chǎn)品的抗性細(xì)菌和抗性基因攝入風(fēng)險(xiǎn)評估是農(nóng)田抗性基因研究的主要目標(biāo)之一。
最后,農(nóng)田生態(tài)系統(tǒng)具有復(fù)雜多樣的生態(tài)功能,微生物在碳氮磷等生源要素的轉(zhuǎn)化中起著重要的作用,而抗生素和抗性基因的輸入可能會(huì)顯著影響農(nóng)田微生物群落結(jié)構(gòu)與功能,從而影響農(nóng)田生態(tài)系統(tǒng)生產(chǎn)力以及元素生物地球化學(xué)循環(huán)。從大健康的角度來看,農(nóng)田生態(tài)系統(tǒng)是研究抗性基因?qū)τ谌祟惡蛣?dòng)物健康、生態(tài)系統(tǒng)功能和生產(chǎn)力影響的理想環(huán)境[29-30]。本文的主要目的并非要全面地綜述目前在農(nóng)田生態(tài)系統(tǒng)中抗性基因的研究進(jìn)展,而是試圖從目前的研究成果中指出還存在的科學(xué)問題,為進(jìn)一步深入研究提供可能的研究方向。
根據(jù)細(xì)菌對抗生素抗性發(fā)展的特點(diǎn),細(xì)菌抗性可以分為固有抗性(intrinsic resistance)和獲得性抗性(acquired resistance)。固有耐藥是某類細(xì)菌具有的耐藥特征,是細(xì)菌對抗生素的天然耐藥性,獲得性耐藥是細(xì)菌通過突變或水平轉(zhuǎn)移獲得抗性[15,28,31]。土壤微生物復(fù)雜多樣,是自然環(huán)境中抗性基因的儲存庫[9],比如放線菌門細(xì)菌是目前大多數(shù)天然抗生素的產(chǎn)生菌,其本身含有相應(yīng)的抗性基因作為脫毒機(jī)制[7]。土壤中土著細(xì)菌的抗性基因種類跟細(xì)菌組成顯著相關(guān),可通過改變細(xì)菌群落結(jié)構(gòu)來影響抗性基因的組成[8]。
多種農(nóng)業(yè)措施可影響土壤抗性基因的組成和豐度,甚至引入新的抗性基因到農(nóng)田土壤中。糞肥施用可顯著導(dǎo)致農(nóng)田土壤抗性細(xì)菌和抗性基因的富集,提高土壤抗性水平[21,32-34]。污泥直接施用或堆肥后使用也可提高農(nóng)田土壤抗性基因的豐度和多樣性[18,26,35-36]。因此,許多科學(xué)家致力于研究不同的糞便和污泥處理方式,比如堆肥、厭氧消化等對其中抗性細(xì)菌和抗性基因的影響,以減少抗性基因擴(kuò)散到農(nóng)田土壤的風(fēng)險(xiǎn)[27,37-38]。
糞肥和污泥以及相關(guān)有機(jī)肥的施用對農(nóng)田土壤抗性基因的影響主要體現(xiàn)在3個(gè)方面:1)動(dòng)物糞便和污泥本身含有豐富的抗性基因[19],作為肥料使用可直接將抗性基因引入到農(nóng)田中;2)有機(jī)肥含有豐富的有機(jī)質(zhì),施用有機(jī)肥可改變土壤物理結(jié)構(gòu),影響土壤肥力,從而改變微生物群落結(jié)構(gòu),影響抗性基因;3)有機(jī)肥中通常含有較多的抗生素殘留[39],隨著肥料的施用進(jìn)入到土壤中,形成選擇壓力,使得抗性細(xì)菌增殖,甚至可引起細(xì)菌基因突變形成新的抗性。然而在實(shí)際研究中,要定性定量地區(qū)分這3個(gè)方面對農(nóng)田抗性基因的影響非常困難。
關(guān)于農(nóng)田抗生素抗性的研究方法已有多篇綜述[40-41],主要有以抗性細(xì)菌分離培養(yǎng)為基礎(chǔ)的培養(yǎng)法和不依賴于培養(yǎng)的分子生物學(xué)方法。其中培養(yǎng)法是利用含有抗生素的培養(yǎng)基選擇性的培養(yǎng)相應(yīng)的抗性細(xì)菌,隨后測定其最小抑制濃度(minimum inhibition concentration,MIC),確定分離菌株的抗性水平,進(jìn)而通過基因組測序等手段確定抗性菌株中起作用的抗性基因。該方法的優(yōu)勢在于可將抗性菌株的基因型和表型有效聯(lián)系起來,進(jìn)行不同類型基因型和抗性水平的相關(guān)研究,同時(shí)通過基因組測序可獲得該菌株多種抗性基因及相關(guān)可移動(dòng)遺傳元件的信息,有助于深入開展抗性菌株多重耐藥和水平基因轉(zhuǎn)移的機(jī)制等相關(guān)研究。其主要缺點(diǎn)是難以克服土壤中多種細(xì)菌以現(xiàn)有手段無法培養(yǎng)的問題,只能針對一小部分可培養(yǎng)細(xì)菌開展研究。
