徐鵬育,李家印,苗亞靜,高翠翠,沈堯,靳芳,仇曉菲
谷氨酰胺對(duì)小細(xì)胞肺癌H446細(xì)胞增殖和生存的影響
徐鵬育,李家印,苗亞靜,高翠翠,沈堯,靳芳,仇曉菲△
目的 觀察谷氨酰胺(Gln)對(duì)小細(xì)胞肺癌H446細(xì)胞增殖和生存的影響,并探究其機(jī)制。方法應(yīng)用CCK-8試劑盒檢測(cè)Gln(+)組和Gln(-)組H446細(xì)胞在0、24、48、72、96 h的增殖情況,篩選出最佳時(shí)間,采用Annexin V-FITC/PI雙染法、CellTiter-Glo?發(fā)光法和流式細(xì)胞儀分別檢測(cè)這2組細(xì)胞的存活比例、三磷酸腺苷(ATP)和活性氧(ROS)水平;以Gln(-)組為對(duì)照組,實(shí)驗(yàn)組中加入草酰乙酸(OAA)或α-酮戊二酸二甲酯(DM-αKG),檢測(cè)各組H446細(xì)胞的ATP水平、增殖和存活情況;以Gln(-)組為對(duì)照組,實(shí)驗(yàn)組中加入ROS清除劑N-乙酰-L-半胱氨酸(NAC),檢測(cè)2組細(xì)胞的ROS水平、增殖、克隆和存活情況;在Gln(+)條件下,用0、2、5、10 μmol/L谷氨酰胺酶抑制劑BPTES處理H446細(xì)胞,通過(guò)克隆實(shí)驗(yàn)篩選最佳作用濃度,在此濃度下檢測(cè)Gln(+)組和Gln(+)+BPTES組細(xì)胞的ATP、ROS水平和增殖水平。最后,單獨(dú)應(yīng)用BPTES或ROS誘導(dǎo)劑過(guò)氧化氫(H2O2)和二者聯(lián)合應(yīng)用情況下檢測(cè)細(xì)胞的存活比例。結(jié)果相比Gln(+)組,Gln(-)組H446細(xì)胞的增殖水平在24、48、72、96 h均降低(P<0.05),72 h降低最明顯,取72 h為最佳時(shí)間;Gln(-)組細(xì)胞的存活比例和ATP水平低于Gln(+)組(P<0.05),ROS水平高于Gln(+)組;相比Gln(-)組,Gln(-)+OAA組和Gln(-)+DM-αKG組H446細(xì)胞的ATP和增殖未升高,而存活比例升高(P<0.05);相比Gln(-)組,Gln(-)+NAC組ROS水平降低,增殖、克隆水平和存活比例均升高(均P<0.05)??寺?shí)驗(yàn)結(jié)果顯示10 μmol/L BPTES為最佳濃度;相比Gln(+)組,Gln(+)+BPTES組細(xì)胞的ATP和增殖降低(均P<0.05),ROS水平升高;相比單獨(dú)應(yīng)用,BPTES+H2O2組H446細(xì)胞存活比例明顯降低。結(jié)論Gln缺乏可通過(guò)提高ROS水平抑制H446細(xì)胞的增殖和生存;BPTES和H2O2對(duì)H446細(xì)胞有聯(lián)合殺傷作用。
谷氨酰胺;肺腫瘤;癌,小細(xì)胞;腺苷三磷酸;活性氧;細(xì)胞增殖;細(xì)胞存活
小細(xì)胞肺癌是肺癌中最具侵襲性的一種類(lèi)型,占肺癌患者的10%~15%[1],自1970年起小細(xì)胞肺癌的5年生存率一直維持在5%上下[2]。與正常細(xì)胞的代謝方式不同,大部分腫瘤細(xì)胞主要依賴(lài)有氧糖酵解產(chǎn)生所需的能量,這種現(xiàn)象被稱(chēng)為“沃伯格效應(yīng)”[3]。此外,有些癌細(xì)胞系如人骨髓瘤細(xì)胞對(duì)谷氨酰胺(Gln)也有較高的依賴(lài)性[4]。在非小細(xì)胞肺癌中,Gln通過(guò)各種途徑影響細(xì)胞的增殖、存活和藥物敏感性,但在小細(xì)胞肺癌中的作用及機(jī)制尚不清楚。本研究主要從能量生成和活性氧(ROS)兩方面探討Gln影響H446細(xì)胞的增殖和生存的機(jī)制,并用谷氨酰胺酶抑制劑BPTES[5]和ROS生成劑H2O2[6]處理H446細(xì)胞,觀察細(xì)胞增殖和存活情況,為小細(xì)胞肺癌的靶向治療提供依據(jù)。
1.1 材料
1.1.1 細(xì)胞人小細(xì)胞肺癌細(xì)胞系H446購(gòu)自美國(guó)菌種保藏中心(ATCC)。
