• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of aromatic impurities in liquefied petroleumgas by solid-phase extraction sampling coupled withgas chromatography-mass spectrometry

    2017-01-09 11:56:48LIHaiFangGAOCuihuaLINJinMing100084
    色譜 2017年1期
    關(guān)鍵詞:石油氣苯乙烯標(biāo)準(zhǔn)偏差

    LI Hai-Fang, GAO Cuihua, LIN Jin-Ming(,,,100084,)

    Special issue for commemorating Professor ZOU Hanfa (Ⅱ)·Article

    Investigation of aromatic impurities in liquefied petroleumgas by solid-phase extraction sampling coupled withgas chromatography-mass spectrometry

    LI Hai-Fang, GAO Cuihua, LIN Jin-Ming*
    (BeijingKeyLaboratoryofMicroanalyticalMethodsandInstrumentation,DepartmentofChemistry,TsinghuaUniversity,Beijing100084,China)

    A dynamic solid-phase extraction system for sampling and synchronous preconcentration of aromatic impurities from liquefied petroleum gas (LPG) with graphitized carbon black (GCB) sorbents was constructed. The target aromatics (benzene, toluene, xylenes, styrene and naphthalene) were rapidly collected from LPG flow and analyzed with gas chromatography-mass spectrometry. Compared with C18 and poly (styrene-divinylbenzene) copolymer sorbents, the tandem packed GCB cartridges presented the highest extraction efficiency for capturing aromatics from LPG. The sampling efficiency, reproducibility and storage stability of aromatics on the adsorption GCB cartridge were evaluated. The quantification curves of eight aromatics in nitrogen simulative gas flow were linear in the range of 15-1 000 μg/m3. The developed sampling method presented good advantages of high recoveries (92.9%-109.0%), low method detection limits (1.0-6.2 μg/m3), together with excellent precision (relative standard deviations: 0.6%-5.8%) and accuracy (relative errors: 0.8%-8.2%), respectively.

    gas chromatography-mass spectrometry (GC-MS); solid-phase extraction (SPE); graphitized carbon black (GCB); liquefied petroleum gas (LPG); aromatics; sampling

    The volatile organic compounds (VOCs) as important air pollutants have attracted more and more concerns in the world. Some studies presented that the chemical composition of VOCs emissions varied with different fuels, industries and living regions [1,2]. Liquefied petroleum gas (LPG) is one of the commonly used fuel sources for heating appliances, vehicles and even cooking purposes. There are some organic residues especially aromatics in LPG besides the main component of propane [3-7]. The aromatic residues will produce more toxic sub-aromatics after high temperature firing and cause secondary environmental pollution. Some investigation results have been reported on the impacts of LPG on air pollution and the obtained results were anxious [8-10]. To monitor organic residue levels in LPG and guide the refining improvement to reduce secondary pollution is important. Up to now, few references are available for directly and accurately monitoring aromatics in LPG [11]. The American ASTM D2158-05 standard detection method of organic residues in LPG adopted solvent adsorption for sampling [12].

    For monitoring trace aromatics from complex co-existing matrices in LPG, efficient sample enrichment procedure is required before chromatography or GC-MS analysis. Solid phase extraction (SPE) is a simple, convenient and cost-effective technique, which is widely used for liquid sample extraction and preconcentration. For solid and airborne particulate matrix, analytes always need to be devolved into solution firstly before SPE extraction [13-16]. SPE has been rarely used to extract analytes from gas samples directly [17-19], and the absorbents were essential for gas sampling [20-22]. Graphitized carbon black (GCB), produced by heating carbon black to 2 700-3 000 ℃ in an inert atmosphere, is a good carbon-based SPE sorbents [23-25]. The hexagonal structure of graphite surface makes it show a selective adsorption to aromatic compounds. Compared with other sorbent materials, two advantages of GCB adsorbents are outstanding for adsorption of aromatics from gas. Firstly, the excellent Van der Waals adhesion and non-covalentπ-πstacking interactions improve adsorption capacity for both non-polar and weakly polar organic compounds bearing aromatic moieties [26]. Secondly, the dry GCB sorbent still presents excellent adsorption capability which is very important for direct gas sampling [17].

    In this work, a GCB sorbent-based flow-through sampling method for preconcentration of trace aromatics from LPG is proposed. The collected aromatics were rapidly characterized and quantified by gas chromatography-mass spectrometry (GC-MS) analysis. The breakthrough volume, extraction ability and reprodu-cibility of the GCB sorbent for extraction of aromatics were examined. The accurate concentrations of aromatics given by this GCB method have significance for improvement industrial processes. The assembled GCB sampling cartridges with caps and stoppers were designed for convenient long-time storage and transportation. The developed flow-through GCB-based sorption technique has the potential to be applied to the analysis of other fuel gases.