分子生物學(xué)手段則可以克服培養(yǎng)法的缺陷,直接對細(xì)菌的核酸進(jìn)行操作,通過熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative polymerase chain reaction,以下簡稱熒光定量PCR)、宏基因組測序、基因芯片、高通量熒光定量PCR(high-throughput quantitative polymerase chain reaction)等手段,高通量的調(diào)查和監(jiān)控抗性基因的變化。分子生物學(xué)方法的缺點(diǎn)在于:1)熒光定量PCR、基因芯片和宏基因組測序數(shù)據(jù)的分析依賴于現(xiàn)有數(shù)據(jù)庫進(jìn)行抗性基因的引物和探針的設(shè)計(jì),以及序列的比對,對于數(shù)據(jù)庫沒有相關(guān)信息的抗性基因無法檢測;2)宏基因組大量測序數(shù)據(jù)的拼接和比對需要有較豐富的生物信息學(xué)背景,而且限于目前的技術(shù)手段,很難在精細(xì)的分類水平上鑒定抗性基因的宿主菌;3)宏基因組分析主要是根據(jù)序列的相似度進(jìn)行抗性基因的注釋,由于沒有進(jìn)行抗性表型的驗(yàn)證,可能導(dǎo)致結(jié)果出現(xiàn)假陽性,即所鑒定的抗性基因很可能并不具備抗生素抗性的功能。功能宏基因組學(xué)技術(shù)和新近發(fā)展迅速的單細(xì)胞測序技術(shù)可在一定程度上克服這些缺陷,但他們也存在克隆偏好和異源表達(dá)、單細(xì)胞分選和擴(kuò)增等技術(shù)難題[42]。此外,在群落水平上,可采用檢測細(xì)菌呼吸、胞外酶活性變化以及細(xì)菌生產(chǎn)力等方法來監(jiān)控細(xì)菌群落整體的抗性水平[43]。
在目前的醫(yī)療領(lǐng)域中,針對常見的人或動(dòng)物病原菌的抗性水平,已有一系列詳細(xì)而標(biāo)準(zhǔn)的研究方法可對細(xì)菌耐藥進(jìn)行監(jiān)測,進(jìn)而建立全球耐藥監(jiān)測體系[5,44]。然而,針對農(nóng)田抗生素抗性的研究雖然已有多種技術(shù)手段可用,但由于各國研究者根據(jù)其關(guān)注的科學(xué)問題不同和實(shí)驗(yàn)室所擁有的技術(shù)手段限制,目前還尚未有標(biāo)準(zhǔn)的抗生素抗性監(jiān)測方法可用,這使得難以對各國科學(xué)家的研究成果進(jìn)行橫向比較,同時(shí)也難以建立全球環(huán)境抗生素抗性監(jiān)控系統(tǒng)來研究抗生素抗性基因的傳播和擴(kuò)散。
采用現(xiàn)有的分子生物學(xué)技術(shù),各國研究者對不同區(qū)域的農(nóng)田土壤抗性基因豐度及其影響因子進(jìn)行了研究。熒光定量PCR和宏基因組學(xué)技術(shù)是最常用的方法。采用熒光定量PCR,人們發(fā)現(xiàn)不同類型農(nóng)田土壤抗性基因組成有顯著差異[8,45],幾乎所有常見抗生素抗性基因均可在土壤中檢測到,其豐度也有較大差異,不同的抗性基因其拷貝數(shù)可達(dá)1011每克干土,其中多重耐藥基因、四環(huán)素類、大環(huán)內(nèi)脂類、氨基糖苷類、β-內(nèi)酰胺類抗性基因等均有較高豐度[35,46-48]。為了避免由于各樣品微生物量不同導(dǎo)致的抗性基因豐度差異,通常在定量抗性基因時(shí)會(huì)計(jì)算抗性基因/16S rRNA基因相對豐度,來進(jìn)行不同樣品間的比較[46,49]。宏基因組技術(shù)也常用于研究不同環(huán)境樣品中抗性基因多樣性和豐度,其所監(jiān)測到的抗性基因也可根據(jù)16S rRNA基因進(jìn)行歸一化處理,土壤抗性基因相對豐度低于污水處理廠和動(dòng)物糞便樣品[20,45,50]。
熒光定量PCR方法通常只能檢測數(shù)類抗性基因,即使是高通量熒光定量PCR目前也只能針對200余類抗性基因進(jìn)行定量[26],而宏基因組技術(shù)可檢測到的抗性基因種類多于熒光定量PCR方法。抗性基因的相對豐度代表了某類抗性基因在特定樣品的微生物群落中的富集情況,這2種方法均可計(jì)算抗性基因的相對豐度,且不同研究間的結(jié)果可以進(jìn)行橫向比較。但抗性基因的絕對拷貝數(shù)也是一類重要的數(shù)據(jù),尤其是在今后進(jìn)行抗性基因的風(fēng)險(xiǎn)評估時(shí),抗性基因的拷貝數(shù)是計(jì)算抗性基因人群暴露量的重要參數(shù)[51]。
目前關(guān)于不同農(nóng)田土壤整體抗性基因豐度的數(shù)據(jù)仍然欠缺,至今尚未見到大范圍的樣品采集和定量數(shù)據(jù),這使得我們對于抗性基因的分布特征與時(shí)空變化并不清楚,對于各類土壤抗性基因的背景值和基線值了解甚少,而這一類數(shù)據(jù)在評估人類農(nóng)業(yè)生產(chǎn)活動(dòng)對土壤抗性基因的影響具有重要的意義[52]。
抗性基因在環(huán)境中增殖和擴(kuò)散主要有2種方式,一是抗性基因隨著其宿主微生物在不同環(huán)境介質(zhì)中增殖和擴(kuò)散,二是抗性基因可通過水平基因轉(zhuǎn)移到其他宿主中進(jìn)而增殖和擴(kuò)散。其增殖和擴(kuò)散的過程可能受到不同環(huán)境介質(zhì)的理化性質(zhì)、抗生素和金屬離子濃度、微生物群落結(jié)構(gòu)等因素的影響。探明這些抗性基因在不同環(huán)境中增殖和擴(kuò)散的機(jī)制,以及哪些抗性基因較容易在不同環(huán)境介質(zhì)中傳播及其主要影響因素,都是闡釋抗性基因在環(huán)境中擴(kuò)散機(jī)制的關(guān)鍵問題。