1.1.2 試劑和儀器RPMI-1640培養(yǎng)基、胎牛血清和胰酶購(gòu)自Biological Industries公司;L-谷氨酰胺(L-Gln)、無(wú)Gln的RPMI-1640培養(yǎng)基購(gòu)自美國(guó)Life technologies公司旗下Gibco?;N-乙酰-L-半胱氨酸(NAC)購(gòu)自阿拉丁公司;α-酮戊二酸二甲酯(DM-αKG)購(gòu)自美國(guó)Sigma公司;CCK-8試劑盒購(gòu)自東仁化學(xué)科技有限公司;Annexin V-FITC/PI細(xì)胞凋亡檢測(cè)試劑盒購(gòu)自南京凱基生物科技有限公司;CO2培養(yǎng)箱購(gòu)自Thermo Forma公司;倒置顯微鏡購(gòu)自Nikon ECLIPSE公司;恒溫孵育箱購(gòu)自上海精宏實(shí)驗(yàn)設(shè)備有限公司;低溫高速離心機(jī)購(gòu)自德國(guó)Eppendorf公司。
1.2 方法
1.2.1 細(xì)胞培養(yǎng)H446細(xì)胞用RPMI-1640培養(yǎng)基培養(yǎng),內(nèi)含10%胎牛血清,青霉素100 U/mL、鏈霉素100 mg/L,置于37℃,5%CO2孵育箱培養(yǎng)。
1.2.2 細(xì)胞增殖實(shí)驗(yàn)根據(jù)CCK-8試劑盒操作步驟,取對(duì)數(shù)生長(zhǎng)期H446細(xì)胞,以3×104個(gè)/mL接種于96孔板,邊緣用無(wú)菌PBS溶液填充,常規(guī)培養(yǎng)24 h后,將細(xì)胞分為2組,分別加入含Gln(Gln+)和不含Gln(Gln-)培養(yǎng)基,于0、24、48、72、96 h向每孔中加入10 μL CCK-8溶液,37℃孵育1.5 h,在酶標(biāo)儀450 nm波長(zhǎng)下檢測(cè)光密度(OD)值,篩選出最佳時(shí)間。以Gln(-)組為對(duì)照組,在Gln(-)條件下,實(shí)驗(yàn)組中分別加入草酰乙酸(OAA)、DM-αKG(其作用是為細(xì)胞提供αKG)或ROS清除劑NAC[7-8],48 h后按CCK-8試劑盒操作步驟,用酶標(biāo)儀檢測(cè)OD值。以Gln(+)組為對(duì)照組,在Gln(+)條件下,實(shí)驗(yàn)組加入谷氨酰胺酶(GLS)抑制劑BPTES,48 h后同上方法用酶標(biāo)儀檢測(cè)OD值。
1.2.3 三磷酸腺苷(ATP)檢測(cè)取對(duì)數(shù)生長(zhǎng)期H446細(xì)胞,以1×105個(gè)/mL接種于6孔板中,常規(guī)培養(yǎng)24 h,細(xì)胞設(shè)Gln(-)、Gln(+)、Gln(-)+OAA、Gln(-)+DM-αKG、Gln(+)+ BPTES。根據(jù)1.2.2選取的最佳時(shí)間,按照CellTiter-Glo?試劑盒操作步驟,每組分別計(jì)數(shù),調(diào)整細(xì)胞懸液密度為1×105個(gè)/mL,以每孔100 μL均勻接種于不透明96孔酶標(biāo)板,背景孔只含有100 μL培養(yǎng)基,室溫平衡30 min后,向每孔中加入100μL CellTiter-Glo?試劑,振蕩混勻,室溫孵育10 min,使熒光信號(hào)穩(wěn)定,記錄發(fā)光信號(hào)。
1.2.4 ROS檢測(cè)取對(duì)數(shù)生長(zhǎng)期H446細(xì)胞,以4×104個(gè)/mL接種于12孔板中,常規(guī)培養(yǎng)24 h,細(xì)胞設(shè)Gln(-)、Gln(+)、Gln(-)+NAC、Gln(+)+BPTES。在1.2.2選取的最佳時(shí)間,按照1∶1 000比例用無(wú)血清培養(yǎng)基稀釋熒光素,使終濃度為10 μmol/L,每孔加入1 mL稀釋好的熒光素,陰性對(duì)照孔加入1 mL不含探針的無(wú)血清培養(yǎng)基。37℃培養(yǎng)箱孵育30 min,每隔5 min混勻1次,使探針與細(xì)胞充分作用,用PBS洗滌3次,將細(xì)胞重懸至EP管中離心,用200 μL PBS溶液重懸細(xì)胞,用流式細(xì)胞儀檢測(cè)ROS水平。
1.2.5 細(xì)胞凋亡實(shí)驗(yàn)取對(duì)數(shù)生長(zhǎng)期H446細(xì)胞,以8×104個(gè)/mL接種于12孔板,常規(guī)培養(yǎng)24 h,實(shí)驗(yàn)分組同1.2.2,培養(yǎng)相應(yīng)時(shí)間后收集細(xì)胞至離心管中,PBS洗滌2遍,1 000 r/min離心5 min,棄上清,加入500 μL的結(jié)合緩沖液重懸細(xì)胞,再加入5 μL異硫氰酸熒光素(Annexin V-FITC)和5 μL碘化丙啶(PI),混勻,室溫避光反應(yīng)15 min,1 h內(nèi)用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡情況,計(jì)算存活比例;再以Gln(+)組為對(duì)照組,實(shí)驗(yàn)組分別為BPTES組、H2O2組和BPTES+H2O2組,48 h后檢測(cè)細(xì)胞凋亡情況,計(jì)算其存活比例。
