• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deterministic Nulling for Antenna Pattern of Digital Beamforming Radar Systems

    2017-01-06 08:56:34YUKaiborFENNDEZManuel
    現(xiàn)代雷達(dá) 2016年12期
    關(guān)鍵詞:零陷預(yù)置波束

    YU Kai-bor, FENNDEZ Manuel F

    (1. Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China) (2. Syracuse University, New York 13035, USA)

    ·DBF在現(xiàn)代雷達(dá)中的應(yīng)用·

    Deterministic Nulling for Antenna Pattern of Digital Beamforming Radar Systems

    YU Kai-bor1, FENNDEZ Manuel F2

    (1. Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China) (2. Syracuse University, New York 13035, USA)

    Deterministic nulling arises in digital beamforming radar applications where the locations of interferers and clutter regions are either known a-priori or can be determined by other means. We address this problem of deterministic nulling by specifying the resulting antenna patterns with multiple nulls that include those extending continuously across intervals of prescribed widths. The solution involves determining the basis vectors for the null spaces of such extended regions, or their composite, via the singular value decomposition of the pertinent portions of the antenna response matrix. An efficient practical implementation of this procedure is then provided.

    antenna pattern; array beamforming; array response matrix; null-space; blocking matrix; discrete nulls; extended nulls; mixed-matrix; quiescent pattern

    0 Introduction

    Inserting nulls in an antenna beam pattern is a problem of interest in radar, sonar and sensor array applications where the locations of interferers and clutter regions are either known a-priori or can be determined by other means[1-5]. An approach for affecting such null insertion involves the use of a “blocking matrix” projecting the beamforming weight vector of interest into the space defined by the set of basis vectors orthogonal to that of the region to be nulled. This approach has the attractive feature of involving a simple modification of the antenna beamforming weights chosen per the particulars of the application of concern.

    The techniques for inserting multiple discrete nulls while largely maintaining a desired quiescent beam pat-tern are well-known (reviewedandsummarizedinSection1),while the technique for inserting a broad null can be formulated as a quadratic constraint problem with a solution characterized by the principal eigenvectors of the correlation matrix of the continuum of look-directions defining such null[6]. In this paper we extend the problem to that concerned with inserting both, multiple discrete and multiple broad continuous nulls, and introduce for this purpose the use of quasi-matrices and their factorizations[7]. The resulting solution is further refined as in [8], using a low-rank approximation to balance the null-depth and the pattern distortion. An efficient implementation procedure based on pre-determined basis vectors for various null-widths is then developed.

    Section 1 reviews and summarizes the solution for the deterministic nulling problem of the digital beamforming (DBF) radar system which is formulated as a DBF problem with a prescribed number of discrete nulls. The solution involves a least squares (LS) problem with constraints suppressing (“blocking”) the slices of the anten-

    na array response corresponding to the spatial directions that are to be nulled.

    In Section 2, the problem of deterministic nulling for DBF with continuous extended nulls is formulated. The constraint in this case corresponds to one or multiple spatial regions of the antenna array response; in other words, to a quasi-matrix, a matrix-like construct that is continuous in one dimension (the spatial) and discrete along the other (antenna element)[9]. A way to approach such continuous problem involves discretizing the sources over the constraint extent to then employ the techniques developed for discrete sources discussed in Section 2. Otherwise, an exact approach involves forming the correlation matrix over the continuous sources, as the result is a classical matrix of finite dimension and its eigenvalue decomposition can be used to determine the null space. Alternatively, since the resulting correlation matrix is highly ill-conditioned, the continuous wide-null problem may be approached in a numerically more robust fashion by using quasi-matrix factorization algorithms.

    In Section 3 we give a brief overview of quasi-matrices and related factorization algorithms. We then prescribe an algorithm for obtaining the singular value decomposition (SVD) of the continuously-defined antenna response quasi-matrix which involves forming the QR decomposition using modified Gram Schmidt (MGS) transformations[10-11]. Another approach is to directly generate the extended null′s basis vectors using the MGS procedure with column pivoting.

    Section 4 uses simulation examples to illustrate the techniques for the continuous extended null-insertion problem using the quasi-matrix approach, and show the trade-offs involved between null-depth and pattern distortion.

    Section 5 presents an efficient implementation procedure using pre-determined sets of basis vectors for different null widths. Simulations illustrate the efficiency of this approach for inserting multiple discrete and continuous nulls.

    Section 6 summarizes our results.

