為保持正常血流,血管壁會(huì)改變其結(jié)構(gòu)以維持合適的內(nèi)腔尺寸,這個(gè)過程被定義為血管重塑[1]。血管重塑可發(fā)生在多種病理狀態(tài)如高血壓、動(dòng)脈粥樣硬化、血管再狹窄等,抑制病理性血管重塑具有重要臨床意義。研究顯示,多種細(xì)胞活動(dòng)參與了血管重塑的過程,包括細(xì)胞骨架重塑、細(xì)胞增殖、細(xì)胞遷移以及細(xì)胞外基質(zhì)的合成、降解等[2-4]。其中,血管內(nèi)皮損傷是這一系列病理過程的始動(dòng)因素,而血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMCs)的遷移和增殖引起的內(nèi)膜增厚是血管重塑最重要的細(xì)胞學(xué)基礎(chǔ)。環(huán)磷腺苷(cyclic adenosine monophosphate,cAMP)通路可通過調(diào)控下游效應(yīng)分子來促進(jìn)血管內(nèi)皮修復(fù)、抑制血管內(nèi)膜增生及血小板聚集等,從而抑制血管重塑,但具體機(jī)制尚未明確,本文就該領(lǐng)域的研究進(jìn)展情況作一闡述。
cAMP作為第二信使,可調(diào)節(jié)多種細(xì)胞功能,包括細(xì)胞分化、增殖、凋亡、遷移,也參與調(diào)節(jié)細(xì)胞形態(tài)和骨架重塑[5]。很多細(xì)胞外的刺激因子如激素、神經(jīng)遞質(zhì)、生長(zhǎng)因子都可通過結(jié)合其同源的G蛋白偶聯(lián)受體,激活腺苷酸環(huán)化酶(adenylate cyclase,AC),催化細(xì)胞內(nèi)三磷腺苷(adenosine triphosphate,ATP)生成c AMP[6]。相反,磷酸二酯酶(phosphodiesterases,PDEs)又可催化降解cAMP,從而對(duì)cAMP水平進(jìn)行負(fù)反饋調(diào)節(jié),磷酸二酯酶家族共有11組成員,其中PDE4、PDE7、PDE8特異性作用于cAMP;PDE5、PDE6、PDE9特異性作用于環(huán)磷鳥苷(cyclic guanosine monophosphate,cGMP);PDE1、PDE2、PDE3、PDE10和PDE11對(duì)cAMP和cGMP都有促降解作用[7]。
cAMP主要作用靶點(diǎn)有cAMP依賴蛋白激酶A(protein kinase A,PKA)和cAMP直接激活的交換蛋白(exchange protein directly activated by cAMP,Epac)兩個(gè)。PKA是一種依賴cAMP的蛋白激酶,是由兩個(gè)催化亞基和兩個(gè)調(diào)節(jié)亞基組成的四聚體。根據(jù)調(diào)節(jié)亞基的不同,PKA又分為:PKAⅠ和PKAⅡ。當(dāng)每個(gè)調(diào)節(jié)亞基結(jié)合2個(gè)cAMP分子后,四聚體即游離為1個(gè)由調(diào)節(jié)亞基組成的二聚體和2個(gè)催化亞基,后者可磷酸化不同的靶蛋白[8]。PKA的亞細(xì)胞定位主要由A型激酶錨定蛋白(A-kinase anchor proteins,AKAPs)決定,AKAPs可將PKA錨定在合適的亞細(xì)胞區(qū)域,還可引導(dǎo)PKA接近作用底物。此外,AKAPs還可引導(dǎo)PKA和PDEs至共同區(qū)域[9]。Epac是cAMP另一種效應(yīng)分子,有Epac1和Epac2兩種形式,兩者有不同的域結(jié)構(gòu)。Epac1在全身組織都有分布,在卵巢、甲狀腺、腎臟中高表達(dá);Epac2主要分布在腦、腎上腺,cAMP必須通過Epac作用才能使Rap1(Ras超家族成員)脫離GDP,結(jié)合GTP,表現(xiàn)為活性狀態(tài),激活下游分子,從而調(diào)控細(xì)胞生長(zhǎng)、分泌、黏附等[10]。