1.2.6 平板克隆形成實(shí)驗(yàn)取對(duì)數(shù)生長(zhǎng)期H446細(xì)胞,以1× 104個(gè)/mL接種于12孔板中,常規(guī)培養(yǎng)24 h后,加濃度梯度0、2、5、10 μmol/L的BPTES于培養(yǎng)基中,第7天,終止培養(yǎng),用80%甲醇固定細(xì)胞,0.4%結(jié)晶紫進(jìn)行染色,在倒置顯微鏡下計(jì)數(shù)5個(gè)視野中至少包含50個(gè)細(xì)胞的克隆數(shù),取其平均值,篩選出BPTES的最佳作用濃度。以Gln(-)組為對(duì)照組,實(shí)驗(yàn)組中加入NAC,第7天,同上計(jì)數(shù)克隆數(shù)量。
1.3 統(tǒng)計(jì)學(xué)方法采用SPSS 13.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析,符合正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,2組間均數(shù)比較采用獨(dú)立樣本t檢驗(yàn),多組間均數(shù)比較用單因素方差分析,多重比較用LSD-t法,所有實(shí)驗(yàn)獨(dú)立重復(fù)至少3次,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 谷氨酰胺對(duì)H446細(xì)胞增殖和生存的影響相對(duì)于Gln(+)組,在24、48、72、96 h,Gln(-)組H446細(xì)胞的增殖能力均下降(P<0.05),其中,在72 h Gln(-)組細(xì)胞的增殖水平下降59.1%,最為顯著。因此,取72 h為最佳時(shí)間。在72 h,相對(duì)于Gln(+)組,Gln(-)組細(xì)胞的存活比例下降17%(P<0.05),見(jiàn)表1、2,圖1。
2.2 OAA和α-KG對(duì)H446細(xì)胞ATP水平、增殖和存活的影響在谷氨酰胺缺乏條件下細(xì)胞ATP水平下降16%(P<0.05),加入OAA或DM-αKG后,ATP和增殖水平?jīng)]有得到恢復(fù),加入OAA后存活比例升高約19%,加入DM-αKG后存活比例升高約13%(P<0.05),見(jiàn)圖1,表2、3。
Tab.1 Comparison of the proliferation between two groups of cells表1 Gln(+)和Gln(-)組的細(xì)胞增殖能力的比較(n=6,OD450,)
Tab.1 Comparison of the proliferation between two groups of cells表1 Gln(+)和Gln(-)組的細(xì)胞增殖能力的比較(n=6,OD450,)
*P<0.05,**P<0.01
組別Gln(+)組Gln(-)組t 0 h 0.57±0.06 0.61±0.05 0.512 24 h 1.58±0.09 0.97±0.08 5.066**48 h 2.31±0.13 1.19±0.12 6.331**72 h 2.84±0.70 1.16±0.10 2.376*96 h 1.71±0.05 0.89±0.09 7.965**
Tab.2 Comparison of the survival and ATP level between two groups表2 Gln(+)和Gln(-)組的細(xì)胞存活能力和ATP水平的比較(n=5,)
Tab.2 Comparison of the survival and ATP level between two groups表2 Gln(+)和Gln(-)組的細(xì)胞存活能力和ATP水平的比較(n=5,)
**P<0.01
組別Gln(+)組Gln(-)組t存活比例(%)79.52±2.40 66.23±1.19 4.961**ATP(μmol/L)1.01±0.02 0.85±0.02 5.657**
2.3 NAC對(duì)H446細(xì)胞ROS水平、增殖、克隆和存活的影響谷氨酰胺缺乏條件下細(xì)胞中ROS水平升高,加入NAC后,ROS水平下降,細(xì)胞增殖水平升高25%(P<0.05),克隆數(shù)量有較明顯的升高(P<0.05),存活比例升高10%(P<0.05),見(jiàn)圖1~3,表4。