位于移動(dòng)元件上可以進(jìn)行水平轉(zhuǎn)移的抗性基因稱為獲得性抗性基因。獲得性抗性基因可以通過移動(dòng)元件在不同細(xì)菌間迅速轉(zhuǎn)移,已成為細(xì)菌耐藥發(fā)展最為重要的因素。同時(shí),由于其可形成多重耐藥菌株,并可能將抗性基因轉(zhuǎn)移到人類病原菌中危害人體健康,因此受到廣泛關(guān)注[53]。環(huán)境細(xì)菌中也存在獲得性抗性基因。采用功能宏基因組學(xué)方法、細(xì)菌基因組和環(huán)境宏基因組測序發(fā)現(xiàn),環(huán)境中存在著大量的獲得性抗性基因以及與其相關(guān)的基因元件[8,54-57]。
水平基因轉(zhuǎn)移是環(huán)境中細(xì)菌獲得抗生素抗性,導(dǎo)致抗生素抗性基因在環(huán)境中傳播和擴(kuò)散的重要分子機(jī)制之一,因此,研究移動(dòng)元件所攜帶的抗性基因是闡釋抗性基因傳播機(jī)制的關(guān)鍵[58-60]。近年來,環(huán)境中抗生素抗性基因的水平轉(zhuǎn)移不斷被證實(shí)[57],研究認(rèn)為,質(zhì)粒、整合子是最重要的移動(dòng)元件[61-62]。水平基因轉(zhuǎn)移不僅僅局限于親緣關(guān)系較近的菌株,還可在不同屬之間、革蘭氏陽性細(xì)菌和陰性細(xì)菌之間發(fā)生[63-64]。整合子是目前環(huán)境抗生素抗性基因領(lǐng)域中研究最為廣泛的基因傳播元件[65],是革蘭氏陰性菌中主要抗性基因的組件,其中Ⅰ類整合子存在最為廣泛,尤其是在多重耐藥的革蘭氏陰性病原菌中[66]。到目前為止,已發(fā)現(xiàn)至少130種整合子基因盒攜帶有針對當(dāng)前多數(shù)抗生素的抗性基因[62]。動(dòng)物糞便的施用顯著提高了土壤抗性基因的豐度和整合子豐度[32,67]。
胞外DNA和噬菌體同樣也是水平基因轉(zhuǎn)移中抗性基因的重要來源[68]。然而相對于質(zhì)粒和整合子[69],胞外DNA在環(huán)境中水平基因轉(zhuǎn)移所起的作用還不明確[70],而對于噬菌體所攜帶的抗性基因種類和豐度也了解甚少,特別是溶源性噬菌體[68]。目前常用的研究抗性基因水平轉(zhuǎn)移的方法主要包括細(xì)菌培養(yǎng)法、熒光標(biāo)記質(zhì)粒法和分子生物學(xué)分析等,研究內(nèi)容側(cè)重于探討抗性基因在不同宿主或群落中水平轉(zhuǎn)移的過程和頻率[13,64,71-73]。此外,還可對環(huán)境樣品進(jìn)行宏基因組測序,通過序列的比對以及抗性基因和可移動(dòng)遺傳元件在基因組上的分布特征來估算水平基因轉(zhuǎn)移[8,53],該方法無需特定的供體菌,且不僅僅局限于質(zhì)粒介導(dǎo)的水平基因轉(zhuǎn)移。但在復(fù)雜環(huán)境中,目前的研究手段還無法獲得定量的水平基因轉(zhuǎn)移頻率,因而也無法評估水平基因轉(zhuǎn)移在抗性基因擴(kuò)散和傳播中的貢獻(xiàn)。
抗性基因發(fā)生水平轉(zhuǎn)移的必要條件是:1)要有抗性基因作為供體;2)要有介導(dǎo)水平基因轉(zhuǎn)移的可移動(dòng)遺傳元件;3)要有合適的菌株作為抗性基因的受體;4)供體和受體需共存于同一或相鄰的可以進(jìn)行物質(zhì)交換的環(huán)境介質(zhì)中[74]??剐曰虻乃睫D(zhuǎn)移還受到其他環(huán)境因子的影響??股厥瞧渲凶钪匾囊蜃又唬蠹s30%~90%的抗生素?zé)o法被人或動(dòng)物代謝而排入環(huán)境中[75],從而形成持久的選擇壓力,加速了抗性基因的突變和傳播[76]。此外,季銨類化合物[77]、金屬離子[78-79]、納米材料[71,80]等也可通過共選擇作用促進(jìn)抗性基因的水平轉(zhuǎn)移??剐曰虻乃睫D(zhuǎn)移還受到適應(yīng)度代價(jià)(fitness cost)[81]和奠基者效應(yīng)的影響[82]。因此,在研究環(huán)境中抗性基因水平轉(zhuǎn)移時(shí)應(yīng)充分考慮這些因素的影響。
研究環(huán)境中抗性基因的目的是通過研究抗性基因在不同環(huán)境中的來源、進(jìn)化、增殖和擴(kuò)散,進(jìn)而評估其對人類的健康風(fēng)險(xiǎn)。目前,關(guān)于抗性基因的人類健康風(fēng)險(xiǎn)評價(jià)還缺少定量數(shù)據(jù)和模式方法,環(huán)境抗性基因轉(zhuǎn)移到致病菌中進(jìn)而危害人類健康的直接數(shù)據(jù)也還很少[83]。ASHBOLT等[51]提出了一個(gè)概念模型來預(yù)測由于環(huán)境抗生素抗性水平升高所帶來的人類健康風(fēng)險(xiǎn),特別關(guān)注甄別環(huán)境抗生素抗性高發(fā)熱點(diǎn)區(qū)域、環(huán)境暴露途徑及暴露量評估以及建立抗性基因和人類健康的劑量-反應(yīng)關(guān)系,并參考傳統(tǒng)的病原菌微生物風(fēng)險(xiǎn)評估方法進(jìn)行抗性基因風(fēng)險(xiǎn)評價(jià),同時(shí)也指出這一概念模型中還存在大量的不確定性。