血管內(nèi)皮由連續(xù)單層內(nèi)皮細(xì)胞組成,參與凝血、血栓形成、平滑肌細(xì)胞功能調(diào)節(jié)、炎癥細(xì)胞的黏附和遷移,可產(chǎn)生具有血管保護(hù)作用的一氧化氮(nitric oxide,NO),這些功能必須依靠單細(xì)胞層結(jié)構(gòu)的完整,而血管內(nèi)皮連接的完整性主要由細(xì)胞間黏附連接和緊密連接維持。血管內(nèi)皮完整性被破壞后,激活了凝血酶系統(tǒng),導(dǎo)致血小板的黏附和聚集,形成血栓。FANTIDIS等[11]在豬冠狀動(dòng)脈損傷模型中發(fā)現(xiàn),使用腺苷酸環(huán)化酶激活劑Forskolin后,模型動(dòng)物細(xì)胞內(nèi)cAMP水平上升,與不給藥的對(duì)照組相比,內(nèi)皮剝脫區(qū)域明顯減小。另外,cAMP可抑制損傷因素誘導(dǎo)的內(nèi)皮炎癥,血管內(nèi)皮炎癥以內(nèi)皮細(xì)胞表面黏附分子的增加及內(nèi)皮通透性增加為主要特征[12]。多種炎癥因子可增加內(nèi)皮的通透性,如內(nèi)皮生長(zhǎng)因子、腫瘤壞死因子(tumour necrosis factor,TNF)-α、凝血酶、白細(xì)胞介素(interleukin,IL)-16、血管緊張素Ⅱ。細(xì)胞內(nèi)cAMP水平的提高可促進(jìn)抗炎因子如IL-10的表達(dá),降低促炎癥因子如IL-12的水平[13]。凝血酶可降低內(nèi)皮細(xì)胞內(nèi)cAMP水平且促進(jìn)鈣離子內(nèi)流,導(dǎo)致內(nèi)皮通透性增加,提高cAMP水平可抑制凝血酶誘導(dǎo)的鈣離子內(nèi)流,從而降低通透性[14]。cAMP還可通過激活PKA-Rac1(小G蛋白超家族成員)途徑重排細(xì)胞骨架,加強(qiáng)內(nèi)皮細(xì)胞間連接,當(dāng)內(nèi)皮細(xì)胞PKA或是Rac1活性被抑制之后,內(nèi)皮通透性增加[15]。Park等[16]發(fā)現(xiàn),體外培養(yǎng)的顱內(nèi)動(dòng)脈內(nèi)皮細(xì)胞給予Forskolin或是特異性Eapc1激動(dòng)劑8-Cpt-cAMP處理后,細(xì)胞黏附分子1(intercellular adhesion molecule 1,ICAM-1)表達(dá)上升,但是給予PKA特異性激動(dòng)劑N6-Bnz-cAMP或是抑制劑H-89處理卻沒有影響ICAM-1的表達(dá),提示cAMP是通過Epac途徑而并非PKA途徑來調(diào)控ICAM-1的水平[16]。LEHRKE等[17]研究也發(fā)現(xiàn),PDE4抑制劑——羅氟司特是通過Epac途徑而并非PKA途徑來抑制TNF-α,誘導(dǎo)血管黏附分子1(vascular adhesion molecule 1,VCAM-1)的高表達(dá)。Eapc1-Rap1途徑可抑制小G蛋白超家族成員——Ras同源基因家族成員A(ras homolog gene family,member A,RhoA)的活性,且調(diào)節(jié)關(guān)鍵的連接蛋白,包括血管鈣粘連蛋白(VE-cadherin)、連環(huán)蛋白(β-catenin)、緊密連接蛋白加強(qiáng)臍靜脈內(nèi)皮細(xì)胞之間的緊密連接和黏附連接[18-19]。
