曾新安 歐贇 王滿生
(1.華南理工大學(xué) 食品科學(xué)與工程學(xué)院, 廣東 廣州 510640; 2.華南理工大學(xué) 廣東省食品綠色加工與營養(yǎng)調(diào)控工程技術(shù)研究中心, 廣東 廣州510640; 3.華南理工大學(xué) 廣東省天然產(chǎn)物綠色加工與產(chǎn)品安全重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州510640)
脈沖電場對沙門氏菌細(xì)胞膜流動(dòng)性的影響及其機(jī)理*
曾新安1,2,3歐贇1,2王滿生1
(1.華南理工大學(xué) 食品科學(xué)與工程學(xué)院, 廣東 廣州 510640; 2.華南理工大學(xué) 廣東省食品綠色加工與營養(yǎng)調(diào)控工程技術(shù)研究中心, 廣東 廣州510640; 3.華南理工大學(xué) 廣東省天然產(chǎn)物綠色加工與產(chǎn)品安全重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州510640)
研究了脈沖電場作用對鼠傷寒沙門氏菌SalmonellaTyphimurium的殺菌效應(yīng)及其膜通透性的影響,并結(jié)合拉曼光譜技術(shù)分析了不同脈沖處理時(shí)間對沙門氏菌磷脂構(gòu)象的影響.結(jié)果表明:隨著脈沖電場能量的不斷輸入,沙門氏菌的滅活對數(shù)不斷增加,且細(xì)胞膜的通透性也隨之增大;此外,隨著脈沖處理時(shí)間的延長,沙門氏菌磷脂拉曼峰的峰值比I1 139/I1 082呈現(xiàn)出先增大后減小的趨勢,但是均比未經(jīng)脈沖電場處理的峰值比要高(P<0.05).這說明脈沖電場作用能夠增加沙門氏菌磷脂的C—C全反式構(gòu)象的數(shù)目,同時(shí)減少了C—C扭曲構(gòu)象數(shù)目;但是,隨著脈沖處理時(shí)間的延長,峰值比I2 874/I2 862也隨之增大(P<0.05),這意味著脈沖電場作用能夠有效增大沙門氏菌磷脂C—H的側(cè)向堆積程度,從而導(dǎo)致了磷脂脂鏈的有序程度增加和細(xì)胞膜流動(dòng)性的減弱.因此,脈沖電場作用能夠增大細(xì)胞膜的通透性和降低細(xì)胞膜流動(dòng)性,最終會引起細(xì)胞損傷或者死亡.這為脈沖電場作用下微生物的滅活機(jī)理研究提供了一定的理論依據(jù).
脈沖電場;鼠傷寒沙門氏菌SalmonellaTyphimurium;拉曼光譜;磷脂構(gòu)象;細(xì)胞膜流動(dòng)性
脈沖電場(PEF)是一種能在短時(shí)間內(nèi)殺滅微生物,并對食品的感官品質(zhì)和營養(yǎng)成分影響很小的新型非熱食品加工技術(shù)[1- 3].鑒于PEF的加工優(yōu)勢,近年來其與其他滅菌技術(shù)(熱處理、超聲波等)結(jié)合的協(xié)同滅菌的加工方式已成為研究熱點(diǎn)[4- 6].
一般地,PEF可引發(fā)細(xì)胞膜的可逆或不可逆電穿孔,修飾細(xì)胞膜的結(jié)構(gòu)和功能,增大細(xì)胞膜的通透性,最終導(dǎo)致細(xì)胞損傷或細(xì)胞死亡[7].許多研究表明,在PEF滅菌過程中,微生物細(xì)胞膜是脈沖作用的主要位點(diǎn)[8].另外,細(xì)胞膜流動(dòng)性與PEF的電通透性有直接關(guān)系.例如,Zhang 等[9]通過熒光偏振法測定釀酒酵母細(xì)胞膜流動(dòng)性,表明PEF能增大釀酒酵母細(xì)胞膜的通透性,降低其細(xì)胞膜流動(dòng)性,最終引發(fā)細(xì)胞死亡.而且細(xì)胞膜的磷脂組成及結(jié)構(gòu)在決定細(xì)胞膜流動(dòng)性中起重要作用[10].研究表明,在PEF作用下,脂質(zhì)體隨著電場能量的不斷輸入,其通透性增大,構(gòu)象也會發(fā)生改變[11].然而,關(guān)于PEF對微生物磷脂構(gòu)象影響方面的研究還鮮有報(bào)道.文中以鼠傷寒沙門氏菌SalmonellaTyphimurium為研究對象,研究了PEF對沙門氏菌的殺菌效應(yīng)及其通透性的影響,并利用拉曼光譜技術(shù)分析了PEF對沙門氏菌磷脂構(gòu)象及其細(xì)胞膜流動(dòng)性的影響,為深入闡述PEF作用下微生物的滅活機(jī)理提供了一定的理論指導(dǎo).