    1 Deterministic Nulling Problem of DBF Radar

    (1)

    whereu= sin(Θ),Θis the direction-of-arrival angle, andnis the antenna element index. In many applications it is desired to form nulls at discrete directionsuk,k= 1, 2, …,K; that is,

    (2)

    The nulls may correspond to radio frequency interference (RFI) and discrete clutter with known locations. The null insertion process can thus be formulated as

    (3)

    whereGis the antenna array response matrix to the desired null directions given by the following

    (4)

    (5)

    which results in

    wq-GH(GGH)-1Gwq

    (6)

    Notice that the matrix operating onwq, namely

    (7)

    Direct implementation of solution (6) involves inverting theK×KHermitian matrixGGH, which whenK<

    GH=Q[RH∶0T]H

    (8)

    whereQis aK×Kunitary matrix (i.e.,QHQ=QQH=I),Ris anN×Nupper-triangular matrix, and 0 is a (K-N)×Nzero matrix. Note that substituting (8) in (6) yields

    (9)

    When the conditionK<N), requiring making provisions in the algorithm implementation to handle such eventuality. The most stable approach (albeit computationally the costliest) involves computing the SVD ofG

    G =USVH

    (10)

    where theK×KmatrixUand theN×NmatrixVare unitary, and theK×NmatrixSis diagonal with non-negative diagonal elements arranged in a non-ascending order[10]. WhenGis ill-conditioned, one may set to zero those elements ofSfalling below a thresholdτselected based on criterions to be discussed in the following sections of this paper. Expression (10) can then be expressed as

    (11)

    where theL×Lnon-negative diagonal matrixS1contains the elements ofSexceedingτ(Lis the rank ofG),U1andU2respectively represent the firstLand lastK-Lcol-umns ofU, andV1andV2represent the firstLand lastN-Lcolumns ofV. One can verify that

    (12)

    The modified weight vector can thus be obtained using eitherV1or byV2, as convenient; that is,

    (13)

    ItshouldbenotedthatthematrixVofrightsingularvectorsVcanalsobedeterminedfromtheeigenvaluedecompositionthecorrelationmatrix

    GHG = V S2VH

    (14)

    whereSandVare as previously defined for expression (10). Algorithms exist that exploit the fact that correlation matrices are Hermitian to compute the eigenvalue decomposition in (14) more efficiently[10], although as will be seen later, particular care may be required as, in the particular case of (14), the problem will be rank-deficient or, in the case of extended nulls, highly ill-conditioned. Anyway, once the decomposition is effected, the null space is determined by the eigenvectors corresponding to the zero or “near-zero” eigenvalues. In practice, as in the case of (11), such eigenvalues are determined by some thresholding procedure.

    It should be noted that a numerically more stable solution than (14) involves computing the QR-decomposition with column pivoting[10]ofGH; that is

    (15)

    SplittingQas [Q1∶Q2] yields

    GH=[Q1∶Q2][RH∶0T]HP

    (16)

    whereQ1andQ2now denote respectively the firstLand the lastK-Lcolumns of matrixQ. Ideally, matricesQiare related to theViin (11) asVi=QiTi, where theTiare square unitary transformations, thus enabling expressing (13) using the sets of basis vectorsQ1and/orQ2via

    (17)

    This yields an algorithm that is far cheaper to implement than either (11) or (14), as well as numerically more stable than (6) and (14), as no correlation matrix is involved; however, determining the rankLofGvia the QR decomposition may not be as accurate as that provided by the SVD.

    WhenK>N, as may be the case when modeling extended continuous nulls (see Section 2), computation of the QR-decomposition ofG, followed by the SVD of the resultingR, yields a computational efficient and numerically stable procedure for obtaining the matrixVcontaining the desired sets of range and null basis vectors. In such case, albeitGwill likely be extremely ill-conditioned, obtaining its range and null basis will technically require thresholding the singular values ofR; that is

    G=Q[RH∶0T]H≈Q[(U[S∶0T]TVH)H∶0T]T

    (18)

    whereQisK×K,UandVareN×N, andSisL×L, withLthe estimated rank ofG. MatrixVcan now be split asV=[V1∶V2], withV1(N×L) andV2(N×(N-L)) respectively containing the basis vectors for the range and null spaces ofG(observe that explicit computation ofQis not needed).

    In summary, for a set of discrete nulls, the following algorithms can be used to determine the modified weight vector resulting from a constrained LS minimization problem: (a) direct computation of the projection operator as in (6); (b) obtaining the projection operator in terms of theQmatrix from the QR-decomposition ofGH(as in (8) or (15)); (c) computation of the range and null-space basis vectors ofGvia the SVD (expressions (11) or (18)); and (d) computation of the null-space basis vectors ofGvia the eigenvalue decomposition (EVD) ofGGH(14).

    (19)

    Unfortunately, as shown in the example of Section 4, the pattern nulls produced by such direct LS solution are extremely shallow.

    2 Continuous Wide Null Insertion

    Consider inserting a continuous, extended null in a sine-space region bounded byua≤u≤ub. This is often done not only to suppress extended sources of clutter or interference, but also to provide robust procedures that account for moving sources and/or sensors, as well as for uncertainties in prior direction or angle estimates. The correspondingGfor such null is called a quasi-matrix of dimension [ua,ub]×Nwhere each column is an element response function continuously defined on interval [ua,ub].

    One convenient approach to addressing this continuous problem is to approximate the extended nulls by inserting discrete nulls at multiple, closely-spaced look directions. The techniques discussed in Section 1 for discrete null insertion can then be applied. However, issues with this method are the possibilities of inadequate null-depth and of “l(fā)eakage” (i.e., of lacking enough suppression in the spaces between discrete nulls) when not enough discrete sources are modeled.