人群健康風(fēng)險(xiǎn)評估的經(jīng)典模型包括風(fēng)險(xiǎn)評估“四步法”,即危害識別、劑量-反應(yīng)關(guān)系、暴露評價(jià)和風(fēng)險(xiǎn)特征[84]。在危害識別中,應(yīng)充分考慮抗性基因的豐度和種類、暴露途徑和暴露時(shí)間對人群健康效應(yīng)的影響,同時(shí)也要注意到在某些特定條件下抗性基因具有“一次性效應(yīng)”,即新型抗性基因形成后,其從環(huán)境細(xì)菌轉(zhuǎn)移到人類致病菌中只需發(fā)生一次即有可能造成嚴(yán)重威脅[74]。環(huán)境中抗性基因具有高度多樣性[85],很難對所有抗性基因都進(jìn)行健康風(fēng)險(xiǎn)評價(jià)。世界衛(wèi)生組織(World Health Organization,WHO)[86-87]認(rèn)為在動(dòng)物養(yǎng)殖業(yè)中喹諾酮類、第三代頭孢菌素和大環(huán)內(nèi)酯類是最關(guān)鍵的抗生素,同樣,在抗性基因危害識別中也應(yīng)該根據(jù)其可能的危害程度對抗性基因進(jìn)行分級。MARTíNEZ等[74]認(rèn)為在病原菌中發(fā)現(xiàn)的、對于常用的醫(yī)療抗生素具有抗性、位于可移動(dòng)遺傳元件上的抗性基因具有最高的威脅,并據(jù)此將抗性基因分為7個(gè)危害級別,該法可以作為抗性基因危害識別的參考。
抗性基因的水平轉(zhuǎn)移需要供體菌和受體菌的直接接觸,環(huán)境中供體菌、受體菌和可移動(dòng)遺傳元件的豐度是決定水平基因轉(zhuǎn)移的關(guān)鍵因子。因此,在進(jìn)行抗性基因劑量-反應(yīng)關(guān)系評估中,應(yīng)同時(shí)對抗性基因、可移動(dòng)遺傳元件和環(huán)境中的高風(fēng)險(xiǎn)受體菌(致病菌或條件致病菌)的種類和豐度進(jìn)行定量分析,進(jìn)而結(jié)合影響水平基因轉(zhuǎn)移的環(huán)境因素定量評估抗性基因水平轉(zhuǎn)移頻率,最后開展大范圍的流行病學(xué)數(shù)據(jù)調(diào)查,建立環(huán)境抗生素抗性和人類健康的聯(lián)系,最終可能形成有效的抗性基因的劑量-反應(yīng)關(guān)系[83]??剐曰驈V泛存在于地球上所有的生境中,任何可與人直接接觸的環(huán)境介質(zhì)均有可能造成抗性基因的暴露。因此,有必要采用標(biāo)準(zhǔn)方法建立各種環(huán)境介質(zhì)抗性基因監(jiān)測數(shù)據(jù)庫[5],為抗性基因的暴露評估提供數(shù)據(jù)。此外,還應(yīng)甄別農(nóng)業(yè)生態(tài)系統(tǒng)中抗性基因高發(fā)的熱點(diǎn)區(qū)域,比如在糞肥和污泥等生物質(zhì)施用的農(nóng)田土壤,開展抗性基因土壤-植物的傳播研究,同時(shí)針對可能高暴露人群進(jìn)行風(fēng)險(xiǎn)評價(jià)。
抗生素污染對于環(huán)境中微生物豐度、組成和群落結(jié)構(gòu)有顯著影響,進(jìn)而改變了微生物介導(dǎo)的生態(tài)系統(tǒng)功能,比如土壤氮循環(huán)等[43,83,88-89]。然而除了人類健康風(fēng)險(xiǎn)以外,抗性基因本身對于農(nóng)田系統(tǒng)生態(tài)健康的影響目前還非常缺乏[83]??剐曰蜣D(zhuǎn)移到受體菌中可能導(dǎo)致受體菌生理功能發(fā)生變化,比如糖肽類或β-內(nèi)酰胺類抗生素可以明顯改變革蘭氏陽性細(xì)菌的肽聚糖結(jié)構(gòu)[90],抗性基因的形成也可改變細(xì)菌的代謝[91],因此,抗性水平的提高也可能改變自然環(huán)境中微生物多樣性、進(jìn)化和功能[92]。然而目前關(guān)于這方面的研究很少,今后應(yīng)通過模擬實(shí)驗(yàn)和長期觀察來考察抗性水平升高對于生態(tài)系統(tǒng)功能的影響[83]。
抗性基因?qū)θ祟惤】档淖畲笸{是它們可能通過水平基因轉(zhuǎn)移等途徑進(jìn)入人類病原菌中,形成新的、多重的抗性表型,從而降低現(xiàn)有的抗生素治療效果甚至使其失效,危害人類健康。農(nóng)田生態(tài)系統(tǒng)與食品安全和人類健康息息相關(guān),其抗性基因的相關(guān)研究也備受關(guān)注。動(dòng)物養(yǎng)殖廢棄物和污水處理廠污泥的施用是農(nóng)田系統(tǒng)抗生素和抗性基因的重要來源。農(nóng)田土壤是一個(gè)復(fù)雜的生態(tài)系統(tǒng),礦物、有機(jī)質(zhì)等土壤關(guān)鍵組分,土壤理化參數(shù)和抗生素,重金屬等污染物等均可影響抗性基因在農(nóng)田土壤系統(tǒng)中的水平基因轉(zhuǎn)移、增殖和擴(kuò)散,進(jìn)而對人類健康造成潛在威脅。