此外,cAMP途徑可調(diào)控炎癥細(xì)胞的浸潤(rùn),用腺苷酸環(huán)化酶激動(dòng)劑Forskolin或PDE4抑制劑升高cAMP水平可抑制中性粒細(xì)胞、嗜酸性粒細(xì)胞和單核細(xì)胞的趨化運(yùn)動(dòng)[20-21];PKA酶抑制劑可阻止cAMP抑制白細(xì)胞遷移的作用,提示cAMP抑制白細(xì)胞遷移的作用可通過PKA途徑實(shí)現(xiàn)[22-23]。此外,cAMP還可通過抑制血管內(nèi)皮細(xì)胞中活性氧簇(reactive oxygen species,ROS)的生成及升高NO水平發(fā)揮內(nèi)皮保護(hù)作用。不對(duì)稱二甲基精氨酸(asymmetric dimethylarginine,ADMA)是一種內(nèi)源性NO合酶抑制劑,可以被二甲基精氨酸二甲胺水解酶(dimethylarginine dimethylaminohydrolase,DDAH)降解,DDAH在內(nèi)皮損傷中扮演重要角色,PDE3/PDE4聯(lián)合抑制劑托拉芬群通過cAMP-PKA途徑可提高DDAH啟動(dòng)子活性、蛋白表達(dá)以及酶活性,促進(jìn)ADMA的失活來提高NO水平,同時(shí)促進(jìn)內(nèi)皮細(xì)胞生存和增殖,抑制ADMA誘導(dǎo)的內(nèi)皮細(xì)胞凋亡[24]。
VSMCs可直接調(diào)節(jié)血管緊張度和血壓,保持血管的完整性,VSMCs的異常增殖和收縮會(huì)導(dǎo)致多種血管疾病:正常狀態(tài)下VSMCs是處于靜態(tài)的,在病理狀態(tài)下如動(dòng)脈粥樣硬化或血管再狹窄,VSMCs向內(nèi)膜遷移且增殖[25-27]。MAASS等[28]在對(duì)6個(gè)孟德爾型高血壓(hypertension and brachydactyly syndrome,HTNB)家族研究時(shí)發(fā)現(xiàn),HTNB患者的VSMCs中PDE3基因產(chǎn)生變異,從而導(dǎo)致PDE3磷酸化增強(qiáng),細(xì)胞內(nèi)cAMP水平降低,導(dǎo)致VSMCs增殖能力增強(qiáng)。研究顯示,腎素-血管緊張素-醛固酮系統(tǒng)的激活參與了多種血管重構(gòu)的進(jìn)程,血管緊張素Ⅱ已被證實(shí)可誘導(dǎo)VSMCs的遷移、增殖和凋亡[29]。自發(fā)性高血壓大鼠內(nèi)源性血管緊張素Ⅱ的升高可誘導(dǎo)Gi蛋白的表達(dá),從而降低AC活性,促進(jìn)VSMCs增殖;體外培養(yǎng)的VSMCs給予db-acAMP處理后可拮抗血管緊張素誘導(dǎo)Gi蛋白的高表達(dá),抑制VSMCs增殖[30]。早期生長(zhǎng)反應(yīng)因子1(early growth response,Egr1)在VSMCs和血管內(nèi)皮細(xì)胞中是細(xì)胞增殖必需的正向調(diào)節(jié)因子。KIMURA等[31]發(fā)現(xiàn),使用Forskolin刺激細(xì)胞,使cAMP水平提高后通過PKA和Eapc的協(xié)同作用可使血管平滑肌細(xì)胞Egr1蛋白表達(dá)降低,但是內(nèi)皮細(xì)胞中cAMP的上升卻促進(jìn)了Egr1蛋白的表達(dá),因此,cAMP途徑對(duì)VSMCs和血管內(nèi)皮細(xì)胞增殖的調(diào)控作用并不相同[31]。
貝前列環(huán)素是一種血管保護(hù)因子,一般臨床上應(yīng)用于肺動(dòng)脈高壓及慢性動(dòng)脈閉塞性疾病的治療。在支架植入的動(dòng)物模型研究中,使用貝前列環(huán)素給藥后可抑制支架區(qū)域的原位血小板聚集和VSMCs增殖,抑制內(nèi)膜增生,減輕支架植入后再狹窄[32]。將前列環(huán)素合酶基因轉(zhuǎn)染至兔球囊損傷頸動(dòng)脈區(qū)域,可降低損傷后動(dòng)脈內(nèi)膜增生;同樣,用前列環(huán)素給藥也可降低損傷后頸動(dòng)脈內(nèi)膜增生[33]。貝前列環(huán)素可提高細(xì)胞內(nèi)cAMP水平且通過cAMP-Eapc-Rap1抑制RhoA活性來調(diào)節(jié)細(xì)胞骨架重塑,進(jìn)而抑制VSMCs的遷移和內(nèi)膜增生[34]。細(xì)胞內(nèi)cAMP水平的升高還可抑制血管纖維化,cAMP通過激活環(huán)核苷酸陽離子門控通道使細(xì)胞內(nèi)鈣離子水平上升,進(jìn)而促進(jìn)溶酶體對(duì)Ⅰ型膠原的降解,降低VSMC胞內(nèi)及分泌到胞外Ⅰ型膠原的含量,它不是通過PKA途徑而是Eapc途徑實(shí)現(xiàn)這一功能[35]。