    When modeling continuous nulls as a number of discrete sources, the number of rows of the corresponding constraint matrixGmay be relatively large compared to the number of antenna elements, perhaps even exceeding it for the case of large extended nulls. In such cases, the algorithm described by Expression (18) can be used to obtain the proper sets of basis vectors.

    The same situation carries over to the continuous null case, when the antenna null response is a quasi-matrixG(u). An overview of quasi-matrices including their factorization is addressed in Section 3, so we will address here the problem by considering instead theN×Ncorrelation matrixPGresulting from the quasi-matrix product

    PG=G(u)HG(u)

    (20)

    with (m,n)thelement given by the following

    我們?cè)谔锢飳?duì)話就像家中一般平常,幾乎忘記是站在龐大的雨陣中,母親大概是看到我愣頭愣腦的樣子,笑了,說(shuō):“打在頭上會(huì)痛吧!”然后順手割下一片最大的芋葉,讓我撐著,芋葉遮不住西北雨,卻可以暫時(shí)擋住雨的疼痛。

    (21)

    Note that this can be written in matrix form as

    (22)

    whereDis theN×Ndiagonal unitary matrix of phases

    D=diag(ejπ(n-1)uc), n=1,2,…,N

    (23)

    m=1,2,…,N;n=1,2,…,N

    (24)

    with

    uc=(ua+ub)/2

    (25)

    and

    W=ub-ua

    (26)

    That is,ucis the center point of the null in sine space, whileWdenotes the desired null width, also in sine space. Therefore

    (27)

    (28)

    (29)

    The IND improves with increasingL; that is, null-depth will increase as our approximation uses more and more of the singular values ofG. On the other hand, increasingLwill increase beam pattern distortion (PD) as defined by

    (30)

    For the continuous extended null case, the singular values can be determined by computing the SVD of quasi-matrix G(u) (this is addressed in Section 3) or they can be derived from the EVD of the correlation matrix given by (21).

    3 Quasi-matrix Model for Continuous Nulls

    In this section, we first give an overview of the quasi-matrix concept and then prescribe an algorithm to obtain the SVD of G(u), which can be used for solving the continuous null insertion problem.

    As described in [7, 9, 11, 13-14], quasi-matrices are arrays whose columns are comprised of continuous functions. This means they lack individual rows in the usual “matrix” sense of the word, thus differing from classical matrices, even those with an infinite number of rows. The term “quasi-matrix” was coined by Stewart[9], who proposed using such constructs to bridge the fields of matrix and approximation theory, hence enabling the latter to exploit the former’s simplicity of notation and its rich trove of data transformations.

    The dimensions of a quasi-matrix with N columns consisting of functions defined over interval [ua,ub] is said to be [ua,ub]×N[11]. Notice that vertically stacking conventional matrices and quasi-matrices is perfectly acceptable as long as they all have the same number of columns. This stacking yields “mixed-matrices” that, from the application and implementation perspectives, are far more general and practical than the individual blocks, as they enable exploiting the properties of the two array types (e.g., mixed-matrices can be used to specify both, multiple discrete and extended nulls).

    The inner-product of two quasi-vectors x(u) and y(u), specified over interval u in [a, b], is the definite integral of the direct product of the underlying functions x(u) and y(u); thus

    (31)

    Thisdefinitionenablestranslating,withminorvariations,thematrixdecompositionalgorithmsofSection1toencompassmixed-andquasi-matrices.Themostseamlesswaytoperformquasi-matrixQR-typedecompositionsinvolvesusingtheMGSdecompositionmethod[11,13];infact,attemptsatextendingtoquasi-matricesothercommonmatrixQR-decompositiontechniques(e.g.,HouseholdertransformationsorGivensrotations)havethusfarbeenunsuccessful[13].

    UsingMGSmeansthattheresultingdecompositionswillbeofthe“economy”form;thatis,offormG(u) =Q1(u)Rratherthan[Q1(u)∶Q2(u)][RH∶0T]H.NoticethatwhiletheQ(u)factorisitselfaquasi-matrtix, Risaclassicalmatrix,apropertythatenablescomputingthe“economyform”ofaquasi-matrix′sSVDasfollows[11,13]

    SVD(G(u))= SVD(Q1(u)R)=Q1(u)(USVH)=

    (Q1(u)U)SVH=U1(u)SVH

    (32)

    TheimportantadvantageofusingtheQR-decompositionand/ortheSVDofG(u)isthattheydon’trequireformingthecorrelationmatrixof(21),thusavoidingsquaringthesingularvaluesofG(u)andtheill-conditioningthiscreates[10,12].

    4 Continuous Null-insertion Examples

    Considerthecasewhere,givenaHamming-weighteduniformlineararray(ULA)withN = 120elements,wewishtoplaceanextendednullbetweenua=sin(30°)andub=sin(40°)andanevenwidernullbetweenua=sin(10°)andub=sin(40°).Fig.1showstheplotsoftheextendednullsthatareobtainedwhenformulatingtheproblemasanunconstrainedLSminimizationprocedure,solvingfortheweightsprovidinganoptimalLSmatchtotheHammingbeampatternwiththeinsertednulls.Theseweightswereobtainedvia(19),usingPG= G(u)HG(u)asprovidedby(21).Observethattheresultingunconstrained-LSnullsareextremelyshallowinbothcases,particularlyascomparedtothosethat,aswillbeshown,canbeobtainedusingconstrainedLS.