在將來很長一段時(shí)間內(nèi),抗生素仍然是治療細(xì)菌感染的重要手段,動(dòng)物養(yǎng)殖業(yè)中抗生素在短期內(nèi)無法完全禁用,因此,抗生素抗性問題是醫(yī)療和環(huán)境領(lǐng)域關(guān)注的重要主題。在今后的研究中,迫切需要系統(tǒng)、定量地開展農(nóng)田抗性基因風(fēng)險(xiǎn)評價(jià),同時(shí)特別關(guān)注:1)建立標(biāo)準(zhǔn)的抗生素和抗性基因監(jiān)測方法,推動(dòng)長期的農(nóng)田環(huán)境抗生素和抗性基因監(jiān)測體系的構(gòu)建,從而定量地跟蹤和評估農(nóng)田環(huán)境抗性水平的變化;2)甄別具有高風(fēng)險(xiǎn)的抗性基因,深入研究抗性基因水平轉(zhuǎn)移的機(jī)制及其影響因素,解析抗性基因增殖和擴(kuò)散的機(jī)制,特別要關(guān)注抗性基因轉(zhuǎn)移到人類或動(dòng)物病原菌中的風(fēng)險(xiǎn);3)開展大尺度的流行病學(xué)數(shù)據(jù)收集及關(guān)聯(lián)分析。通過這幾個(gè)方面的研究,基本形成農(nóng)田環(huán)境抗性基因人類健康風(fēng)險(xiǎn)評價(jià)體系,為持續(xù)完善抗生素管理體系提供理論指導(dǎo)和數(shù)據(jù)支撐。
[1] HEDE K.Antibiotic resistance:An infectious arms race.Nature,2014,509(7498):S2-S3.
[2] WALSH T R,WEEKS J,LIVERMORE D M,et al.Dissemination of Ndm-1 positive bacteria in the New Delhi environment and its implications for human health:An environmental point prevalence study.The Lancet Infectious Diseases,2011,11(5):355-362.
[3] LIU Y Y,WANG Y,WALSH T R,et al.Emergence of plasmidmediated colistin resistance mechanism MCR-1 in animals and human beings in China:A microbiological and molecular biological study.The Lancet Infectious Diseases,2015,16(2):161-168.
[4] World Health Organization.Antimicrobial Resistance:Global Report on Surveillance.2014.http://www.who.int/drugresistance/documents/surveillancereport/en/.
[5] World Health Organization.Global Antimicrobial Resistance Surveillance System.2015.http://apps.who.int/iris/bitstream/10665/188783/1/9789241549400_eng.pdf.
[6] 中華人民共和國國家衛(wèi)生和計(jì)劃生育委員會(huì).遏制細(xì)菌耐藥國家行動(dòng)計(jì)劃(2016—2020年).[2016-08-05].http://www.nhfpc.gov.cn/yzygj/S3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml.National Health and Family Planning Commission of the People’s Republic of China.National Action Plan on the Containment of Bacteria Resistance(2016—2020).[2016-08-05].http://www.nhfpc.gov.cn/yzygj/S3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml.(in Chinese)
[7] D’COSTA V M,MCGRANN K M,HUGHES D W,et al.Sampling the antibiotic resistome.Science,2006,311(5759):374-377.
[8] FORSBERG K J,PATEL S,GIBSON M K,et al.Bacterial phylogeny structures soil resistomes across habitats.Nature,2014,509(7502):612-616.