Fig.1 Effects of of OAA,α-KG or NAC on cell survival圖1 OAA、α-KG或NAC對(duì)細(xì)胞存活的影響
Tab.3 Comparison of the proliferation,survival and ATP level between three groups表3 各組細(xì)胞增殖、存活能力和ATP水平的比較(n=5,)
Tab.3 Comparison of the proliferation,survival and ATP level between three groups表3 各組細(xì)胞增殖、存活能力和ATP水平的比較(n=5,)
**P<0.01;t1、t2均與Gln(-)組比較
組別Gln(-)組Gln(-)+OAA組Gln(-)+DM-αKG組t1t2 ATP(μmol/L)0.85±0.02 0.86±0.02 0.81±0.02 0.144 1.516增殖(OD450)0.74±0.05 0.71±0.03 0.82±0.03 0.412 1.531存活比例(%)66.23±1.19 78.51±3.38 74.98±1.14 3.426**5.313**
2.4 不同濃度BPTES作用下H446細(xì)胞的克隆情況0、2、5、10 μmol/L BPTES作用下H446細(xì)胞克隆數(shù)量分別為26.88±1.87、25.50±1.67、19.75±2.02、17.88±1.69,差異有統(tǒng)計(jì)學(xué)意義(F=5.751,P<0.01)。在2 μmol/L BPTES時(shí)克隆水平無(wú)明顯變化,5 μmol/L BPTES時(shí)開(kāi)始出現(xiàn)下降,10 μmol/L BPTES時(shí),明顯下降。以10 μmol/L BPTES為最佳實(shí)驗(yàn)濃度。2.5BPTES對(duì)H446細(xì)胞的ATP、ROS水平和增殖水平的影響相對(duì)于Gln(+)組,Gln(+)+BPTES組細(xì)胞內(nèi)ATP水平降低24%左右(P<0.05),ROS水平升高,細(xì)胞增殖水平降低約16%(P<0.05),見(jiàn)表5、圖4。
Fig.2 The effect of NAC on the cellular ROS level in H446 cells圖2 NAC對(duì)H446細(xì)胞內(nèi)ROS水平的影響
Fig.3 The effect of NAC on cell colony(Crystal violet,×40)圖3 NAC對(duì)細(xì)胞克隆水平的影響(結(jié)晶紫染色,×40)
Tab.4 Comparison of the proliferation,colony and survival between two groups表4 各組細(xì)胞增殖、克隆和存活能力的比較(n=5,)
Tab.4 Comparison of the proliferation,colony and survival between two groups表4 各組細(xì)胞增殖、克隆和存活能力的比較(n=5,)
*P<0.05,**P<0.01
組別Gln(-)組Gln(-)+NAC組t增殖(OD450)0.65±0.04 0.81±0.03 3.051*克隆(個(gè))6.20±0.73 22.60±0.68 16.400**存活比例(%)67.63±0.64 74.43±0.58 7.882**
Tab.5 Comparison of cell proliferation and ATP level between two groups表5 2組細(xì)胞的ATP和增殖能力的比較(n=5)
Tab.5 Comparison of cell proliferation and ATP level between two groups表5 2組細(xì)胞的ATP和增殖能力的比較(n=5)
*P<0.05,**P<0.01
組別Gln(+)Gln(+)+BPTES t ATP(μmol/L)0.99±0.03 0.75±0.01 8.099**增殖(OD450)0.58±0.02 0.51±0.02 2.308*
2.6 單獨(dú)應(yīng)用BPTES或H2O2和聯(lián)合應(yīng)用情況下細(xì)胞的存活情況相對(duì)于對(duì)照組,單獨(dú)應(yīng)用BPTES或H2O2,細(xì)胞存活比例有所下降,聯(lián)合應(yīng)用時(shí)細(xì)胞存活比例有較明顯的降低,見(jiàn)圖5。