    Fig.1UncostrainedLSantennapatternsynthesisexample:Hammingbeampatternfor120omni-directionalelementULA(lightcolor).LSfittoaHammingpatternwitha100-sidenullcentredat35°(topplot)andtoa30°-sidenullcenteredat20°(bottomplot)

    Fig.2 For a 120-element ULA, the bottom curve shows the normalized singular value spectrum,and the top and middle curves show the INDs and PDs for varous low-rank approximationsof the antenna response quasi-matrixG(u)when inserting a null extending from 30°to 40°

    Fig.3 Quiesent Hamming pattern (light color) and patterns with the prescribed 30°to 40° extended nuill(dark color) for various low-rank approximations of costraint quasi-matrixG(u)

    Fig. 4 repeats the exercise of Fig. 2 for a larger null extending between 10° and 40°. It again plots the singular value spectrum, the IND and the PD as function of low-rank approximation. Fig. 5 shows the resulting patterns for different values ofL.

    Fig.4 Given a 120-element ULA, the bottom curve shows thenormalized singular value spectrum, and the top and the middle curves show the INDs and PDs as function of low-rank approximation of the antenna response matrix for a null extending from 10°to 40°

    Fig.5 Quiescent Hamming pattern (light color) and patterns with the prescribed 10° to 40°extended null(dark color) for various low-rank approximations forconstraint quasi-matrixG(u)

    5 Techniques for Efficient Implementation

    The procedure can be summarized as follows:

    (a) AssumingMfundamental nulls of interest centered atu=0, each of widthWmin sine space, determine theMsets of basis SVs, one for each null, to be used as constraint matrix, call itGm(0). Note from comparing Fig.3 and Fig.5 that the number of basis vectors depends on specified null-widthWm.

    (b) Exploit the fact that the constraint matrixGm(uc), representing an extended null of widthWmcentered atu=ucin sine space, is related toGm(0) as

    Gm(uc)=Gm(0)Φc

    (33)

    with phase-shifting matrixΦcgiven by

    Φc=diag(exp(j(n-1)uc)),n=0,1,…,N-1

    (34)

    (c) Address multiple constraints of various widths and locations by retrieving the set of basis vectors for each width, phase-shifting the basis vectors to the desired null centers, stacking them up and then re-orthonormalizing the resulting super-matrix.

    An example using the above procedure to insert two discrete nulls, at -30° and 60°, and a wide-null extending from 30° to 40°, is shown in Fig.6.

    Fig.6 Plot of the antenna pattern with discrete nulls at -30°and 60°and a continuous null extending for 30°to 40°. This plotwas generated using the implementation procedure of Section 5

    6 Summary

    We have developed a set of techniques for deterministic nulling of DBF radar system with prescribed multiple discrete and continuous nulls. For a finite number of constraints the problem is formulated as a constrained LS problem whose solution involves projecting the vector of quiescent weights into the null-space of the matrixGof basis vectors supporting the antenna responses for the desired null regions. This null-space can be determined either by using the SVD ofGor by computing the EVD of the correlation matrixGHG.

    When the constraint is continuous or when the number of constraints exceeds the number of degrees of freedom, the exact solution to the constraints is the zero vector; however, this solution obliterates the desired beam pattern in its entirety. Fortunately, a non-superfluous solution can be determined by finding a low-rank approximation to constraint matrixGand using it as our new constraint set. The rank of this approximation can be determined based on the spectrum of the singular values ofG, together with the corresponding IND and PD values. Simulations showed these trade-offs as well as the antenna patterns achieved for various low-rank approximations.

    The paper also included a discussion of quasi-and mixed-matrices, the mechanics of their operation, and algorithms for their factorization. Use of these constructs enabled applying matrix techniques to data with both, discrete and continuous components, and hence to the practical problems of inserting extended and mixtures of extended and discrete nulls. This resulted in the development of a scheme enabling specifying extended nulls at prescribed angles without having to compute in real-time the number of uniform basis vectors required, as the basis matrices can be pre-determined. This produced an efficient implementation procedure that makes use of stored basis vectors, pre-determined according to the desired null-widths, phase-shifting them then to the prescribed null location centers and re-orthonormalizing them as needed.

    [1] WU W, WANG Y. A study of beam-pattem generation methods for antenna array systems[J]. Journal of Science and Engineer Technology, 2005, 1(2): 7-12.

    [2] SALONEN I, ICHELN C, VAINKKAINEN P. Beamforming with wide null sectors for realistic arrays using directional weighting[R]. Report S 274, Helsinki University of Technology, 2009.

    [3] MANGOUD M A, ELRAGAL H M. Antenna array pattern synthesis and wide null control using enhanced particle swarm optimization[J]. Progress in Electromagnetics Research B, 2009, 17(17): 1-14.

