董群鋒1,,郭立新1,王立,張輝,王明軍
(1.西安電子科技大學(xué) 物理與光電學(xué)院,西安 710071;2.咸陽師范學(xué)院,物理與電子工程學(xué)院,陜西 咸陽 712000)
沙塵媒質(zhì)微波衰減特性研究
董群鋒1,2,郭立新1,王立2,張輝2,王明軍2
(1.西安電子科技大學(xué) 物理與光電學(xué)院,西安 710071;2.咸陽師范學(xué)院,物理與電子工程學(xué)院,陜西 咸陽 712000)
目的研究沙塵媒質(zhì)中微波衰減特性。方法根據(jù)隨機(jī)媒質(zhì)電磁波傳播理論,給出了沙塵媒質(zhì)中沿水平路徑和沿地空路徑的微波衰減和相移模型,與Sharief,Erdenekhuu和尹文言衰減模型計(jì)算結(jié)果進(jìn)行比較和分析。結(jié)果衰減模型與Goldhirsh模型比較吻合,驗(yàn)證了其正確性。模型預(yù)測(cè)結(jié)果與Sharief模型結(jié)果一致。結(jié)論仿真結(jié)果驗(yàn)證了提出模型的有效性,模型計(jì)算方便,適用于不同頻率。
微波;沙塵;衰減
沙塵暴對(duì)氣候、空氣質(zhì)量及通信系統(tǒng)的影響研究一直是倍受關(guān)注的課題[1—4]。沙塵粒子對(duì)電磁波信號(hào)的吸收和散射效應(yīng),使信號(hào)產(chǎn)生衰減、去極化效應(yīng),甚至引起微波、毫米波通信系統(tǒng)中斷[5]。為精確預(yù)測(cè)沙塵暴對(duì)微波/毫米波通信系統(tǒng)的影響,需要對(duì)沙塵媒質(zhì)中的衰減進(jìn)行計(jì)算。基于Rayleigh散射,Adel研究了沙塵尺寸分布對(duì)微波傳播的影響[6]。Ahmed和Adel等人通過地域沙塵的尺寸分布測(cè)量數(shù)據(jù),建立微波衰減和相移模型[7];基于Rayleigh散射,Goldhirsh建立了沙塵暴二維的衰減與后向散射模型[8];Elabdin應(yīng)用 Mie理論,給出沙塵衰減的表達(dá)式[9],但表達(dá)式較為復(fù)雜。對(duì)于地空路徑上沙塵媒質(zhì)的電波傳播特性,Sharief[10]研究了 x波段地空路徑的電磁波傳播特性;Erdenekhuu[11]假定地空路徑上沙塵粒子均勻分布, 給出了地空路徑沙塵總衰減模型。國內(nèi)也開展沙塵媒質(zhì)中的電波傳播特性研究[12—17]。尹文言[16]、徐英霞[17]等人在 Rayleigh散射研究了沙塵粒子尺寸分布對(duì)微波傳播的影響。文中基于Rayleigh散射,應(yīng)用沙塵粒子數(shù)密度與能見度、等效粒徑的關(guān)系,給出了沙塵媒質(zhì)中沿水平路徑和地空路徑的衰減模型,簡化了沙塵粒子隨機(jī)分布的復(fù)雜性對(duì)微波傳播的影響。該模型適用于不同頻率,并與已有的文獻(xiàn)結(jié)果進(jìn)行了比較分析。
由粒子散射產(chǎn)生的衰減率α(dB/km)和相移率β((°)/km)為[10]:
式中:0k為自由空間傳播常數(shù),m-1;N(a)為粒子尺寸分布密度,N(a)=N0p(a);a為粒子半徑,mm。
由于沙塵粒子尺寸比較小,頻率較低時(shí),滿足ka?1的條件(k為波數(shù)),所以可以采用 Rayleigh近似下沙塵粒子的前向散射振幅[3]:
式中:a為粒子半徑,mm;*mε 為沙塵粒子的介電常數(shù)。
沙塵媒質(zhì)中單位體積內(nèi)的粒子數(shù)為[5]:
將式(3)和(4)代入分別代入式(1)和(2)中,可得衰減率α和相移系率β表達(dá)式為:
式中:F為電磁波頻率,GHz;Vb為能見度,km; 'ε和 "ε分別為*mε 的實(shí)部和虛部。
地空路徑上能見度與高度的關(guān)系[10]為:
式中:V和V0分別是高度h,h0對(duì)應(yīng)的能見度,b=0.28。
文獻(xiàn)[10]給出了能見度與高度的變化關(guān)系為:
將式(8)代入(5)和(6)式中,則不同高度處沙塵的衰減率和相移系數(shù)為:
地空路徑上沙塵的總衰減和總相移[17]表示為:
式中:h1為沙塵的高度;θ為仰角。如圖1所示,L為電波傳播的路徑長度。