Fig.4 The effect of BPTES on the cellular ROS level圖4 BPTES對(duì)細(xì)胞內(nèi)ROS水平的影響
Fig.5 The survival ratio of H446 cells treated with BPTES, H2O2or the combination of them圖5 單獨(dú)應(yīng)用BPTES或H2O2和聯(lián)合應(yīng)用情況下細(xì)胞的存活比例
Gln參與細(xì)胞生長(zhǎng)的多個(gè)環(huán)節(jié),例如能量生成、提供氮源、合成抗氧化物質(zhì)維持氧化還原平衡狀態(tài)等。有研究指出在非小細(xì)胞肺癌中,Gln促進(jìn)谷胱甘肽的合成,影響細(xì)胞增殖和放療敏感性[9],抑制Gln代謝可以增加細(xì)胞對(duì)某些藥物如厄羅替尼[10]以及芹菜素[11]的敏感性,從而促進(jìn)細(xì)胞凋亡。但Gln在小細(xì)胞肺癌中的作用目前尚不清楚。
本實(shí)驗(yàn)結(jié)果顯示,Gln缺乏抑制H446細(xì)胞的增殖和生存。相對(duì)于Gln(+)組,Gln缺乏條件下細(xì)胞中ATP水平降低。有研究表明,在Ras突變導(dǎo)致的癌細(xì)胞中,Gln參與三羧酸循環(huán)回補(bǔ)過(guò)程[12]。而本實(shí)驗(yàn)中,在Gln缺乏條件下加入三羧酸循環(huán)中間產(chǎn)物OAA或α-KG后,發(fā)現(xiàn)H446細(xì)胞中ATP水平和增殖水平并沒(méi)有得到恢復(fù),提示H446細(xì)胞中Gln不通過(guò)三羧酸循環(huán)回補(bǔ)途徑影響細(xì)胞增殖,推測(cè)可能通過(guò)糖異生或者其他途徑影響細(xì)胞增殖。但是加入三羧酸循環(huán)中間產(chǎn)物OAA或α-KG后存活比例升高,其原因目前尚不清楚。此外,相關(guān)研究指出,Gln不僅參與細(xì)胞的能量生成,還作為谷胱甘肽的前體,參與自由基清除,維持氧化還原平衡[13]。本研究結(jié)果顯示,Gln缺乏條件下細(xì)胞中ROS水平升高,加入NAC后,ROS水平下降,增殖、克隆水平和存活比例都有不同程度的恢復(fù),提示Gln缺乏可通過(guò)提高ROS水平影響細(xì)胞增殖和生存。GLS可使Gln轉(zhuǎn)化為谷氨酸,其在哺乳類(lèi)細(xì)胞中有2種類(lèi)型:GLS1和GLS2,其中,GLS1在癌癥發(fā)生過(guò)程中有重要作用。在本實(shí)驗(yàn)中,結(jié)果顯示BPTES抑制H446細(xì)胞的增殖和存活。目前,也有其他研究表明,在前列腺癌和肝細(xì)胞癌組織中,GLS1的表達(dá)水平高于正常組織,BPTES作為GLS1的特異性抑制劑,可抑制一些腫瘤的生長(zhǎng)[14]。本實(shí)驗(yàn)結(jié)合臨床上常用的放療手段和放療原理,選擇用H2O2來(lái)模擬放療[15-16],結(jié)果顯示相對(duì)于單獨(dú)用BPTES或H2O2,聯(lián)合應(yīng)用BPTES和H2O2可以更有效地抑制細(xì)胞的生存,推測(cè)Gln代謝的抑制可以增強(qiáng)放療敏感性。
綜上所述,Gln缺乏可通過(guò)增高ROS水平抑制小細(xì)胞肺癌H446細(xì)胞的增殖和生存,聯(lián)合應(yīng)用GLS抑制劑BPTES和H2O2可有效抑制H446細(xì)胞的生長(zhǎng)。但其中可能還存在其他相關(guān)的作用機(jī)制,需待進(jìn)一步深入研究。
[1]Kim DW,Wu N,Kim YC,et al.Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer[J].Genes Dev,2016,30(11):1289-1299.doi:10.1101/ gad.279307.116.
[2]Weiskopf K,Jahchan NS,Schnorr PJ,et al.CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer[J].J Clin Invest,2016,126(7):2610-2620.doi:10.1172/JCI81603.