    [4] VEEN K V. Eigenstructure based partially adaptive array design[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(3): 357-362.

    [6] ER M H. Linear antenna array pattern synthesis with prescribed broad nulls[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(9): 1496-1498.

    [8] YU K B, FERNNDEZ M F. Antenna pattern synthesis with multiple discrete and continuous nulls[C]// 2015 IET International Radar Conference. Hangzhou, China: IET, 2015: 7-12.

    [9] STEWART G W. Afternotes goes to graduate school: lectures on advanced numerical analysis. [S.l.]: SIAM, 1998.

    [10] GOLUB G, LOAN C V. Matrix computations[M]. 3rd ed. Maryland: John Hopkins University Press, 1996.

    [11] TOWNSEND A, TREFETHEN L. Continuous analogues of matrix factorizations. [EB/OL]. [2015-05-29]. http://eprints. maths.ox.ac.uk/1766/.

    [12] HOGAN J A, LAKEY J D. Duration and bandwidth limiting: prolate functions, sampling and applications[M]. Berlin: Springer Science & Business Media, 2011.

    [13] TREFETHEN L. Householder triangularization of a quasimatrix[J]. IMA Journal of Numerical Analysis, 2010(30): 887-897.

    [14] BATRLES Z, TREFETHEN L. An extension of MATLAB to continuous functions and operators[J]. SIAM Journal of Science Computation, 2004, 25(5): 1743-1770.

    專家介紹

    國(guó)家自然科學(xué)基金資助項(xiàng)目(61571294);航空科學(xué)基金資助項(xiàng)目(2015ZD07006)

    余啟波 Email:kbyu77@yahoo.com

    2016-09-20

    2016-11-21

    TN957.51

    A

    1004-7859(2016)12-0001-08

    數(shù)字波束形成雷達(dá)的天線方向圖預(yù)置零技術(shù)

    余啟波1,F(xiàn)ENNDEZ Manuel F2

    (1. 上海交通大學(xué) 上海市智能探測(cè)與識(shí)別重點(diǎn)實(shí)驗(yàn)室, 上海 200240) (2. 錫拉丘茲大學(xué), 紐約 13035 )

    基于數(shù)字波束形成體制的相控陣?yán)走_(dá)系統(tǒng),如果雜波和干擾的角度先驗(yàn)信息可以獲知,則可采用方向圖預(yù)置零技術(shù)進(jìn)行相關(guān)的抑制處理。文中提出一種能夠?qū)崿F(xiàn)可控制方向圖零陷寬度和零陷數(shù)量的處理方法。該方法采用對(duì)陣列方向圖響應(yīng)矩陣的奇異值分解和重構(gòu),進(jìn)行擴(kuò)展的零空間基向量的求解。同時(shí),針對(duì)提出的新方法的實(shí)際應(yīng)用,論文給出了一種可實(shí)用的求解算法