    1 Experimental

    1.1 Chemicals and reagents

    Seven standard substances including benzene (99.5%), toluene (99.5%),o-xylene (99.8%),m-xylene (99.2%),p-xylene (99.0%), styrene (99.7%) and naphthalene (99.8%) dissolved in methanol were obtained from AccuStandard (USA). The mass concentration of each compound in the stock mixture solution was 2 000 mg/L. High-purity indene (98%) was also purchased from AccuStandard and used for chromatographic analysis directly. The standard solutions were stored at -20 ℃.

    All organic solvents including methanol, dichloromethane, andn-hexane were of HPLC grade and obtained from J. T. Baker (USA). The graphitized carbon black sorbents (40-60 μm in size) and C18 cartridges (250 mg, 6 mL) were all supplied by Agela Technologies (China). Poly (styrene-divinylbenzene) copolymer (PS-DVB) disks (47 mm diameter, ca. 0.50 mm thickness) were obtained from Empore (USA).

    Fig. 1 Schematic diagram of GCB adsorbents sampling line The glass buffer bottle was connected between the GCB cartridge and LPG tank to obtain a stable flow path. 1#cartridge was for sampling and 2#cartridge was for monitoring breakthrough. R1, R2, R3and R4were different substituent groups of aromatic ring. The gas flow line was connected through the polytetrafluoroethylene (PTFE) tubes.

    1.2 Sample preparation

    The LPG flow-through sampling setup is illustrated in Fig. 1. The two packed GCB cartridges were connected in series, with the 1#cartridge for sampling and the 2#cartridge for monitoring gas breakthrough. A glass buffer bottle was connected between the GCB cartridge and LPG tank to obtain a stable flow path. The GCB cartridges were prepared by packing 250 mg amount of GCB sorbents into empty polytetrafluoroethylene (PTFE) cartridges with holding spacer. Before sampling, the packed GCB cartridges were conditioned twice by 5 mL dichloromethane to remove organic contaminants. Then flow-through sampling was carried out in a passive mode and the flow rate was regulated by a flow meter. The total volume of 4 L LPG was sampled at 200 mL/min flow rate.

    After sampling, the double ends of the GCB cartridges were sealed with custom-built stoppers and caps (silicone rubber) and the cartridges were stored in a refrigerator. Just before GC-MS analysis, the sampled GCB cartridges were eluted by 2 mL dichloromethane for analysis. A control GCB cartridge without sampling was used as blank, which was handled and prepared similarly to the sampling GCB cartridge.

    The PS-DVB disk was placed on a sampler supported by a stainless steel net and two teflon rings. After sampling, the disk was transferred to a 10 mL centrifuge tube and 5 mL dichlorome-thane was added. Then the centrifuge tube was sealed, sonicated and centrifuged to remove particulate matters from the upper supernatant. The operations of C18 cartridge sampling and pretreatment were the same to the process of GCB cartridge extraction.

    1.3 GC-MS procedure

    The aromatics determination was carried out by using the GC/MS QP 2010 instrument (Shimadzu, Japan). An RTX-50 fused silica capillary column (30 m×0.25 mm i. d. with 0.25 μm thickness coating, Restek Corporation, USA) was used for GC separation. The optimized separation program was performed by starting at 40 ℃ for 3 min, increasing to 220 ℃ at 10 ℃/min speed and keeping for 2 min. The carrier gas was helium (99.999%) at 1.0 mL/min flow rate. The sample (2.0 μL) was injected at the split ratio of 1∶10. Detection of the targets was performed by the electron impact ionization (EI) with selected ion monitoring (SIM) mode.

    1.4 Storage stabilities of aromatics on GCB adsorbents

    Each aromatic standard (20.0 ng) was spiked to the blank GCB cartridge (18 cartridges in total). The aromatics collected in the three parallel cartridges were analyzed immediately after spiking as the control value at time zero. The remaining sampled cartridges were covered with assembling stoppers and caps, and stored at 4 ℃ until analysis. Every three samplers as one group were analyzed periodically in 1, 2, 3, 5 and 7 d.

    Fig. 2 TIC of eight aromatics at 1.0 mg/L in standard mixture Peaks: 1. benzene; 2. toluene; 3. m/p-xylene; 4. o-xylene; 5. styrene; 6. indene; 7. naphthalene. Mass spectra of m-xylene and p-xylene are different.

    2 Results and discussion

    2.1 GC-MS analysis

    Total ion chromatogram (TIC) of the standard solution containing eight aromatics is shown in Fig. 2. The separation was completed within 15 min. For the overlappingm-xylene andp-xylene, detection and quantification were not compromised by overlapping retention times since their compound-specific target and reference ions produced clearly consistent signals in the MS [27] as shown in Fig. 2.

    The linearity for the eight aromatics is calculated by five mass concentration levels of standards covering the range of 0.03-2.0 mg/L, which were equivalent to the mass concentration of aromatics from 15 to 1 000 μg/m3in 4 L LPG. Good quantitative linearity of individual aromatic target could be obtained with correlation coefficients (r2) varying from 0.993 4 to 0.999 5.