[3]Vander Heiden MG,Cantley LC,Thompson CB.Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science,2009,324(5930):1029-1033.doi:10.1126/science.1160809.
[4]Bolzoni M,Chiu M,Accardi F,et al.Dependence on glutamine uptake and glutamine addiction characterize myeloma cells:a new attractive target[J].Blood,2016,128(5):667-679.doi:10.1182/ blood-2016-01-690743.
[5]Chakrabarti G,Moore ZR,Luo X,et al.Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by β-lapachone[J].Cancer Metab,2015,3: 12.doi:10.1186/s40170-015-0137-1.
[6]Molavian HR,Goldman A,Phipps CJ,et al.Drug-induced reactive oxygen species(ROS)rely on cell membrane properties to exert anticancer effects[J].Sci Rep,2016,6:27439.doi:10.1038/ srep27439.
[7]Draghiciu O,Lubbers J,Nijman HW,et al.Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J].Oncoimmunology,2015,4(1):e954829.doi:10.4161/21624011.2014.954829.
[8]Cao L,Chen X,Xiao X,et al.Resveratrol inhibits hyperglycemiadriven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways[J].Int J Oncol,2016,49(2):735-743.doi:10.3892/ ijo.2016.3559.
[9]Sappington DR,Siegel ER,Hiatt G,et al.Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines[J].Biochim Biophys Acta,2016,1860(4):836-843.doi:10.1016/j.bbagen.2016.01.021.
[10]Xie C,Jin J,Bao X,et al.Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer[J].Oncotarget,2016,7(1):610-621.doi:10.18632/ oncotarget.6311.
[11]Lee YM,Lee G,Oh TI,et al.Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress[J].Int J Oncol,2016,48(1):399-408.doi:10.3892/ijo.2015.3243.
[12]White E.Exploiting the bad eating habits of Ras-driven cancers[J].Genes Dev,2013,27(19):2065-2071.doi:10.1101/ gad.228122.113.
[13]Hudson CD,Savadelis A,Nagaraj AB,et al.Altered glutamine metabolism in platinum resistant ovarian cancer[J].Oncotarget,2016,7(27):41637-41649.doi:10.18632/oncotarget9317.
[14]Lee SY,Jeon HM,Ju MK,et al.Dlx-2 and glutaminase upregulate epithelialmesenchymaltransitionandglycolyticswitch[J]. Oncotarget,2016,7(7):7925-7939.doi:10.18632/oncotarget.6879.