    天線方向圖; 陣列波束形成; 陣列響應(yīng)矩陣; 零空間; 阻塞矩陣; 離散零陷; 零陷擴(kuò)展; 混合矩陣; 靜態(tài)方向圖

    10.16592/ j.cnki.1004-7859.2016.12.001

    猜你喜歡
    零陷預(yù)置波束
    幾種發(fā)射波束零陷展寬算法仿真分析
    科技視界(2022年26期)2023-01-16 03:50:36
    基于排隊(duì)論的水下預(yù)置反艦導(dǎo)彈部署優(yōu)化
    毫米波大規(guī)模陣列天線波束掃描研究*
    用友U8軟件預(yù)置會(huì)計(jì)科目的維護(hù)
    圓陣多波束測(cè)角探究
    Helix陣匹配場(chǎng)三維波束形成
    混料設(shè)計(jì)在6061鋁合金激光焊預(yù)置Al-Si-Ni粉末中的應(yīng)用
    焊接(2016年8期)2016-02-27 13:05:12
    一種基于MSNR準(zhǔn)則的零陷控制方法
    基于二階錐優(yōu)化的指定零陷寬度方向圖綜合研究
    基于非正交變換的局域波束空時(shí)自適應(yīng)處理
    天天躁夜夜躁狠狠久久av| 精品国产乱码久久久久久小说| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 五月天丁香电影| 十八禁高潮呻吟视频 | 欧美另类一区| 国产精品嫩草影院av在线观看| 三级国产精品片| 久久精品熟女亚洲av麻豆精品| 国产av码专区亚洲av| 少妇被粗大猛烈的视频| 中文字幕av电影在线播放| 久久久久国产精品人妻一区二区| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 国内少妇人妻偷人精品xxx网站| 成人国产av品久久久| 91精品国产国语对白视频| 亚洲国产精品专区欧美| 日韩电影二区| 蜜桃久久精品国产亚洲av| 欧美3d第一页| 久久国内精品自在自线图片| 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 国产黄色视频一区二区在线观看| 51国产日韩欧美| 简卡轻食公司| 妹子高潮喷水视频| 亚洲图色成人| 久久久久久久久久久丰满| a级一级毛片免费在线观看| 日韩在线高清观看一区二区三区| 九草在线视频观看| 免费高清在线观看视频在线观看| 精品久久国产蜜桃| 国产美女午夜福利| 中国美白少妇内射xxxbb| 亚洲av国产av综合av卡| 观看美女的网站| 色视频www国产| 两个人免费观看高清视频 | 啦啦啦视频在线资源免费观看| 国产乱来视频区| 国产成人午夜福利电影在线观看| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 三级国产精品片| 亚洲精品一二三| 一级,二级,三级黄色视频| 国国产精品蜜臀av免费| 日本黄色片子视频| 极品教师在线视频| 一本大道久久a久久精品| 国内少妇人妻偷人精品xxx网站| 国产真实伦视频高清在线观看| 一区二区av电影网| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 男人爽女人下面视频在线观看| 亚洲欧美清纯卡通| 极品教师在线视频| 亚洲av不卡在线观看| videos熟女内射| 另类亚洲欧美激情| 久久亚洲国产成人精品v| 久久亚洲国产成人精品v| av福利片在线观看| 久久免费观看电影| 成人黄色视频免费在线看| 丰满人妻一区二区三区视频av| 激情五月婷婷亚洲| 大片免费播放器 马上看| 一本一本综合久久| 日韩免费高清中文字幕av| 免费人妻精品一区二区三区视频| 国产一区二区三区av在线| 久久99一区二区三区| 精品人妻熟女毛片av久久网站| 寂寞人妻少妇视频99o| 欧美精品一区二区大全| 七月丁香在线播放| 日本爱情动作片www.在线观看| 精品一区二区三区视频在线| 香蕉精品网在线| 国产日韩欧美亚洲二区| 久久这里有精品视频免费| 亚洲欧美日韩东京热| 日韩人妻高清精品专区| 免费观看a级毛片全部| 日本与韩国留学比较| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 色视频在线一区二区三区| av卡一久久| 最近2019中文字幕mv第一页| 国产精品伦人一区二区| 青春草视频在线免费观看| 国产成人精品福利久久| 久久免费观看电影| a级毛片免费高清观看在线播放| 最近2019中文字幕mv第一页| 赤兔流量卡办理| 欧美日韩一区二区视频在线观看视频在线| 精品久久久久久久久亚洲| 26uuu在线亚洲综合色| 精品国产乱码久久久久久小说| 亚洲av福利一区| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 性高湖久久久久久久久免费观看| 国产免费福利视频在线观看| 欧美bdsm另类| 一级毛片久久久久久久久女| av不卡在线播放| 青春草国产在线视频| 又爽又黄a免费视频| 久久av网站| 精品国产一区二区三区久久久樱花| freevideosex欧美| 爱豆传媒免费全集在线观看| av卡一久久| 曰老女人黄片| 久久99蜜桃精品久久| 一本—道久久a久久精品蜜桃钙片| 久久综合国产亚洲精品| 女性被躁到高潮视频| 精品亚洲成a人片在线观看| 尾随美女入室| 日韩一本色道免费dvd| 国产极品粉嫩免费观看在线 | 男人添女人高潮全过程视频| 国产在线视频一区二区| 九九在线视频观看精品| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 春色校园在线视频观看| 乱人伦中国视频| 少妇高潮的动态图| 精品国产乱码久久久久久小说| 亚洲精品国产av成人精品| 久热这里只有精品99| 街头女战士在线观看网站| 免费观看无遮挡的男女| 丝袜喷水一区| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 国内揄拍国产精品人妻在线| 51国产日韩欧美| www.av在线官网国产| 18禁裸乳无遮挡动漫免费视频| 欧美xxxx性猛交bbbb| 精品少妇黑人巨大在线播放| xxx大片免费视频| 国产精品一二三区在线看| 色94色欧美一区二区| 欧美精品国产亚洲| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 久久久久久人妻| 日韩欧美 国产精品| 国产精品女同一区二区软件| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 久久久久国产网址| 亚洲内射少妇av| 日韩精品有码人妻一区| 国产成人免费无遮挡视频| 