    2.2 Optimization of the sorbents and eluting solvents.

    Fig. 3 Comparison of the recoveries of GCB, C18 and PS-DVB adsorbents for aromatics (n=3) Conditions: 25 μL standard mixture solution (1.0 mg/L of each aromatic), sampling for 20 min at a flow rate of 200 mL/min.

    In this work, GCB, C18 cartridges and the PS-DVB disks were tested for aromatics sampling. All the experiments were performed by spiking 20 μL standard aromatics at 1.0 mg/L mass concentration into 4 L high-purity nitrogen. The adsorption efficiency was evaluated with the ratio of measured adsorption value of aromatics on sorbents and the spiked amount, i. e., adsorption recovery. The average recoveries of C18 cartridge and PS-DVB disk were all below 80% as shown in Fig. 3. The strong adsorption ability of PS-DVB to aromatics because that theπ-πinteraction makes it difficult to release the targets and restricts the extraction recoveries. The good recoveries of GCB sorbents demonstrated the proper ability to selectively adsorb and release aromatics during the sampling and eluting procedures [28].

    It is well known that benzene solvent class, chlorinated, alcohols and hexane are good elution solvents for hydrophobic compounds in sample pretreatment. In this experiment, benzene solvent class was out of consideration since the preconcentration targets were aromatics. Dichlorome-thane is lower toxic than the three carbon tetrachloride and carbon tetrachloride. So dichloromethane, methanol andn-hexane were tried as elution solvents due to their low toxicity and different physical properties. The impacts on the adsorption recoveries are given in Fig. 4. It is observed that the best recoveries could be obtained with dichloromethane as eluent.

    Fig. 4 Effects of different elution solvents on therecoveries of aromatics for GCB preconcentration (n=3) Conditions: 25 μL standard mixture solution (1.0 mg/L of each aromatics), sampling for 20 min at a flow rate of 200 mL/min.

    2.3 Retention and breakthrough efficiency of aromatics in sampling

    As to gas sampling, complete retention during sampling (no breakthrough or back-diffusion) is essential. The breakthrough experiment could be performed by purging the standard aromatics from solution in custom-built vials with nitrogen gas flow [29,30]. An amount of 20 μL of mixed aromatics solution containing 20.0 ng of each aromatic hydrocarbon was spiked into a vial which was designed with a low-level inlet and a high-level outlet for gas flow in and out. Two blank GCB cartridges were connected for sampling and monitoring breakthrough, respectively. The vial was connected between the nitrogen container and the sampling GCB cartridges. When nitrogen gas passed through the vial, the mixed aromatics were evaporated into the gas flow and adsorbed on the GCB cartridges.

    In order to allow a slow and continuous releasing of aromatics, the inlet and outlet of the vial should be as small as possible. The spiked aromatics solution was totally evaporated with nitrogen purging for 20 min at a flow rate of 200 mL/min. The adsorbed extract in 2#monitoring cartridge (MS2) and in 1#sampling cartridge (MS1) was analyzed separately. It was reported that the 300 mg carbograph packed tube presented a breakthrough volume of 16 L/g for benzene [17].

    Similarly, to correct the possible presence of the target aromatics in the purging gas, a same nitrogen purging program was taken without spiking aromatics in the vial. The eluent of the cartridge was also detected as the background valueMblank. The retention efficiency of sampling aromatics on 1#sampling cartridge was calculated by the following Equation (1).

    (1)

    whereMS1andMblankare the means (n=3) of the detected aromatic concentrations, andMspikedis the spiked concentration, respectively. As can be seen in Table 1, the retention efficiencies of the aromatics on the sampling GCB cartridge ranged from 96.4% to 102.1%. The breakthrough was estimated by the leakage amount of aromatics on the 2#monitoring cartridge. It was found that the spiked amount of 20.0 ng of each aromatic was not up to the breakthrough volume.

    Table 1 Retention efficiencies of aromatics on GCB sampling cartridge

    *The spiked concentration of each aromatic before sampling was set to 100%.

    2.4 Storage stability

    The retaining ability of extraction sorbents on adsorbents over long-time transportation is an important factor, because sampling sites are always far away from the analytical laboratory. Since the aromatics are volatile, the storage stability of GCB sampling cartridge needs to be testified. The GCB cartridges loaded with aromatics were wrapped with assembled stoppers and caps, then stored at 4 ℃. All of the aromatics had no significant loss over 7 days storage as listed in Table 2. Therefore, GCB sampling and storage is promising for remote sites.

    Table 2 Storage stability of adsorbed aromatics on the GCB cartridge

    *The concentration of each aromatic just before storage (time: 0 d) was set at 100%. The values are average from three repetitive runs.

    2.5 Method detection limits

    Method detection limits (MDLs) were calculated as three times the standard deviation determined from three repetitive runs of the lowest aromatic concentration by nitrogen purging experiments. The MDL values were given by conversion the spiked aromatics amounts to the gas concentration in 4 L sampling volume. As in Table 3, the values range from 1.0 to 6.2 μg/m3, and the MDL of toluene is the lowest.