圖1 地空路徑傳播Fig.1 The electromagnetic wave propagation in earth-space links
利用式(9)—(12),地空路徑上沙塵的總衰減和總相移分別為:
式中:F為頻率,GHz;V0為能見度,km;h1為沙塵高度,km;θ為仰角,(°);γ=1.07。
在Rayleigh近似,Goldhirsh[8]給出微波在沙塵媒質(zhì)中的衰減模型,其表達(dá)式為:尹文言模型[16]為:
Alhaider[2]模型的衰減模型:
比較尹文言模型(16)、Alhaider模型(17)與模型(5),可以看出,模型(5)的表達(dá)式中消除了沙塵粒子尺寸分布的影響,克服了沙塵粒子尺寸分布的的復(fù)雜性對(duì)微波傳播的影響。為了驗(yàn)證衰減模型(5)的正確性,取F=24 GHz,水的質(zhì)量分?jǐn)?shù)為5.0%時(shí)的介電常數(shù)分別[2]為 3.6-j0.65,應(yīng)用式(5)與Goldhirsh的模型(15)、Alhaider模型(17)和尹文言模型(16)對(duì)沙塵引起的衰減進(jìn)行了比較,結(jié)果如圖2所示。從圖2可以看出,尹文言模型的預(yù)測(cè)衰減結(jié)果最大,Alhaider模型結(jié)果較大,模型(5)和Goldhirsh的模型結(jié)果最小且比較吻合,驗(yàn)證了模型(5)的正確性。
在電磁波頻率為14,24,37GHz時(shí),介電常數(shù)分別[4]為3.9-j0.63,3.6-j0.65,4.0-j1.3,應(yīng)用式(5)計(jì)算了不同頻率下沙塵衰減,如圖3所示??梢钥闯?,沙塵的衰減隨能見度的增大而減小,這是由于隨著能見度的增大,單位體積中沙塵粒子的粒子數(shù)減小。對(duì)于同一能見度,衰減隨頻率的增大而增大。
圖2 公式(5)與Goldhirsh模型、Alhaider模型和尹文言模型計(jì)算衰減比較Fig. 2 Comparison of attenuations obtained by Goldhirsh formula, Alhaider formula, Winyan formula and our proposed formula (5) at 24 GHz
圖3 不同頻率下衰減與能見度的關(guān)系Fig.3 Attenuation with visibility at different frequency.
Sharief[10]給出了10 GHz干沙地空路徑的總衰減模型(16);Erdenekhuu[11]假定地空路徑上沙塵粒子均勻分布, 給出了地空路徑沙塵總衰減模型(17),分別為:
尹文言給出的模型[16]為:
為了驗(yàn)證地空路徑模式(13)的正確性,在頻率為10 GHz時(shí),計(jì)算結(jié)果分別與Sharief、Erdenekhuu模型和尹文言模型結(jié)果進(jìn)行了比較,結(jié)果如圖4所示。文中模型與Sharief模型結(jié)果相吻合;Erdenekhu模型的結(jié)果較大,這是由于該模型沒有考慮地空路徑沙塵能見度隨高度的變化;尹文言模型的預(yù)測(cè)衰減結(jié)果最小。同時(shí),與Sharief和Erdenekhuu模型的比較,文中提出的式(13)滿足實(shí)際且適用于不同頻率。
圖4 式(13)與Sharif, Erdenekhuu和尹文言模型計(jì)算總衰減比較(10 GHz)Fig.4 Comparison of attenuations obtained by Sharif formula, Erdenekhuu formula, Wenyan formula and our proposed formula (13) at 10 GHz
圖 5表示F=24 GHz,沙塵高度 2 km,θ= 20°,40°,60°仰角對(duì)地空路徑總衰減的影響??梢钥闯?,仰角越小,總衰減越大,這是因?yàn)閷?duì)于相同的沙塵高度,仰角越小,電磁波的傳播路徑越大。
圖5 總衰減與仰角的關(guān)系(24 GHz)Fig.5 Attenuation with different elevation angle at 24 GHz.