[9] NESME J,SIMONET P.The soil resistome:A critical review on antibiotic resistance origins,ecology and dissemination potential in telluric bacteria.Environmental Microbiology,2015,17(4):913-930.
[10]徐春燕,蘇建強(qiáng),鄢慶枇,等.抗生素抗性組學(xué)研究進(jìn)展.海南大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,29(2):188-192.XU C Y,SU J Q,YAN Q P,et al.Research progresses of antibiotic resistomics.Natural Science Journal of Hainan University,2011,29(2):188-192.(in Chinese with English abstract)
[11]ZHU Y G,ZHAO Y,LI B,et al.Continental-scale pollution of estuaries with antibiotic resistance genes.Nature Microbiology,2017,2:16270.
[12]SU J Q,AN X L,LI B,et al.Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China.Microbiome,2017,5(1):84.
[13]RIZZO L,MANAIA C,MERLIN C,et al.Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment:A review.Science of the Total Environment,2013,447(1):345-360.
[14]THANNER S,DRISSNER D,WALSH F.Antimicrobial resistance in agriculture.mBio,2016,7(2):e02227-15.
[15]DAVIES J,DAVIES D.Origins and evolution of antibiotic resistance.Microbiology and Molecular Biology Reviews,2010,74(3):417-433.
[16]ZHU Y G,GILLINGS M,SIMONET P,et al.Microbial mass movements.Science,2017,357(6356):1099-1100.
[17]BERENDONK T U,MANAIA C M,MERLIN C,et al.Tackling antibiotic resistance:The environmental framework.Nature Reviews Microbiology,2015,13(5):310-317.
[18]BONDARCZUK K,MARKOWICZ A,PIOTROWSKA-SEGET Z.The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application.Environment International,2016,87:49-55.
[19]WICHMANN F,UDIKOVIC-KOLIC N,ANDREW S,et al.Diverse antibiotic resistance genes in dairy cow manure.mBio,2014,5(2):e01017-13.
[20]LI B,YANG Y,MA L P,et al.Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.The ISME Journal,2015,9(11):2490-2502.
[21]ZHU Y G,JOHNSON T A,SU J Q,et al.Diverse and abundant antibiotic resistance genes in Chinese swine farms.Proceedings of the National Academy of Sciences of the USA,2013,110(9):3435-3440.
[22]ZWONITZER M R,SOUPIR M L,JARBOE L R,et al.Quantifying attachment and antibiotic resistance from conventional and organic swine manure.Journal of Environment Quality,2016,45(2):609-617.
[23]HE L Y,YING G G,LIU Y S,et al.Discharge of swine wastes risks water quality and food safety:Antibiotics and antibiotic resistance genes from swine sources to the receiving environments.Environment International,2016,92/93:210-219.
[24]MICHAEL I,RIZZO L,MCARDELL C S,et al.Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review.Water Research,2013,47(3):957-995.
[25]LAU C H F,LI B,ZHANG T,et al.Impact of pre-application treatment on municipal sludge composition,soil dynamics of antibiotic resistance genes,and abundance ofantibioticresistance genes on vegetables at harvest.Science of the Total Environment,2017,587/588:214-222.
[26]CHEN Q L,AN X L,LI H,et al.Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil.Environment International,2016,92/93:1-10.
[27]SU J Q,WEI B,OUYANG W Y,et al.Antibiotic resistome and its association with bacterial communities during sewage sludge composting.Environmental Science Technology,2015,49(12):7356-7363.
[28]蘇建強(qiáng),黃福義,朱永官.環(huán)境抗生素抗性基因研究進(jìn)展.生物多樣性,2013,21(4):481-487.SU J Q,HUANG F Y,ZHU Y G.Antibiotic ressistance genes in the environment.Biodiversity Science,2013,21(4):481-487.(in Chinese with English abstract)
[29]SOHN E.Environment:Hothouse of disease.Nature,2017,543(7647):S44-S46.
[30]KAHN L H.Perspective:The one-health way.Nature,2017,543(7647):S47.
[31]PERRY J A,WESTMAN E L,WRIGHT G D.The antibiotic resistome:What’s new?Current Opinion in Microbiology,2014,21:45-50.
[32]N?LVAK H,TRUU M,KANGER K,et al.Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.Science of the Total Environment,2016,562:678-689.
[33]CYTRYN E.The soil resistome:The anthropogenic,the native,and the unknown.Soil Biology&Biochemistry,2013,63:18-23.
[34]FANG H,WANG H F,CAI L,et al.Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey.Environmental Science and Technology,2015,49(2):1095-1104.
[35]XIE W Y,MCGRATH S P,SU J Q,et al.Long-term impact of field applications of sewage sludge on soil antibiotic resistome.EnvironmentalScienceand Technology,2016,50(23):12602-12611.
[36]RAHUBE T O,MARTI R,SCOTT A,et al.Impact of fertilizing with raw or anaerobically-digested sewage sludge on the abundance of antibiotic-resistant coliforms,antibiotic resistance genes and pathogenic bacteria in soil,and on vegetables at harvest.Applied and Environmental Microbiology,2014,80(22):6898-6907.
[37]YOUNGQUIST C P,MITCHELL S M,COGGER C G.Fate of antibiotics and antibiotic resistance during digestion and composting:A review.Journal of Environment Quality,2016,45(2):537-545.