在損傷因素作用下,如動(dòng)脈粥樣硬化斑塊破裂、支架的直接異物刺激、球囊擴(kuò)張及支架釋放產(chǎn)生的機(jī)械張力,血管內(nèi)皮完整性受到破壞,這些均可激活凝血酶系統(tǒng),導(dǎo)致血小板的黏附和聚集,形成血栓。因此,控制血小板的異常激活對(duì)預(yù)防病理性血栓形成有重要作用。健康血管中,血管內(nèi)皮來源的前列環(huán)素(prostacyclin,PGI2)和NO可抑制病理性血栓形成,內(nèi)皮來源的NO可提高sGC活性,使cGMP水平升高,從而抑制血小板過度激活。與NO不同,PGI2主要通過提高AC酶活性,激活cAMPPKA途徑來抑制血小板的激活[36]。在血管損傷位點(diǎn),cAMP信號(hào)通路受到抑制[37],活化的血小板產(chǎn)生二磷腺苷(adenosine diphosphate,ADP),ADP通過結(jié)合Gαi-coupled P2Y12來抑制AC活性,阻止cAMP的生成[38]。凝血酶和血小板反應(yīng)蛋白-1也可激活PDE3A,降解細(xì)胞內(nèi)的cAMP,進(jìn)一步促進(jìn)血小板活化,從而產(chǎn)生級(jí)聯(lián)放大效應(yīng)[39-40]。多種生物因子如凝血酶、腎上腺素等均可激活血小板,血小板激活因子都需要通過G蛋白偶聯(lián)受體(G proteincoupled receptor,GPCRs)和G蛋白異源三聚偶聯(lián)途徑來激活血小板[41-42]。為應(yīng)對(duì)細(xì)胞外各種信號(hào),血小板擁有不同種類的GPCRs,血小板包含Gαs和Gαi,在調(diào)節(jié)cAMP方面和其他細(xì)胞相同;血小板抑制劑如前列環(huán)素、前列腺素E1、垂體腺苷酸環(huán)化酶活化肽(pituitary adenylate cyclase activating peptide,PACAP),通過Gαs激活A(yù)C,上調(diào)胞內(nèi)cAMP水平;血小板激動(dòng)劑如凝血酶、腎上腺素是通過Gαi來抑制AC,降低cAMP水平;血小板表達(dá)的Gαz蛋白也可以抑制AC活性及cAMP的生成[43]。
抑制血管重構(gòu)在心腦血管疾病預(yù)防及治療(尤其是介入治療)中發(fā)揮重要作用,越來越多的證據(jù)表明cAMP信號(hào)通路具有心腦血管的保護(hù)作用,cAMP途徑通過促進(jìn)內(nèi)皮修復(fù),抑制血管炎癥、內(nèi)膜增生和血栓形成來減緩血管重構(gòu)。此外,cAMP途徑的激活還可以減輕缺血性卒中再灌注損傷、心肌梗死后再灌注損傷、抑制心肌重構(gòu)、促進(jìn)神經(jīng)元修復(fù)及生長(zhǎng)、改善卒中后認(rèn)知功能。
目前,可升高細(xì)胞內(nèi)cAMP水平的藥物如PDEs抑制劑在臨床上已應(yīng)用于哮喘、慢性阻塞性肺病、肺動(dòng)脈高壓的預(yù)防和治療,而貝前列環(huán)素在肺動(dòng)脈高壓、慢性閉塞性周圍血管疾病的臨床應(yīng)用也基于激活cAMP通路。已有廣泛的動(dòng)物實(shí)驗(yàn)都支持cAMP通路可作為動(dòng)脈粥樣硬化、支架置入術(shù)后或機(jī)械取栓后血管再狹窄預(yù)防和治療的靶點(diǎn),但由于cAMP參與了多種生命活動(dòng)的調(diào)節(jié),所以,基于cAMP信號(hào)通路的精準(zhǔn)和局部治療顯得尤為重要。
[1] GIBBONS G H,DZAU V J.The emerging concept of vascular remodeling[J].N Engl J Med,1994,330(20):1431-1438.