    2.6 Application to real samples

    The precision and accuracy of the flow-through sampling method were valuated by purging experiments, which were similar to the purging operation in Section 2.3 except that nitrogen gas was replaced by LPG. The mixed aromatics solution containing 20.0 ng amount of each of aromatic hydrocarbon was spiked into the vial and was purged for 20 min at 200 mL/min LPG flow rate. Accordingly, another control GCB cartridge was directly purged by LPG. The precision was evaluated by RSDs with replicate assays, and the accuracy was evaluated by the relative errors (REs) of the assayed samples to their spiked concentrations. In addition, the precision and accuracy for lower concentration of aromatics were also estimated by purging 5 μL of the mixed aromatics stock solution containing 5.0 ng amount of each aromatic hydrocarbon. The precision and accuracy of GCB sampling method are listed in Table 3. For all the aromatics, the RSDs ranged from 0.6% to 5.8%, and the REs ranged from 0.8% to 8.2%. It proved that GCB sorbents were suitable for sampling aromatics from LPG.

    Table 3 Precision, accuracy and MDL of the samplingmethod and the measured mass concentration of aromatics in LPG

    a. The amounts of aromatics spiked on the adsorbents. b. The RSDs of five parallel spiked samples. c. The difference between the detection value and the spiked concentration relative to the spiked mass concentrations. MC: mass concentration. -: not detected.

    Finally, the proposed dynamic GCB-based sampling method was applied to preconcentration of trace aromatics in LPG. A total volume of 4 L LPG was sampled at 200 mL/min flow rate at room temperature. The extract was eluted from GCB cartridge by 2 mL dichloromethane. As shown in Fig. 5, the aromatics (benzene, toluene,o/m/p-xylene, styrene and naphthalene) except for indene are observed in the LPG. The aromatics in LPG are just at trace levels ranging from 16 to 868 ng/m3in Table 3.

    Fig. 5 SIM chromatogram of the aromatics collected from 4 L LPG Peaks: 1. benzene; 2. toluene; 3. m/p-xylene; 4. o-xylene; 5. styrene; 6. naphthalene.

    3 Conclusions

    In this paper, a GCB-based sampling system for preconcentration of trace aromatics from LPG has been demonstrated. The GCB-packed cartridge presented practical utility for sampling the aromatics in flow gas with high efficiency and good reproducibility. The aromatics at nanogram levels in LPG were found. Furthermore, the outstanding storage stability of GCB benefits remote sampling. This solid sorbents based direct adsorption strategy provides a feasible way to develop rapid and simple fuel gas sampling methodologies.

    [1] Zhang Y, Wang X, Zhang Z, et al. Atmos Environ, 2013, 79: 110

    [2] Zhao B, Zhang S, Zhou Y, et al. Microchem J, 2015, 119: 140

    [3] Lai C H, Chang C C, Wang C H, et al. Atmos Environ, 2009, 43: 1456

    [4] Avgidou M S, Kaldis S P, Sakellaropoulos G P. J Membrane Sci, 2004, 233: 21

    [5] Choi S, Oh S H, Kim Y S, et al. Surv Asia, 2006, 10: 110

    [6] Zhuang Q, Yodotani J, Kato M. Fuel, 2005, 84: 443

    [7] Zhang K, Wang J Z, Liang B, et al. Environ Pollut, 2011, 159: 1510

    [8] Gasca J, Ortiz E, Castillo H, et al. Atmos Environ, 2004, 38: 3517

    [9] Adam T W, Astorga C, Clairotte M, et al. Atmos Environ, 2011, 45: 2842

    [10] Lim M C H, Ayoko G A, Morawska L Z. Atmos Environ, 2007, 41: 150

    [11] Huang Y, Ling Z H, Lee S C, Atmos Environ, 2015, 122: 809

    [12] American Society for Testing and Materials (ASTM). Standard Test Method for Residues in Liquefied Petroleum (LP) Gases. [2016-08-05]. http://www.astm.org/DATABASE.CART/HISTORICAL/D2158-05.htm

    [13] Wu J M, Hu R K, Yue J Q, et al. J Chromatogr A, 2009, 1216: 1053

    [14] Dabrowska H, Dabrowski L, Biziuk M, et al. J Chromatogr A, 2003, 1003: 29

    [15] Gosetti F, Chiuminatto U, Mazzucco E, et al. J Chromatogr A, 2011, 1218: 6308