[38]WU Y,CUI E P,ZUO Y R,et al.Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and classⅠintegrons in municipal wastewater sludge.Bioresource Technology,2016,211:414-421.
[39]GOTHWAL R,SHASHIDHAR T.Antibiotic pollution in the environment:A review.Clean-Soil,Air,Water,2015,43(4):479-489.
[40]MCLAIN J E,CYTRYN E,DURSO L M,et al.Culture-based methods for detection of antibiotic resistance in agroecosystems:Advantages,challenges,and gaps in knowledge.Journal of Environment Quality,2016,45(2):432-440.
[41]LUBY E,IBEKWE A M,ZILLES J,et al.Molecular methods for assessment of antibiotic resistance in agricultural ecosystems:Prospects and challenges.Journal of Environment Quality,2016,45(2):441-453.
[42]SU J Q,CUI L,CHEN Q L,et al.Application of genomic technologies to measure and monitor antibiotic resistance in animals.Annals of the New York Academy of Sciences,2017,1388(1):121-135.
[43]BRANDTKK,AMéZQUITAA,BACKHAUST,etal.Ecotoxicological assessment of antibiotics:A call for improved consideration ofmicroorganisms.EnvironmentInternational,2015,85:189-205.
[44]國家衛(wèi)生計(jì)生委合理用藥專家委員會(huì).全國細(xì)菌耐藥監(jiān)測技術(shù)方案.[2016-08-09].http://www.carss.cn/download/details/334.Committee of Experts on Rational Drug Use,National Health and Family Planning Commission of the People’s Republic of China.National Technology Programme of Monitoring Bacterial Resistance.[2016-08-09].http://www.carss.cn/download/details/334.(in Chinese)
[45]XIAO K Q,LI B,MA L,et al.Metagenomic profiles of antibiotic resistance genes in paddy soils from south China.FEMS Microbiology Ecology,2016,92(3):fiw023.
[46]KNAPP C W,MCCLUSKEY S M,SINGH B K,et al.Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils.PLoS One,2011,6(11):e27300.
[47]LI J,WANG T,SHAO B,et al.Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots:Potential transfer to agricultural lands.Environmental Health Perspectives,2012,120(8):1144-1149.
[48]WANG F H,QIAO M,CHEN Z,et al.Antibiotic resistance genes in manure-amended soil and vegetables at harvest.Journal of Hazardous Materials,2015,299:215-221.
[49]KNAPP C W,DOLFING J,EHLERT P A I,et al.Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940.Environmental Science&Technology,2010,44(2):580-587.
[50]PAL C,BENGTSSON-PALME J,KRISTIANSSON E,et al.The structure and diversity of human,animal and environmental resistomes.Microbiome,2016,4(1):54.
[51]ASHBOLT N J,AMEZQUITA A,BACKHAUS T,et al.Human health risk assessment(HHRA)for environmental development and transfer of antibiotic resistance.Environmental Health Perspectives,2013,121(9):993-1001.
[52]ROTHROCK M J,KEEN P L,COOK K L,et al.How should we be determining background and baseline antibiotic resistance levelsin agroecosystem research?JournalofEnvironment Quality,2016,45(2):420-431.
[53]FORSBERG K J,REYES A,WANG B,et al.The shared antibiotic resistome of soil bacteria and human pathogens.Science,2012,337(6098):1107-1111.
[54]D’COSTA V M,KING C E,KALAN L,et al.Antibiotic resistance is ancient.Nature,2011,477(7365):457-461.
[55]FIERER N,LEFF J W,ADAMS B J,et al.Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.Proceedings of the National Academy of Sciences of the USA,2012,109(52):21390-21395.
[56]SU J Q,WEI B,XU C Y,et al.Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China.Environment International,2014,65:9-15.
[57]ZHANG G,LECLERCQ S O,TIAN J J,et al.A new subclass of intrinsic aminoglycoside nucleotidyltransferases,ANT(3")-Ⅱ,is horizontally transferred among Acinetobacter spp.by homologous recombination.PLoS Genetics,2017,13(2):e1006602.
[58]DARMON E,LEACH D R F.Bacterial genome instability.Microbiology and Molecular Biology Reviews,2014,78(1):1-39.
[59]SOUCY S M,HUANG J,GOGARTEN J P.Horizontal gene transfer:Building the web of life.Nature Reviews Genetics,2015,16(8):472-482.
[60]GILLINGSM R.Lateralgenetransfer,bacterialgenome evolution,and the anthropocene.Annals of the New York Academy of Sciences,2016,1389(1):20-36.
[61]SENTCHILO V,MAYER A P,GUY L,et al.Community-wide plasmid gene mobilization and selection.The ISME Journal,2013,7(6):1173-1186.
[62]PARTRIDGE S R,TSAFNAT G,COIERA E,et al.Gene cassettes and cassette arrays in mobile resistance integrons.FEMS Microbiology Reviews,2009,33(4):757-784.
[63]KLüMPER U,DECHESNE A,RIBER L,et al.Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner.The ISME Journal,2017,11(1):152-165.
[64]KLüMPER U,RIBER L,DECHESNE A,et al.Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community.The ISME Journal,2015,9(4):934-945.
[65]ANDAM C P,FOURNIER G P,GOGARTEN J P.Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer.FEMS Microbiology Reviews,2011,35(5):756-767.