[2] MCGRATH J C,DEIGHAN C,BRIONES A M,et al.New aspects of vascular remodelling:the involvement of all vascular cell types[J].Exp Physiol,2005,90(4):469-475.
[3] BRIONES A M,ARRIBAS S M,SALAICES M.Role of extracellular matrix in vascular remodeling of hypertension[J].Curr Opin Nephrol Hypertens,2010,19(2):187-194.
[4] INTENGAN H D,SCHIFFRIN E L.Vascular remodeling in hypertension:roles of apoptosis,inflammation,and fibrosis[J].Hypertension,2001,38(3):581-587.
[5] BEAVO J A,BRUNTON L L.Cyclic nucleotide research -- still expanding after half a century[J].Nat Rev Mol Cell Biol,2002,3(11):710-718.
[6] KOPPERUD R,KRAKSTAD C,SELHEIM F,et al.cAMP effector mechanisms.Novel twists for an 'old'signaling system[J].FEBS Lett,2003,546(1):121-126.
[7] CONTI M,BEAVO J.Biochemistry and physiology of cyclic nucleotide phosphodiesterases:essential components in cyclic nucleotide signaling[J].Annu Rev Biochem,2007,76(7):481-511.
[8] LORENOWICZ M J,F(xiàn)ERNANDEZ-BORJA M,HORDIJK P L.cAMP signaling in leukocyte transendothelial migration[J].Arterioscler Thromb Vasc Biol,2007,27(5):1014-1022.
[9] RABABA'H A,SINGH S,SURYAVANSHI S V,et al.Compartmentalization role of A-kinase anchoring proteins (AKAPs) in mediating protein kinase A(PKA) signaling and cardiomyocyte hypertrophy[J].Int J Mol Sci,2014,16(1):218-229.
[10] JEYARAJ SC,UNGER NT,CHOTANI MA.Rap1 GTPases:an emerging role in the cardiovasculature[J].Life Sci,2011,88(15-16):645-652.
[11] FANTIDIS P,F(xiàn)ERNANDEZ-ORTIZ A,ARAGONCILLO P,et al.Effect of cAMP on the function of endothelial cells and fibromuscular proliferation after the injury of the carotid and coronary arteries in a porcine model[J].Rev Esp Cardiol,2001,54(8):981-989.
[12] SHAW SK,PERKINS BN,LIM YC,et al.Reduced expression of junctional adhesion molecule and platelet/endothelial cell adhesion molecule-1 (CD31)at human vascular endothelial junctions by cytokines tumor necrosis factor-alpha plus interferon-gamma does not reduce leukocyte transmigration under flow[J].Am J Pathol,2001,159(6):2281-2291.
[13] ELENKOV IJ,WILDER RL,CHROUSOS GP,et al.The sympathetic nerve--an integrative interface between two super systems:the brain and the immune system[J].Pharmacol Rev,2000,52(4):595-638.
[14] MATSUMOTO Y,MARUKAWA K,OKUMURA H,et al.Comparative study of antiplatelet drugs in vitro:distinct effects of cAMP-elevating drugs and GPIIb/IIIa antagonists on thrombin-induced platelet responses[J].Thromb Res,1999,95(1):19-29.
[15] KOMAROVA Y,MALIK AB.Regulation of endothelial permeability via paracellular and transcellular transport pathways[J].Annu Rev Physiol,2010,72(10):463-493.
[16] PARK TY,BAIK EJ,LEE SH.Prostaglandin E(2)-induced intercellular adhesion molecule-1 expression is mediated by cAMP/Epac signalling modules in bEnd.3 brain endothelial cells[J].Br J Pharmacol,2013,169:604-618.
[17] LEHRKE M,KAHLES F,MAKOWSKA A,et al.PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner[J].J Mol Cell Cardiol,2015,81(4):23-33.
[18] PARNELL E,YARWOOD SJ.Interactions between Epac1 and ezrin in the control of endothelial barrier function[J].Biochem Soc Trans,2014,42(2):274-278.
[19] SCHLEGEL N,WASCHKE J.cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation[J].Cell Tissue Res,2014,355(3):587-596.
[20] ELFERINK JG,DE KOSTER BM.Inhibition of interleukin-8-activated human neutrophil chemotaxis by thapsigargin in a calcium- and cyclic AMP-dependent way[J].Biochem Pharmacol,2000,59(4):369-375.