    [16] Li K, Li H-F, Liu L-B, et al. J Chromatogr A, 2007, 1154: 74

    [17] Mangani F, Lattanzi L, Maione M. Chromatographia, 1998, 47: 57

    [18] Batlle R, Carlsson H, Tollback P, et al. Anal Chem, 2003, 75: 3137

    [19] Criado M R, Pereiro I R, Torrijos R C. J Chromatogr A, 2002, 963: 65

    [20] Woolfenden E. J Chromatogr A, 2010, 1217: 2674

    [21] Woolfenden E. J Chromatogr A, 2010, 1217: 2685

    [22] Lv L, Huang C, Lei Z, et al. Sep Purif Technol, 2014, 125: 247

    [23] Shariatgorji M, Amini N, Thorsen G, et al. Anal Chem, 2008, 80: 5515

    [24] Amini N, Shariatgorji M, Crescenzi C, et al. Anal Chem, 2010, 82: 290

    [25] Mastrogiacomo A R, Ottaviani M F, Pierini E, et al. Chromatographia, 2002, 55: 345

    [26] Boonjob W, Miro M, Segundo M A, et al. Anal Chem, 2011, 83: 5237

    [27] Elke K, Jermann E, Begerow J, et al. J Chromatogr A, 1998, 826: 191

    [28] Young C R, Menegazzo N, Riley A E. Anal Chem, 2011, 83: 6141

    [29] Yoshida T, Matsunaga I, Oda H. J Chromatogr A, 2004, 1023: 255

    [30] Yoshida T. J Chromatogr A, 2009, 1216: 5069

    李海芳, 高翠華, 林金明*
    (清華大學(xué)化學(xué)系, 微量分析與儀器研制北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100084)

    建立石墨化碳(GCB)為吸附劑的動(dòng)態(tài)采樣系統(tǒng),可實(shí)現(xiàn)液化石油氣(LPG)中芳烴雜質(zhì)的采樣和同步萃取富集。LPG中的芳烴雜質(zhì)(苯、甲苯、二甲苯、苯乙烯和萘)被快速捕集后,進(jìn)行氣相色譜-質(zhì)譜(GC-MS)定性定量分析。與C18和苯乙烯二乙烯苯吸附劑(PS-DVB)相比,GCB填充柱對(duì)芳烴雜質(zhì)的萃取效率最高。評(píng)價(jià)了基于GCB填充柱采樣的吸附效率、重現(xiàn)性和貯存穩(wěn)定性。采樣和分析方法對(duì)氮?dú)饽M氣流中8種芳烴的定量分析線性范圍為15~1 000 μg/m3。所開(kāi)發(fā)的方法具有回收率高(92.9%~109.0%)、檢出限低(1.0~6.2 μg/m3)、準(zhǔn)確性好(相對(duì)標(biāo)準(zhǔn)偏差為0.6%~5.8%)和準(zhǔn)確度高(標(biāo)準(zhǔn)偏差為0.8%~8.2%)等優(yōu)點(diǎn)。

    氣相色譜-質(zhì)譜;固相萃取;石墨化碳;液化石油氣;芳烴;采樣

    10.3724/SP.J.1123.2016.08026

    Foundation item: National Natural Science Foundation of China (Nos. 21275088, 81373373, 21435002).

    O658

    : AArticle IC:1000-8713(2017)01-0047-07

    固相萃取采樣和氣相色譜-質(zhì)譜檢測(cè)液化石油氣中的芳烴雜質(zhì)

    *Received date: 2016-08-23

    *Corresponding author. Tel: +86-10-62797463; Fax: +86-10-62797463. E-mail: jmlin@mail.tsinghua.edu.cn.