[66]CAMBRAY G,GUEROUT A M,MAZEL D.Integrons.Annual Review of Genetics,2010,44:141-166.
[67]JECHALKE S,SCHREITER S,WOLTERS B,et al.Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis.Frontiers in Microbiology,2014,4:420.
[68]MODI S R,LEE H H,SPINA C S,et al.Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome.Nature,2013,499(7457):219-222.
[69]TOUSSAINT A,CHANDLER M.Prokaryote genome fluidity:Toward a system approach of the mobilome//VAN HELDEN J,TOUSSAINT A,THIEFFRY D.Bacterial Molecular Networks:Methods and Protocols.New York,USA:Springer,2012:57-80.
[70]DAVID B,RADZIEJWOSKI A,TOUSSAINT F,et al.Natural DNA transformation is functional in Lactococcus lactis subsp.cremoris Kw2.Applied and Environmental Microbiology,2017,83(16):e01074-17.
[71]QIU Z G,YU Y M,CHEN Z L,et al.Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera.Proceedings of the National Academy of Sciences of the USA,2012,109(13):4944-4949.
[72]KLüMPER U,DROUMPALI A,DECHESNE A,et al.Novel assay to measure the plasmid mobilizing potential of mixed microbial communities.Frontiers in Microbiology,2014,5:730.
[73]BELLANGER X,GUILLOTEAU H,BONOT S,et al.Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices:A practical approach for a critical review.Science of the Total Environment,2014,493:872-882.
[74]MARTíNEZ J L,COQUE T M,BAQUERO F.Prioritizing risks of antibiotic resistance genes in all metagenomes.Nature Reviews Microbiology,2015,3(6):396.
[75]SARMAH A K,MEYER M T,BOXALL A B A.A global perspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics(VAs)in the environment.Chemosphere,2006,65(5):725-759.
[76]ANDERSSON D I,HUGHES D.Microbiological effects of sublethal levels of antibiotics.Nature Reviews Microbiology,2014,12(7):465-478.
[77]GAZE W H,ABDOUSLAM N,HAWKEY P M,et al.Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment.Antimicrobial Agents&Chemotherapy,2005,49(5):1802-1807.
[78]HU H W,WANG J T,LI J,et al.Field-based evidence for copper contamination induced changesofantibiotic resistance in agriculturalsoils.EnvironmentalMicrobiology,2016,18(11):3896-3909.
[79]PAL C,BENGTSSON-PALME J,RENSING C,et al.BacMet:Antibacterial biocide and metal resistance genes database.Nucleic Acids Research,2013,42(D1):D737-D743.
[80]丁誠實(shí),潘杰,高園,等.納米金屬氧化物對耐藥基因水平轉(zhuǎn)移的影響.濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,30(4):281-286.DING C S,PAN J,GAO Y,et al.Horizontal transfer of drug resistance genes promoted by metal oxide nanoparticles.Journal of University of Jinan(Science and Technology),2016,30(4):281-286.(in Chinese with English abstract)
[81]SAN MILLAN A,TOLL-RIERA M,QI Q,et al.Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa.Nature Communications,2015,6:6845.
[82]MARTINEZ J L.General principles of antibiotic resistance in bacteria.Drug Discovery Today:Technologies,2014,11:33-39.
[83]WILLIAMS-NGUYEN J,SALLACH J B,BARTELT-HUNT S,et al.Antibiotics and antibiotic resistance in agroecosystems:State of the science.Journal of Environment Quality,2016,45(2):394-406.
[84]李湉湉.環(huán)境健康風(fēng)險(xiǎn)評估方法第一講:環(huán)境健康風(fēng)險(xiǎn)評估概述及其在我國應(yīng)用的展望(待續(xù)).環(huán)境與健康雜志,2015,32(3):266-268.LI T T.Environmental health risk assessment methods,first lecture:Environmental health risk assessment overview and outlook in ourapplication (tobe continued).Journalof Environment and Health,2015,32(3):266-268.(in Chinese)
[85]YANG Y,JIANG X T,CHAI B L,et al.ARGs-OAP:Online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database.Bioinformatics,2016,32(15):2346-2351.
[86]World Health Organization.Report of the 1st Meeting of the WHO AdvisoryGroup on Integrated SurveillanceofAntimicrobial Resistance,Copenhagen,15-19 June 2009.Geneva,Switzerland,2011.
[87]SUBBIAH M,MITCHELL S M,CALL D R.Not all antibiotic use practices in food-animal agriculture afford the same risk.Journal of Environment Quality,2016,45(2):618-629.
[88]KLEINEIDAM K,SHARMA S,KOTZERKE A,et al.Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils.Microbial Ecology,2010,60(4):703-707.
[89]CEVHERI C.Maize growth promotion of bacteria isolates from semi-arid region of Turkey.Journal of Food Agriculture&Environment,2012,10(2):1269-1272.
[90]MAINARDI J L,VILLET R,BUGG T D,et al.Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in gram-positive bacteria.FEMS Microbiology Reviews,2008,32(2):386-408.
[91]HEINEMANN M,KüMMEL A,RUINATSCHA R,et al.In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network.Biotechnology and Bioengineering,2005,92(7):850-864.
[92]MARTINEZ J L.Environmental pollution by antibiotics and by antibiotic resistance determinants.EnvironmentalPollution,2009,157(11):2893-2902.
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2017年6期