[15]Ogawa Y.Paradigm shift in radiation biology/radiation oncologyexploitation of the"H(2)O(2)effect"for radiotherapy using low-LET(Linear Energy Transfer)radiation such as X-rays and highenergy electrons[J].Cancers(Basel),2016,8(3).pii:E28.doi:10.3390/cancers8030028.
[16]Ogawa Y,Ue H,Tsuzuki K,et al.New radiosensitization treatment(KORTUC I)using hydrogen peroxide solution-soaked gauze bolus for unresectable and superficially exposed neoplasms[J].Oncol Rep,2008,19(6):1389-1394.doi:10.3892/or.19.6.1389.
(2016-06-26收稿 2016-10-26修回)
(本文編輯 李國(guó)琪)
Glutamine regulates the proliferation and survival of small cell lung cancer H446 cells
XU Pengyu,LI Jiayin,MIAO Yajing,GAO Cuicui,SHEN Yao,JIN Fang,QIU Xiaofei△
Tianjin Medical University,Tianjin 300070,China△
ObjectiveTo investigate the effects of glutamine(Gln)on proliferation and survival of small cell lung cancer H446 cells,and further to explore the potential mechanism.MethodsThe proliferation of H446 cells was detected at different time points(0,24,48,72 and 96 h)by CCK-8 assay in Gln(+)group and Gln(-)group,and an optimal time was selected.Under the optimal time,Annexin V-FITC/PI staining,CellTiter-Glo?assay kit and flow cytometer were used to detect cell survival,cellular adenosine triphosphate(ATP)and reactive oxygen species(ROS)levels.Gln(-)group was used as the control group,under the condition of Gln deficiency,cellular ATP,cell proliferation and survival were detected after adding oxaloacetic acid(OAA)or dimethyl-α-ketoglutarate(DM-αKG).Gln(-)group was used as the control group, cellular ROS,cell proliferation,colony and survival were detected after treated with ROS scavenger N-acetyl cysteine (NAC).With different concentrations(0,2,5,10 μmol/L)of glutaminase inhibitor BPTES,the optimal concentration was selected through the colony assay.The cellular ATP and ROS levels and cell proliferation were detected under the optimal concentration.H446 cells were treated with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide(BPTES),ROS inducer hydrogen peroxide(H2O2)or the combination of them,and cell survival ratio was compared between two groups.ResultsThe proliferation levels of H446 cells at 24,48,which were decreased most significantly in 72 h in Gln(-)group. When 72 h was used as the optimal time,the cell survival ratio and ATP level were decreased,and the ROS level was increased,in Gln(-)group compared with those of Gln(+)group(P<0.05).There was a higher survival ratio in H446 cellsin Gln(-)+OAA group and Gln(-)+DM-αKG group than that of Gln(-)group(P<0.05),but there were no significant differences in cell proliferation and ATP levels between Gln(-)group,Gln(-)+OAA group and Gln(-)+DM-αKG group. The ROS level was reduced,the cell proliferation,colony level and survival ratio were increased in Gln(-)+NAC group compared with those of Gln(-)group(P<0.05).Cloning assay showed that 10 μmol/L was the optional concentration.Under this concentration,the proliferation and ATP level were decreased in Gln(+)+BPTES group(P<0.05),and cellular ROS level was up-regulated compared with Gln(+)group.The survival ratio was significantly lower in BPTES+H2O2group compared with BPTES(+)group or H2O2(+)group.ConclusionGlutamine deficiency inhibits the proliferation and survival ratio of H446 cells through enhancing ROS level.BPTES and H2O2show synergistically inhibitory effect on the survival of H446 cells.
glutamine;lung neoplasms;carcinoma,small cell;adenosine triphosphate;reactive oxygen species;cell proliferation;cell survival
R734.2
A
10.11958/20160592
天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃重點(diǎn)項(xiàng)目(14JCZDJC35500)
天津醫(yī)科大學(xué)(郵編300070)
徐鵬育(1991),女,碩士在讀,主要從事腫瘤分子病理學(xué)研究
△通訊作者E-mail:qiouxf@tijmu.edu.cn