    猜你喜歡
    石油氣苯乙烯標(biāo)準(zhǔn)偏差
    傾斜改正在連續(xù)重力數(shù)據(jù)預(yù)處理中的應(yīng)用
    加強(qiáng)對(duì)瓶裝液化石油氣加臭劑的安全監(jiān)管
    液化石油氣氣瓶先燃后爆的模擬分析
    液化石油氣儲(chǔ)罐失效分析與預(yù)防
    互感器檢定裝置切換方式研究
    苯乙烯裝置塔系熱集成
    我國(guó)首制超大型全冷式液化石油氣運(yùn)輸船交付
    中國(guó)8月苯乙烯進(jìn)口量26萬(wàn)t,為16個(gè)月以來(lái)最低
    關(guān)于垂準(zhǔn)儀一測(cè)回垂準(zhǔn)測(cè)量標(biāo)準(zhǔn)偏差檢測(cè)方法的探討
    制何首烏中二苯乙烯苷對(duì)光和熱的不穩(wěn)定性
    中成藥(2014年11期)2014-02-28 22:29:49
    久久久久久免费高清国产稀缺| 69av精品久久久久久| 精品乱码久久久久久99久播| 在线观看一区二区三区| 99国产极品粉嫩在线观看| 欧美又色又爽又黄视频| 丁香欧美五月| 久久中文看片网| 色综合站精品国产| 很黄的视频免费| 欧美久久黑人一区二区| av免费在线观看网站| 啦啦啦免费观看视频1| 国产精品爽爽va在线观看网站 | 精品熟女少妇八av免费久了| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| 99热只有精品国产| 成人av一区二区三区在线看| 亚洲第一青青草原| 久久久久国内视频| 久久久久久久久免费视频了| 黄色 视频免费看| 久久中文看片网| 久久精品成人免费网站| 国产又黄又爽又无遮挡在线| 国产亚洲精品av在线| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕| 男女视频在线观看网站免费 | 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 欧美在线黄色| 精品久久久久久久末码| 久久热在线av| 999精品在线视频| 岛国视频午夜一区免费看| 麻豆av在线久日| 亚洲国产精品久久男人天堂| 国产精品99久久99久久久不卡| 午夜福利欧美成人| 久久精品成人免费网站| 精品久久久久久久久久免费视频| 一进一出抽搐gif免费好疼| 亚洲,欧美精品.| 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| 成人一区二区视频在线观看| 亚洲av成人不卡在线观看播放网| 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 波多野结衣高清作品| 好男人在线观看高清免费视频 | 国产精品精品国产色婷婷| 很黄的视频免费| 9191精品国产免费久久| 精华霜和精华液先用哪个| 久久精品国产亚洲av高清一级| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 日韩欧美一区视频在线观看| 中国美女看黄片| www.熟女人妻精品国产| 12—13女人毛片做爰片一| 黄片小视频在线播放| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3 | 日本免费a在线| 女人被狂操c到高潮| 99国产精品一区二区三区| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 少妇粗大呻吟视频| 91av网站免费观看| 亚洲男人的天堂狠狠| 成人国产综合亚洲| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 亚洲国产日韩欧美精品在线观看 | 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 久久久久久九九精品二区国产 | 夜夜躁狠狠躁天天躁| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 搞女人的毛片| 一进一出好大好爽视频| 欧美日韩福利视频一区二区| 久久精品亚洲精品国产色婷小说| av欧美777| a级毛片在线看网站| 国产精品永久免费网站| 欧美亚洲日本最大视频资源| 国产精品av久久久久免费| 最新在线观看一区二区三区| 久热爱精品视频在线9| 午夜免费观看网址| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 日韩欧美三级三区| 欧美日韩一级在线毛片| 天天一区二区日本电影三级| 国产不卡一卡二| 国产精品久久视频播放| 成人欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 国内精品久久久久精免费| ponron亚洲| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 桃红色精品国产亚洲av| 中文字幕av电影在线播放| 自线自在国产av| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美国产在线观看| 97碰自拍视频| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 日韩免费av在线播放| 成在线人永久免费视频| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| 精品久久久久久久末码| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 香蕉久久夜色| 免费在线观看完整版高清| 免费在线观看黄色视频的| 亚洲一区二区三区不卡视频| 国产精品免费一区二区三区在线| 在线看三级毛片| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 久久这里只有精品19| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 精品久久久久久久末码| netflix在线观看网站| 久久国产乱子伦精品免费另类| 人成视频在线观看免费观看| 脱女人内裤的视频| 美女午夜性视频免费| 俺也久久电影网| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| avwww免费| 午夜福利视频1000在线观看| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免费看| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 亚洲久久久国产精品| 久久这里只有精品19| 婷婷亚洲欧美| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 黄色视频不卡| 日本在线视频免费播放| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 久久青草综合色| 精品久久久久久,| 视频在线观看一区二区三区| 