1.1 實(shí)驗(yàn)材料與實(shí)驗(yàn)設(shè)備
鼠傷寒沙門氏菌ATCC 14028購自美國標(biāo)準(zhǔn)菌種收藏中心;胰酪胨大豆肉湯培養(yǎng)基(TSB)、酵母提取粉、蛋白胨、瓊脂粉等均購于廣東環(huán)凱微生物科技公司;其他試劑均為分析純.
SY-Z-500 脈沖電場設(shè)備,華南理工大學(xué)脈沖電場課題組自行研制(電極距為0.30 cm,處理室體積為0.02 mL);LabRAM HR Evolution拉曼光譜儀,日本Horiba公司生產(chǎn);TDL-5A 離心機(jī),上海菲恰爾分析儀器有限公司生產(chǎn);UV-1800 紫外可見光分光光度計(jì),島津企業(yè)管理(中國)有限公司生產(chǎn).
1.2 實(shí)驗(yàn)方法
1.2.1 沙門氏菌的培養(yǎng)
將斜面保藏的沙門氏菌接種至200 mL TSB中,該培養(yǎng)基含0.6%(質(zhì)量分?jǐn)?shù))酵母提取粉.在37 ℃下?lián)u瓶培養(yǎng)至穩(wěn)定生長期后,4 000g轉(zhuǎn)速下4 ℃離心5 min,傾去上清液,菌體沉淀用無菌水洗滌3次,待用.
1.2.2 脈沖電場處理
在PEF處理前,處理室及相關(guān)管路均先用75%(體積分?jǐn)?shù))的乙醇溶液循環(huán)沖洗30 min,再用無菌水沖洗30 min,清除殘留的乙醇.沙門氏菌用無菌水稀釋至濃度約為5×109CFU/mL,并用 2 mol/L KCl將其電導(dǎo)率調(diào)節(jié)為(180±1)μS/cm.本實(shí)驗(yàn)PEF處理流程如圖1所示,入口溫度始終控制為10 ℃,處理過程中出口溫度最高為17 ℃.PEF參數(shù)如下:雙極方波;脈沖頻率1 kHz;脈沖寬度 40 μs;流速1 mL/s;
圖1 本實(shí)驗(yàn)PEF處理流程圖
Fig.1 PEF treatment flow diagram used in the proposed experiment
電場強(qiáng)度25 kV/cm;處理時(shí)間分別為0.8、1.6、2.4、3.2和4.0 ms.
1.2.3 脈沖電場對沙門氏菌滅活效果的評價(jià)
參考Wang等[1]的方法,PEF處理前后的沙門氏菌用0.1%(質(zhì)量分?jǐn)?shù))蛋白胨進(jìn)行10倍梯度稀釋至一定濃度,取1 mL 涂布于含有1.8%(質(zhì)量分?jǐn)?shù))瓊脂的TSB平板上.于37 ℃恒溫培養(yǎng)24 h后,菌落計(jì)數(shù).
1.2.4 沙門氏菌細(xì)胞膜磷脂的提取
參考Yang等[12]的方法提取PEF處理前后的沙門氏菌磷脂,將提取的磷脂用無菌滅酶的離心管收集并于-80 ℃貯存.
1.2.5 沙門氏菌胞外核酸及蛋白含量的測定
1.2.6 沙門氏菌磷脂的拉曼光譜檢測
拉曼光譜的激光波長為535 nm,激光功率為80 mW,光柵為600線/cm,狹縫寬度為600 μm.掃描范圍為400~4 000 cm-1.積分時(shí)間為30 s,10次累加.用毛細(xì)管吸取少量磷脂,放在拉曼顯微鏡下,在25 ℃下聚焦檢測.