精品久久久噜噜| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩卡通动漫| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 97在线视频观看| 亚洲国产成人一精品久久久| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| tube8黄色片| 日日啪夜夜撸| 亚洲国产最新在线播放| 亚洲欧美日韩东京热| 亚洲自偷自拍三级| 妹子高潮喷水视频| 美女大奶头黄色视频| 国精品久久久久久国模美| 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 成年人午夜在线观看视频| 99国产精品免费福利视频| 女人精品久久久久毛片| 在线观看www视频免费| 成人亚洲欧美一区二区av| 美女主播在线视频| 美女内射精品一级片tv| 国产淫语在线视频| 亚洲一区二区三区欧美精品| av在线播放精品| 男人添女人高潮全过程视频| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 一区二区三区乱码不卡18| 国产极品粉嫩免费观看在线 | 欧美区成人在线视频| 91aial.com中文字幕在线观看| 搡老乐熟女国产| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 在线观看人妻少妇| 岛国毛片在线播放| 久久精品国产自在天天线| 欧美少妇被猛烈插入视频| 熟女人妻精品中文字幕| 午夜影院在线不卡| 国产一区二区三区av在线| 久久国内精品自在自线图片| 国产精品一区二区在线观看99| 一级毛片电影观看| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 久久久久久久久久人人人人人人| 嫩草影院新地址| 青春草视频在线免费观看| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 天堂8中文在线网| 在线观看人妻少妇| 亚洲美女视频黄频| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 免费大片黄手机在线观看| 九色成人免费人妻av| 久久久久久人妻| 国产精品国产三级专区第一集| 99久久综合免费| 一级爰片在线观看| 中文在线观看免费www的网站| 成人二区视频| 蜜桃在线观看..| 一区二区三区精品91| 偷拍熟女少妇极品色| 国产精品久久久久久久久免| 成人免费观看视频高清| 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频| 国产一级毛片在线| 国产探花极品一区二区| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 亚洲精品456在线播放app| 久久久久久久久久成人| 国产精品成人在线| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 成人综合一区亚洲| 两个人的视频大全免费| 国产男女内射视频| 亚洲欧美一区二区三区国产| 亚洲丝袜综合中文字幕| 国产精品偷伦视频观看了| 视频中文字幕在线观看| kizo精华| 伦理电影免费视频| av视频免费观看在线观看| 亚洲精品乱久久久久久| 91成人精品电影| 26uuu在线亚洲综合色| a级毛色黄片| 国产成人精品无人区| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| 18禁在线播放成人免费| 中文资源天堂在线| 成人18禁高潮啪啪吃奶动态图 | 99久久人妻综合| 国产 一区精品| 51国产日韩欧美| 国产免费福利视频在线观看| 国内精品宾馆在线| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| av一本久久久久| 国产淫语在线视频| 少妇的逼好多水| tube8黄色片| 99久久精品热视频| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 国产精品无大码| 秋霞在线观看毛片| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 免费观看在线日韩| 黄色毛片三级朝国网站 | 成人无遮挡网站| 国产欧美亚洲国产| 91久久精品国产一区二区成人| 在线精品无人区一区二区三| 一级二级三级毛片免费看| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 精品久久久噜噜| 免费播放大片免费观看视频在线观看| 99热全是精品| 国产黄频视频在线观看| 性色av一级| 亚洲精品亚洲一区二区| 国产美女午夜福利| freevideosex欧美| 国产亚洲一区二区精品| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 国产极品天堂在线| 人妻系列 视频| 午夜日本视频在线| 久久精品国产亚洲网站| 亚洲av日韩在线播放| 国产免费一区二区三区四区乱码| 99视频精品全部免费 在线| 在线观看免费高清a一片| 99re6热这里在线精品视频| av天堂久久9| 欧美高清成人免费视频www| av一本久久久久| 人妻 亚洲 视频| 亚州av有码| 老女人水多毛片| 一级毛片 在线播放| 日日啪夜夜爽| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 久久精品国产自在天天线| 美女视频免费永久观看网站| 国产欧美日韩综合在线一区二区 | av专区在线播放| 2018国产大陆天天弄谢| 寂寞人妻少妇视频99o| 毛片一级片免费看久久久久| 国产成人精品福利久久| 国产精品免费大片| 久久精品国产鲁丝片午夜精品| 精品卡一卡二卡四卡免费| 欧美日韩亚洲高清精品| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 一级av片app| 大话2 男鬼变身卡| 精品久久久久久久久av| 韩国高清视频一区二区三区| 精品国产露脸久久av麻豆| 欧美精品国产亚洲| 青春草国产在线视频| 久久久国产精品麻豆| 九色成人免费人妻av| 丰满饥渴人妻一区二区三| 精品熟女少妇av免费看| 色视频在线一区二区三区| 老熟女久久久| 午夜av观看不卡| 国产中年淑女户外野战色| 国产成人精品一,二区| 久久久久久人妻| 五月开心婷婷网| 午夜激情久久久久久久| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 黑人巨大精品欧美一区二区蜜桃 | 天堂8中文在线网| 丝袜在线中文字幕| 中文天堂在线官网| 日本av手机在线免费观看| 免费黄网站久久成人精品| 这个男人来自地球电影免费观看 | 