美国免费a级毛片| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| 一本综合久久免费| 午夜免费观看网址| 非洲黑人性xxxx精品又粗又长| av电影中文网址| 久久精品国产亚洲av香蕉五月| 日韩大码丰满熟妇| 欧美绝顶高潮抽搐喷水| 国产av不卡久久| 成人国语在线视频| 成人av一区二区三区在线看| 黄频高清免费视频| 国产精品野战在线观看| 日本 av在线| 最近在线观看免费完整版| 无限看片的www在线观看| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 午夜福利在线在线| 男人的好看免费观看在线视频 | 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| 国产精品美女特级片免费视频播放器 | 久久久久国产一级毛片高清牌| 亚洲人成网站在线播放欧美日韩| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 国产爱豆传媒在线观看 | www.精华液| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 可以在线观看毛片的网站| 一级a爱片免费观看的视频| 久久九九热精品免费| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| 欧美成人免费av一区二区三区| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 亚洲精品在线观看二区| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 夜夜爽天天搞| 色综合婷婷激情| 香蕉av资源在线| 97超级碰碰碰精品色视频在线观看| 女同久久另类99精品国产91| 久久久久久久精品吃奶| 免费一级毛片在线播放高清视频| 99精品欧美一区二区三区四区| 国产精品亚洲av一区麻豆| 999久久久国产精品视频| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 欧美中文综合在线视频| 97人妻精品一区二区三区麻豆 | 中文亚洲av片在线观看爽| 欧美激情高清一区二区三区| 人人妻人人看人人澡| 国产欧美日韩一区二区三| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 免费女性裸体啪啪无遮挡网站| 黄色a级毛片大全视频| 中文字幕人成人乱码亚洲影| 国产区一区二久久| www.自偷自拍.com| 欧美人与性动交α欧美精品济南到| 老司机在亚洲福利影院| 性色av乱码一区二区三区2| 啦啦啦韩国在线观看视频| 亚洲精品久久成人aⅴ小说| 亚洲欧美激情综合另类| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 熟妇人妻久久中文字幕3abv| 露出奶头的视频| 制服人妻中文乱码| 亚洲国产精品sss在线观看| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点| 国产精品av久久久久免费| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 精品欧美一区二区三区在线| 18禁观看日本| 真人一进一出gif抽搐免费| 成年版毛片免费区| 国产成人精品无人区| 99久久99久久久精品蜜桃| 十八禁网站免费在线| 日本在线视频免费播放| 午夜a级毛片| 老司机午夜十八禁免费视频| ponron亚洲| 黄片大片在线免费观看| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区免费| 亚洲精品粉嫩美女一区| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 99久久国产精品久久久| 亚洲全国av大片| 俺也久久电影网| 亚洲av五月六月丁香网| 亚洲av熟女| 美国免费a级毛片| av有码第一页| 国产激情欧美一区二区| 国产私拍福利视频在线观看| 国产高清videossex| 国产在线观看jvid| 成年女人毛片免费观看观看9| 亚洲全国av大片| 国产av又大| 一级a爱视频在线免费观看| 欧美成人性av电影在线观看| 欧美性长视频在线观看| 久久久精品欧美日韩精品| 91老司机精品| 国产成年人精品一区二区| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产单亲对白刺激| 波多野结衣av一区二区av| 久久这里只有精品19| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 在线观看www视频免费| 中国美女看黄片| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 在线国产一区二区在线| 嫩草影院精品99| 99精品在免费线老司机午夜| 国产av一区二区精品久久| 制服诱惑二区| 欧美激情久久久久久爽电影| 免费高清视频大片| 国产亚洲欧美98| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 我的亚洲天堂| 天堂√8在线中文| 精品第一国产精品| 深夜精品福利| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 日韩欧美国产在线观看| 免费在线观看完整版高清| 午夜久久久久精精品| 久久精品夜夜夜夜夜久久蜜豆 | 黄色a级毛片大全视频| 国产91精品成人一区二区三区| √禁漫天堂资源中文www| 男女下面进入的视频免费午夜 | 午夜福利在线在线| 国产区一区二久久| 美女免费视频网站| 色综合欧美亚洲国产小说| 97人妻精品一区二区三区麻豆 | 好男人电影高清在线观看| 麻豆国产av国片精品| 国产99白浆流出| 禁无遮挡网站| 欧美日韩黄片免| 香蕉国产在线看| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 亚洲 欧美 日韩 在线 免费| 亚洲色图 男人天堂 中文字幕| 国产一级毛片七仙女欲春2 | 18禁黄网站禁片免费观看直播| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| av欧美777| 亚洲男人的天堂狠狠| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色女人牲交| 九色国产91popny在线| 日韩欧美三级三区| 可以在线观看毛片的网站| 美女高潮到喷水免费观看| 亚洲av中文字字幕乱码综合 | 女性被躁到高潮视频| 亚洲av熟女| 曰老女人黄片| a在线观看视频网站| 一边摸一边做爽爽视频免费| 真人一进一出gif抽搐免费| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 91字幕亚洲| 热99re8久久精品国产| 午夜福利在线在线| 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看| 