2.1 脈沖處理時(shí)間對沙門氏菌的滅活效果與其細(xì)胞膜通透性的影響
沙門氏菌經(jīng)不同脈沖時(shí)間處理后其滅活效果如圖2所示.從圖中可知,隨著脈沖處理時(shí)間(t)的延長,PEF殺滅沙門氏菌的對數(shù)(lg(N0/N))增大,即滅菌效果更佳.其中,N0、N分別表示PEF處理前后的菌落濃度.
圖2 不同脈沖處理時(shí)間對沙門氏菌滅活效果的影響
Fig.2 Effect of PEF treatment time on the inactivation ofS.Typhimurium
核酸和蛋白質(zhì)在紫外光區(qū)的特征峰分別在260和280 nm處,且吸光值的大小與其濃度成正比[9].沙門氏菌經(jīng)不同脈沖時(shí)間作用后其胞外核酸及蛋白含量的變化如圖3所示.由圖可知,隨著脈沖處理時(shí)間的延長,沙門氏菌溶出的蛋白質(zhì)和核酸也不斷地增加.這說明,隨著脈沖處理時(shí)間的延長,沙門氏菌細(xì)胞膜的通透性也有所增加.
圖3 不同脈沖處理時(shí)間對沙門氏菌通透性的影響
Fig.3 Effect of PEF treatment time on the permeability ofS.Typhimurium
2.2 沙門氏菌磷脂構(gòu)象分析
拉曼光譜中以C—C和C—H的伸展振動(dòng)來表示磷脂的構(gòu)象特點(diǎn),進(jìn)而用于表征細(xì)胞膜流動(dòng)性[13].磷脂的C—C振動(dòng)模式主要在拉曼位移為1 050~1 150 cm-1之間體現(xiàn)[14].PEF處理前后的沙門氏菌磷脂的激光拉曼光譜圖(1 000~1 250 cm-1)如圖4所示,其中1 082 cm-1處吸收峰用于表征脂鏈結(jié)構(gòu)中C—C的扭曲旋轉(zhuǎn)構(gòu)象,而1 139 cm-1處吸收峰則反映脂鏈中C—C的全反式構(gòu)象[14].因此,通常用兩者的峰值比(I1 139/I1 082)表示脂鏈的C—C全反式構(gòu)象與扭曲構(gòu)象的比例,進(jìn)而反映出脂鏈C—C的有序程度.如表1所示,未經(jīng)PEF處理的沙門氏菌磷脂的I1 139/I1 082為0.949,而與之相比,經(jīng)PEF處理的沙門氏菌磷脂的I1 139/I1 082要大些(P<0.05).而且由表1還可看出,經(jīng)PEF處理4 ms的沙門氏菌的磷脂比經(jīng)PEF處理1.6 ms的磷脂的I1 139/I1 082小,但是比未經(jīng)PEF處理的磷脂的大(P< 0.05).I1 139/I1 082增加,表明沙門氏菌磷脂的C—C全反式構(gòu)象與扭曲構(gòu)象的比例增多,C—C的有序程度增加,從而引起細(xì)胞膜流動(dòng)性降低.
磷脂的C—H的振動(dòng)模式主要在拉曼位移為2 800~2 900 cm-1的范圍[14].如圖5所示,在2 800~2 900 cm-1內(nèi)主要有兩個(gè)吸收峰.在2 862和2 874 cm-1處的峰分別表示脂鏈C—H的對稱振動(dòng)和非對稱振動(dòng).Slateral表示磷脂分子的側(cè)向堆積程度,與I2 874/I2 862的值成正比[14].有研究表明,Slateral增大,則脂鏈側(cè)向堆積程度增大,排列有序性提高,從而細(xì)胞膜流動(dòng)性降低[14].如表1所示,未經(jīng)PEF處理的沙門氏菌磷脂的I2 874/I2 862為1.119,而經(jīng)PEF處理后均有所增大(P<0.05),這說明經(jīng)PEF處理后沙門氏菌磷脂C—H的側(cè)向堆積程度增大,排列有序性提高,細(xì)胞膜流動(dòng)性降低.由此可知,PEF能夠影響沙門氏菌磷脂C—C和C—H的構(gòu)象,增強(qiáng)脂鏈的排列有序性,降低其細(xì)胞膜流動(dòng)性,這與Zhang等[9]的研究結(jié)果相符.