[21] VANUFFELEN BE,DE KOSTER BM,ELFERINK JG.Interaction of cyclic GMP and cyclic AMP during neutrophil migration:involvement of phosphodiesterase type III[J].Biochem Pharmacol,1998,569(8):1061-1063.
[22] DONG H,OSMANOVA V,EPSTEIN PM,et al.Phosphodiesterase 8 (PDE8) regulates chemotaxis of activated lymphocytes[J].Biochem Biophys Res Commun,2006,345(2):713-719.
[23] LANG P,GESBERT F,DELESPINECARMAGNAT M,et al.Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes[J].EMBO J,1996,15(3):510-519.
[24] PULLAMSETTI SS,SAVAI R,SCHAEFER MB,et al.cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases[J].Circulation,2011,123(11):1194-1204.
[25] DZAU VJ,BRAUN-DULLAEUS RC,SEDDING DG.Vascular proliferation and atherosclerosis:new perspectives and therapeutic strategies[J].Nat Med,2002,8(11):1249-1256.
[26] LACOLLEY P,REGNAULT V,NICOLETTI A,et al.The vascular smooth muscle cell in arterial pathology:a cell that can take on multiple roles[J].Cardiovasc Res,2012,95(2):194-204.
[27] MARX SO,TOTARY-JAIN H,MARKS AR.Vascular smooth muscle cell proliferation in restenosis[J].Circ Cardiovasc Interv,2011,4(1):104-111.
[28] MAASS PG,AYDIN A,LUFT FC,et al.PDE3A mutations cause autosomal dominant hypertension with brachydactyly[J].Nat Genet,2015,47(6):647-653.
[29] BIHL JC,ZHANG C,ZHAO Y,et al.Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells,vascular remodeling and hemorrhagic stroke:Role of the NFsmall ka,CyrillicB inflammatory pathway[J].Vascul Pharmacol,2015,73(10):115-123.
[30] GUSAN S,ANAND-SRIVASTAVA MB.cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR:role of ROS and ROS-mediated signaling[J].Am J Physiol Cell Physiol,2013,304:C1198-C1209.
[31] KIMURA T E,DUGGIRALA A,HINDMARCH C C,et al.Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells[J].J Mol Cell Cardiol,2014,72(7):9-19.
[32] SEIJI K,TSUDA M,MATSUHASHI T,et al.Treatment of in-stent restenosis with beraprost sodium:an experimental study of short- and intermediate-term effects in dogs[J].Clin Exp Pharmacol Physiol,2009,36(12):1164-1169.
[33] HARADA M,TOKI Y,NUMAGUCHI Y,et al.Prostacyclin synthase gene transfer inhibits neointimal formation in rat balloon-injured arteries without bleeding complications[J].Cardiovasc Res,1999,43(2):481-491.
[34] MCKEAN J S,MURRAY F,GIBSON G,et al.The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP[J].Cardiovasc Res,2015,107(9):546-555.
[35] CAI Y,MILLER C L,NAGEL D J,et al.Cyclic nucleotide phosphodiesterase 1 regulates lysosomedependent type I collagen protein degradation in vascular smooth muscle cells[J].Arterioscler Thromb Vasc Biol,2011,31(3):616-623.
[36] SMOLENSKI A.Novel roles of cAMP/cGMP-dependent signaling in platelets[J].J Thromb Haemost,2012,10(2):167-176.
[37] RASLAN Z,ABURIMA A,NASEEM K M.The spatiotemporal regulation of cAMP signaling in blood platelets-old friends and new players[J].Front Pharmacol,2015,6(11):266.
[38] GACHET C.P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells[J].Purinergic Signal,2012,8(3):609-619.
[39] ZHANG W,COLMAN R W.Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A[J].Blood,2007,110(10):1475-1482.
[40] ROBERTS W,MAGWENZI S,ABURIMA A,et al.Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade[J].Blood,2010,116(20):4297-4306.
[41] WOULFE D S.Platelet G protein-coupled receptors in hemostasis and thrombosis[J].J Thromb Haemost,2005,3(10):2193-2200.
[42] OFFERMANNS S.Activation of platelet function through G protein-coupled receptors[J].Circ Res,2006,99(12):1293-1304.
[43] VAN GEET C,IZZI B,LABARQUE V,et al.Human platelet pathology related to defects in the G-protein signaling cascade[J].J Thromb Haemost,2009,7(Suppl 1):282-286.