文中研究了沙塵媒質(zhì)對(duì)微波沿水平及地空路徑的傳播特性的影響,推導(dǎo)給出了水平路徑上的衰減和相移模型,與 Goldhirsh的模型、Alhaider模型和尹文言模型的衰減結(jié)果比較分析。計(jì)算結(jié)果表明,衰減模型與Goldhirsh的模型比較吻合,驗(yàn)證了其正確性;頻率越大,衰減越大。給出了地空路徑微波衰減和相移的模型,該模型簡潔,適用于不同頻率。與 Sharief,Erdenekhuu及尹文言模型計(jì)算結(jié)果比較表明,提出的衰減模型與 Sharief模型結(jié)果相一致;Erdenekhuu模型的結(jié)果較大,這是由于該模型沒有考慮地空路徑沙塵能見度隨高度的變化;仰角越小,總衰減越大,這是因?yàn)閷?duì)于相同的沙塵高度,仰角越小,電磁波的傳播路徑越大。
[1] CHARISON R J, SCHWARTZ S E, HALES J M. Climate Forcing by Anthropogenic Aerosols[J]. Science, 1992, 255(5043): 423—430.
[2] ALHAIDER M A. Radio Wave Propagation into Sandstorms System Design Based on Ten-years Visibility Data in RIYADH, Saudi Arabia in J Inf Millim[J]. Waves, 1986, 7: 1339—1359.
[3] ANSARI A J, EVANS B G. Microwave Propagation in Sand and Dust Storms[J]. IEE Proc F, Commun, Radar & Signal Process, 1982, 129: 315—322.
[4] DONG X Y, CHEN H Y. Microwave and Millimeter Wave Attenuation in Sand and Dust Storms[J]. IEEE Antennas and Wireless Propagation Letters, 2011(10): 469—471.
[5] CHEN H Y, KU C C. Calculation of Wave Attenuation in Sand and Dust Storms by the FDTD and Turning Bands Methods at 10~100 GHz[J]. IEEE Trans Antennas Propagat, 2012, 60(6): 2951—2960.
[6] ADEL A A. Effect of Particle Size Distribution on Millimeter Wave Propagation into Sandstorms[J]. In J Inf Millim Waves, 1986, 7(6): 857—868.
[7] AHMED A S, ADEL A A, ALHAIDER M A. Airborne Dust Size Analysis for Tropospheric Propagation of Millimetric Waves into Dust Storms[J]. IEEE Trans on Geosci and Remote Sensing, 1987, 25(5): 599—693.
[8] GOLDHIRSH J. Attenuation and Backscatter from a Derived Two-Dimensional Duststorm Model[J]. IEEE Trans Antennas Propagat, 2001, 49(12):1703—1711.
[9] ELABDIN Z, ISLAM M R. Mathematical Model for the Prediction of Microwave Signal Attenuation Due to Duststorm[J]. Progress In Electromagnetics Research M, 2009(6): 139—153.
[10] SHARIF S M. Performance of Earth-satellite Links during Dust Storms at the X-band[J]. SES Journal, 1993, 40(33): 14—19.
[11] ERDENEKHUU N. Microwave Attenuation Due to Dust and Sand Storm in Earth-satellite Link[C]// IEEE International Forum on Strategic Technology. 2007: 599—601.
[12] 董慶生, 趙振維, 叢洪軍. 沙塵引起的毫米波衰減[J].電波科學(xué)學(xué)報(bào), 1996, 11(2): 29—32. DONG Qing-sheng, ZHAO Zhen-wei, CONG Hong-jun. The mm-wave Attenuation due to Sand and Dust[J]. Chinese Journal of Radio Science, 1996, 11(2): 29—32.