圖4 不同脈沖處理時(shí)間作用后沙門氏菌磷脂的拉曼光譜圖(1 000~1 250 cm-1)
Fig.4 Raman spectra with wave number from 1 000 cm-1to 1 250 cm-1of phospholipid ofS.Typhimurium after PEF exposure for various treatment time
表1 PEF作用下沙門氏菌磷脂的特定峰值比
Table 1 Peak intensity ratios corresponding to the phospholipid ofS.Typhimurium under PEF
t/msI1139/I1082I2874/I28620.00.949±0.002a1.119±0.001a1.60.985±0.005b1.156±0.002b4.00.962±0.003c1.172±0.004c
1)PEF電場強(qiáng)度為25 kV/cm;a,b,c表示差異顯著(P<0.05).
圖5 不同脈沖處理時(shí)間作用后沙門氏菌磷脂的拉曼光譜圖(2 650~3 150 cm-1)
Fig.5 Raman spectra with wave number from 2 650 cm-1to 3 150 cm-1of phospholipid ofS.Typhimurium after PEF exposure for various treatment time
研究表明,細(xì)胞膜的磷脂組成及其結(jié)構(gòu)一般會影響微生物細(xì)胞膜的流動(dòng)性[10].例如,細(xì)胞膜中卵磷脂/鞘磷脂含量比以及膜中脂肪酸鏈的鏈長和飽和度變化均會引起細(xì)胞膜流動(dòng)性的變化[9].此外,細(xì)胞膜磷脂的C—C緊密堆積程度及C—H的側(cè)向堆積程度也會影響細(xì)胞膜的流動(dòng)性[13].Liu等[11]通過研究脂質(zhì)體的構(gòu)象對其PEF電滲透性的影響,結(jié)果發(fā)現(xiàn)脂質(zhì)體C—H的側(cè)向堆積程度越大,細(xì)胞膜流動(dòng)性越低,則脂質(zhì)體的PEF電滲透性越小.通過文中研究可知,PEF能量的輸入不但增大了沙門氏菌的滅活對數(shù),而且增加了沙門氏菌磷脂分子中C—C全反式構(gòu)象的數(shù)目和減少了C—C扭曲構(gòu)象數(shù)目,同時(shí)增強(qiáng)了C—H的側(cè)向堆積程度,從而降低了細(xì)胞膜的流動(dòng)性.由于組成沙門氏菌細(xì)胞膜磷脂的脂肪酸均是能夠被PEF修飾的極性分子[15- 17],因此沙門氏菌經(jīng)PEF處理后,其細(xì)胞膜磷脂組成及結(jié)構(gòu)也能夠被誘導(dǎo)修飾,從而引起細(xì)胞膜功能的喪失或改變,最終導(dǎo)致細(xì)胞損傷或者細(xì)胞死亡.另外,有研究表明,增大微生物細(xì)胞膜的流動(dòng)性往往能夠減弱該微生物對PEF的抗性[4].因此推測,沙門氏菌可能會通過降低其細(xì)胞膜流動(dòng)性來應(yīng)對PEF的應(yīng)激環(huán)境,即沙門氏菌磷脂的C—C緊密堆積程度和C—H的側(cè)向堆積程度增大,脂鏈的有序程度增加,細(xì)胞膜流動(dòng)性降低等可能是沙門氏菌在PEF作用下的主要應(yīng)激行為.
文中研究了脈沖電場對沙門氏菌的殺菌效應(yīng)及其膜通透性的影響,并結(jié)合拉曼光譜技術(shù)分析了不同脈沖處理時(shí)間對沙門氏菌磷脂構(gòu)象的影響.結(jié)果表明脈沖電場不僅增大了沙門氏菌細(xì)胞膜的通透性,還使沙門氏菌磷脂的C—C緊密堆積程度和C—H的側(cè)向堆積程度增大,脂鏈的有序程度增加,導(dǎo)致沙門氏菌的細(xì)胞膜流動(dòng)性降低.這為脈沖電場的滅菌機(jī)理研究提供了一定的理論依據(jù).為深入闡述脈沖電場作用下微生物的滅活機(jī)理,接下來將結(jié)合微生物的磷脂結(jié)構(gòu)及分子調(diào)控與脈沖電場殺菌效果這兩者之間的聯(lián)系繼續(xù)開展研究.