少妇人妻一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院 | 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 久久韩国三级中文字幕| 秋霞伦理黄片| 人人妻人人澡人人看| 久久久久精品性色| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 亚洲不卡免费看| 精品人妻偷拍中文字幕| 亚洲综合精品二区| 内射极品少妇av片p| 最近最新中文字幕免费大全7| 另类精品久久| 欧美精品一区二区大全| 国产精品久久久久久av不卡| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 久久99热6这里只有精品| 久久热精品热| 嫩草影院新地址| 少妇的逼水好多| 亚洲天堂av无毛| 夜夜骑夜夜射夜夜干| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 欧美日韩av久久| 卡戴珊不雅视频在线播放| 99热这里只有精品一区| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 久久女婷五月综合色啪小说| 成人漫画全彩无遮挡| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片 | 青青草视频在线视频观看| 精品亚洲成国产av| 欧美精品一区二区免费开放| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲 | 久久久久久久国产电影| 永久网站在线| 国精品久久久久久国模美| 男人添女人高潮全过程视频| 国产一区二区在线观看av| 十八禁高潮呻吟视频 | 国产精品嫩草影院av在线观看| av天堂中文字幕网| 高清不卡的av网站| 欧美激情国产日韩精品一区| 欧美国产精品一级二级三级 | 精品久久久久久久久亚洲| 中文字幕精品免费在线观看视频 | 亚洲四区av| 两个人的视频大全免费| 六月丁香七月| 国产欧美亚洲国产| av免费在线看不卡| 久久久精品94久久精品| 丁香六月天网| 少妇丰满av| 丝袜在线中文字幕| 免费人妻精品一区二区三区视频| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| av在线播放精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲高清免费不卡视频| 国产一区二区三区综合在线观看 | 亚洲成人av在线免费| 日日摸夜夜添夜夜爱| 高清视频免费观看一区二区| 男女国产视频网站| 日韩精品免费视频一区二区三区 | 国产爽快片一区二区三区| 日本色播在线视频| 一个人免费看片子| 伦理电影免费视频| 亚洲经典国产精华液单| 丝袜脚勾引网站| 国产一区二区三区av在线| 97在线人人人人妻| 黑人猛操日本美女一级片| 久久久久国产网址| 女性被躁到高潮视频| 黄片无遮挡物在线观看| 十八禁高潮呻吟视频 | 伦理电影大哥的女人| 亚洲av免费高清在线观看| av在线观看视频网站免费| 乱人伦中国视频| 一级a做视频免费观看| 国产在线视频一区二区| 在现免费观看毛片| 在线观看免费日韩欧美大片 | 欧美三级亚洲精品| 性色av一级| 国产成人免费观看mmmm| 午夜免费男女啪啪视频观看| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 婷婷色综合www| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 大片免费播放器 马上看| 十八禁网站网址无遮挡 | 亚洲av在线观看美女高潮| 亚洲av.av天堂| 国产成人精品一,二区| 啦啦啦在线观看免费高清www| 国产色婷婷99| 777米奇影视久久| 黄色欧美视频在线观看| 视频区图区小说| 蜜桃久久精品国产亚洲av| 如日韩欧美国产精品一区二区三区 | 久久这里有精品视频免费| 午夜激情久久久久久久| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 国产精品久久久久久久久免| 免费观看a级毛片全部| 欧美3d第一页| 深夜a级毛片| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 女性被躁到高潮视频| 永久免费av网站大全| 欧美日韩av久久| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 国产国拍精品亚洲av在线观看| 国产欧美亚洲国产| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆| 久久久欧美国产精品| 能在线免费看毛片的网站| 亚洲精品,欧美精品| 久久久a久久爽久久v久久| 天堂8中文在线网| 亚洲欧美精品自产自拍| 欧美日韩亚洲高清精品| 国产精品三级大全| 国产男女超爽视频在线观看| 国产视频内射| 一本—道久久a久久精品蜜桃钙片| 欧美+日韩+精品| av不卡在线播放| 精品久久久久久久久亚洲| 在线观看免费视频网站a站| av卡一久久| 国产极品天堂在线| 国产一区有黄有色的免费视频| 日韩成人av中文字幕在线观看| 人妻夜夜爽99麻豆av| 成年av动漫网址| 日韩强制内射视频| 亚洲电影在线观看av| 国产一级毛片在线| 亚洲欧洲日产国产| 99精国产麻豆久久婷婷| 成人二区视频| 午夜久久久在线观看| 夫妻性生交免费视频一级片| 丰满饥渴人妻一区二区三| 777米奇影视久久| 女性生殖器流出的白浆| 最近2019中文字幕mv第一页| 国内揄拍国产精品人妻在线| 日韩在线高清观看一区二区三区| 免费观看的影片在线观看| 亚洲熟女精品中文字幕| 久久狼人影院| 国产成人a∨麻豆精品| av在线观看视频网站免费| 日本欧美视频一区| 91精品国产国语对白视频| freevideosex欧美| 成人美女网站在线观看视频| 免费观看无遮挡的男女| 久久久午夜欧美精品| 国产日韩欧美在线精品| 午夜福利视频精品| 2022亚洲国产成人精品| 亚洲av成人精品一区久久| 91精品国产国语对白视频| 久久99精品国语久久久| 午夜影院在线不卡| 国产成人a∨麻豆精品| 国产黄频视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产免费一区二区三区四区乱码| 亚洲美女黄色视频免费看| 青春草视频在线免费观看| 午夜福利视频精品| 国产午夜精品久久久久久一区二区三区| 国产成人精品一,二区| 国产精品久久久久久av不卡| 久久99蜜桃精品久久| 在线观看免费视频网站a站| 一区二区三区乱码不卡18| 精品久久久久久久久亚洲| 亚洲精华国产精华液的使用体验| 国产精品熟女久久久久浪| 亚洲国产av新网站|