[13] 吳成明, 鄭守城, 吳振森. 微波及毫米波段沙塵暴引起的衰減及相移[J].電工數(shù)學(xué)進(jìn)展,2001,8(3):284—290. WU Cheng-ming, ZHENG Shou-cheng, WU Zhen-sen. Attenuation and Phase Shift of Sand and Dust Storms on Microwave and Millimeter Wave[J]. Advances in Electric Mathematics, 2001, 8(3): 284—290.
[14] 周旺. 微波傳輸中沙塵衰減的計(jì)算與仿真[J] . 強(qiáng)激光與粒子束, 2005, 17(8): 1259—1262. ZHOU Wang. Calculation and Simulation of Sand and Dust Attenuation in Microwave Propagation[J]. High Power Laser and Particle Beams, 2005, 17(8): 1259—1262.
[15] 楊瑞科, 鑒佃軍, 姚榮輝. 沙塵暴中毫米波傳播衰減及雙頻互相關(guān)函數(shù)研究[J]. 西安電子科技大學(xué)學(xué)報(bào), 2007, 34(6): 953—957. YANG Rui-ke, JIAN Dian-jun, YAO Rong-hui. Research on Attenuation and The Two-frequency Mutual Coherence Function for Millimeter Wave Propagation in the Sand and Dust Storm[J]. Journal of Xidian University, 2007, 34(6): 953—957.
[16] 尹文言, 萬偉. 塵暴對(duì)地-空微波?毫米波傳播的影響[J].西北工業(yè)大學(xué)學(xué)報(bào), 1991, 9(4): 484—492. YIN Wen-yan, XIAO Jing-ming. Effects of Dust Storms on the Earth-space Microwave and Millimeter Wave Propagation[J]. Journal of Northwestern Polytechnical University, 1991, 9(4): 484—492.
[17] 徐英霞, 黃際英. 沙塵暴對(duì)地空路徑上Ka頻段電波傳播的影響[J]. 電波科學(xué)學(xué)報(bào), 2003, 18(3): 328—331. XU Ying-xia, HUANG Ji-ying. Effect of Sand and Dust Storms on Ka-band Electromagnetic Wave Propagation along Earth-space Paths[J]. Chinese Journal of Radio Science, 2003, 18(3): 328—331.
Research on Microwave Attenuation in Sand and Dust Medium
DONG Qun-feng1,2,GUO Li-xin1,WANG Li2,ZHANG Hui2,WANG Ming-jun2
(1.School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China; 2.Department of Physics and Electronic Engineering, Xianyang Normal University, Xianyang 712000, China)
ObjectiveTo research characteristics of microwave attenuation in sand and dust medium.MethodsA model on microwave attenuation and phase shift of sand and dust medium along horizontal and earth-space paths was given according to the electromagnetic wave propagation theory in random media. The model was compared with results according to attenuation models proposed by Sharief, Erdenekhuu and Wenyan.ResultsThe attenuation model was consistent with the Goldhirsh model and the validity of proposed model was verified. The result predicted by the model agreed with that of the Sharif’s model.ConclusionThe simulation results verify accuracy and validity of the proposed model. The model is a quick and easy calculating way suitable for different frequencies.
microwave; sand and dust; attenuation
10.7643/ issn.1672-9242.2016.06.015
TJ01;TB114
A
1672-9242(2016)06-0085-05
2016-08-18;
2016-09-26
Received:2016-08-18;Revised:2016-09-26
國家自然科學(xué)基金項(xiàng)目(61102018);中國博士后基金項(xiàng)目(2014M562371);陜西省自然科學(xué)基礎(chǔ)研究項(xiàng)目(2014JM8312).
Fund:Supported by the National Natural Science Foundation of China (61102018), the National Science Foundation for Post-doctoral
Scientists of China (2014M562371), and the Natural Science Basic Research Plan in Shaanxi Province of China (2014JM8312).
董群鋒(1977—),男,陜西人,博士,副教授,主要研究方向?yàn)樘炀€罩及電磁波傳播。
Biography:DONG Qun-feng(1977—), Male, Tfrom Shaanxi, Ph.D., Associate professor, Research focus:radome, radio wave propagation and
scattering in random media.