人人澡人人妻人| 亚洲国产欧洲综合997久久, | 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| 国产成人精品无人区| 欧美精品亚洲一区二区| 国产成人影院久久av| 亚洲精品在线美女| bbb黄色大片| 人人妻,人人澡人人爽秒播| 成年免费大片在线观看| 2021天堂中文幕一二区在线观 | 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片 | 欧美午夜高清在线| 国内精品久久久久久久电影| 天天一区二区日本电影三级| 色综合站精品国产| 丁香六月欧美| 岛国视频午夜一区免费看| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 欧美zozozo另类| 夜夜夜夜夜久久久久| 亚洲精品中文字幕在线视频| 99久久无色码亚洲精品果冻| 色播在线永久视频| 久久精品影院6| 在线播放国产精品三级| 波多野结衣av一区二区av| 久99久视频精品免费| 国产视频一区二区在线看| 51午夜福利影视在线观看| 国产精品野战在线观看| 国产一卡二卡三卡精品| 91麻豆av在线| 18禁观看日本| 欧美乱妇无乱码| 国产精品一区二区精品视频观看| av在线天堂中文字幕| 看黄色毛片网站| 国产免费av片在线观看野外av| 可以免费在线观看a视频的电影网站| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 在线免费观看的www视频| 99精品在免费线老司机午夜| 日韩欧美免费精品| 岛国在线观看网站| 俺也久久电影网| 日韩欧美 国产精品| 99久久国产精品久久久| 亚洲第一av免费看| 成人18禁高潮啪啪吃奶动态图| 在线天堂中文资源库| 欧美日本视频| 日韩欧美免费精品| 亚洲专区字幕在线| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| 精品无人区乱码1区二区| 国产在线观看jvid| 最近最新中文字幕大全电影3 | 天堂影院成人在线观看| 99在线人妻在线中文字幕| 色综合婷婷激情| 日日干狠狠操夜夜爽| 在线观看免费视频日本深夜| bbb黄色大片| 亚洲国产毛片av蜜桃av| 国内久久婷婷六月综合欲色啪| 亚洲精品色激情综合| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 精品不卡国产一区二区三区| bbb黄色大片| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 国产av不卡久久| 国产亚洲精品一区二区www| 母亲3免费完整高清在线观看| 妹子高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| av在线天堂中文字幕| 国产黄片美女视频| 欧美日韩一级在线毛片| 啦啦啦免费观看视频1| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 中文资源天堂在线| 午夜福利在线观看吧| 国产精品综合久久久久久久免费| 国产v大片淫在线免费观看| 欧美激情 高清一区二区三区| 亚洲中文日韩欧美视频| 国产成人精品无人区| 亚洲精品在线美女| 成人国语在线视频| 99热只有精品国产| 美国免费a级毛片| 免费看十八禁软件| 神马国产精品三级电影在线观看 | 午夜激情av网站| 好男人在线观看高清免费视频 | 国产又黄又爽又无遮挡在线| 亚洲av电影在线进入| 白带黄色成豆腐渣| 中文字幕人妻熟女乱码| 99re在线观看精品视频| 日韩大尺度精品在线看网址| 性色av乱码一区二区三区2| 夜夜看夜夜爽夜夜摸| 老司机午夜十八禁免费视频| 国产高清激情床上av| 成人欧美大片| 亚洲aⅴ乱码一区二区在线播放 | 在线天堂中文资源库| 99国产精品一区二区三区| 国产亚洲av嫩草精品影院| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 99国产综合亚洲精品| 国产视频一区二区在线看| 久久久精品国产亚洲av高清涩受| av欧美777| 可以在线观看毛片的网站| 国产高清有码在线观看视频 | 精品久久久久久,| 成人18禁高潮啪啪吃奶动态图| 国产精品自产拍在线观看55亚洲| 国产视频一区二区在线看| 免费在线观看亚洲国产| 亚洲激情在线av| 精品国产国语对白av| 在线观看午夜福利视频| 亚洲精品在线观看二区| 中文在线观看免费www的网站 | 亚洲一区高清亚洲精品| 欧美黄色片欧美黄色片| 国产免费男女视频| 国产av又大| 精华霜和精华液先用哪个| 啦啦啦观看免费观看视频高清| 亚洲欧美一区二区三区黑人| 亚洲成人久久性| 欧美日韩亚洲国产一区二区在线观看| 黄色视频不卡| 国产精品99久久99久久久不卡| 99久久国产精品久久久| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 久久久久九九精品影院| 色在线成人网| 午夜免费鲁丝| 亚洲aⅴ乱码一区二区在线播放 | 天天添夜夜摸| 亚洲 欧美 日韩 在线 免费| 精品久久蜜臀av无| 免费高清视频大片| 国产精品乱码一区二三区的特点| 午夜精品久久久久久毛片777| 中文字幕人成人乱码亚洲影| 免费一级毛片在线播放高清视频| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 法律面前人人平等表现在哪些方面| 成人免费观看视频高清| 又紧又爽又黄一区二区| 夜夜夜夜夜久久久久| 午夜免费观看网址| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 久久亚洲精品不卡| 精品国产国语对白av| 大香蕉久久成人网| 啦啦啦免费观看视频1| 黄色毛片三级朝国网站| 中国美女看黄片| 91成人精品电影| 午夜免费鲁丝| 久久亚洲真实| 免费看a级黄色片| 亚洲在线自拍视频| cao死你这个sao货| 91字幕亚洲| 国产aⅴ精品一区二区三区波| 日本免费a在线| 一区二区三区高清视频在线| 精品久久久久久成人av| 一个人免费在线观看的高清视频| 国产亚洲av高清不卡| 免费看日本二区| 日韩三级视频一区二区三区| 亚洲专区国产一区二区| 首页视频小说图片口味搜索| 啦啦啦 在线观看视频| 国产精品免费视频内射| 亚洲一区高清亚洲精品| 久久久水蜜桃国产精品网| 一级a爱视频在线免费观看| 欧美黄色淫秽网站| 黄色视频不卡| 在线观看免费视频日本深夜| 久久草成人影院| 国产精品日韩av在线免费观看| 麻豆成人av在线观看| 成年免费大片在线观看| 哪里可以看免费的av片| 国产精品99久久99久久久不卡| 亚洲免费av在线视频| 老汉色av国产亚洲站长工具| 一二三四在线观看免费中文在| 首页视频小说图片口味搜索| 亚洲精品国产精品久久久不卡| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 午夜福利免费观看在线| 欧美日韩黄片免| 久久伊人香网站| 午夜亚洲福利在线播放| 日韩免费av在线播放| 日韩欧美国产在线观看| 最近最新中文字幕大全免费视频|