[1] WANG M S,ZENG X A,SUN D W,et al.Quantitative analysis of sublethally injuredSaccharomycescerevisiaecells induced by pulsed electric fields [J].Lwt-Food Science and Technology,2015,60(2):672- 677.
[2] ZHANG Z H,HAN Z,ZENG X A,et al.Enhancing mechanical properties of chitosan films via modification with vanillin [J].International Journal of Biological Macromolecules,2015,81:638- 643.
[3] AADIL R M,ZENG X A,ALI A,et al.Influence of different pulsed electric field strengths on the quality of the grapefruit juice [J].International Journal of Food Science & Technology,2015,50(10):2290- 2296.
[4] WALKLING-RIBEIRO M,ANANY H,GRIFFITHS M W.Effect of heat-assisted pulsed electric fields and bacteriophage on enterohemorrhagicEscherichiacoliO157:H7 [J].Biotechnology Progress,2015,31(1):110- 118.
[5] AADIL R M,ZENG X A,SUN D W,et al.Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice [J].Lwt-Food Science and Technology,2015,62(1):890- 893.
[6] DAN G,ZHANG Z H,ZENG X A,et al.Synergetic effects of pulsed electric field and ozone treatments on the degradation of high molecular weight chitosan [J].International Journal of Food Engineering,2014,10(4):775- 784.
[7] CHUECA B,PAGAN R,GARCIA-GONZALO D.Transcriptomic analysis ofEscherichiacoliMG1655 cells exposed to pulsed electric fields [J].Innovative Food Science & Emerging Technologies,2015,29:78- 86.
[8] PILLET F,FORMOSA-DAGUE C,BAAZIZ H,et al.Cell wall as a target for bacteria inactivation by pulsed electric fields [J].Scientific Reports,2016,6 (19778):1- 8.
[9] ZHANG Y,ZENG X A,WEN Q B,et al.Fluorescence polarization used to investigate the cell membrane fluidity ofSaccharomycescerevisiaetreated by pulsed electric field [J].Spectroscopy and Spectral Analysis,2008,28(1):156- 160.
[10] LIU Z W,ZENG X A,SUN D W,et al.Synergistic effect of thermal and pulsed electric field (PEF) treatment on the permeability of soya PC and DPPC vesicles [J].Journal of Food Engineering,2015,153:124- 131.
[11] LIU Z W,HAN Z,ZENG X A,et al.Effects of vesicle components on the electro-permeability of lipid bilayers of vesicles induced by pulsed electric fields(PEF) treatment [J].Journal of Food Engineering,2016,179:88- 97.[12] YANG Y,KHOO W J,ZHENG Q,et al.Growth temperature altersSalmonellaEnteritidisheat/acid resistance,membrane lipid composition and stress/virulence related gene expression [J].International Journal of Food Microbiology,2014,172C(1):102- 109.
[13] CZAMARA K,MAJZNER K,PACIA M Z,et al.Raman spectroscopy of lipids:a review [J].Journal of Raman Spectroscopy,2015,46(1):4- 20.
[14] GABER B P,PETICOLAS W L.On the quantitative interpretation of biomembrane structure by Raman spectroscopy [J].Biochimica et Biophysica Acta,1977,465(2):260- 274.
[15] ALVAREZ-ORDONEZ A,FERNANDEZ A,LOPEZ M,et al.Modifications in membrane fatty acid composition ofSalmonellaTyphimurium in response to growth conditions and their effect on heat resistance [J].International Journal of Food Microbiology,2008,123(3):212- 219.
[16] KHAKBAZ P,KLAUDA J B.Probing the importance of lipid diversity in cell membranes via molecular simulation [J].Chemistry and Physics of Lipids,2015,192:12- 22.
[17] STEPANYAN S A,SOLOVIEV V R,STARIKOVSKAIA S M.An electric field in nanosecond surface dielectric barrier discharge at different polarities of the high voltage pulse:spectroscopy measurements and numerical modeling [J].Journal of Physics D-Applied Physics,2014,47(48):485201- 485213.
Effect of Pulsed Electric Fields on Fluidity ofSalmonellaCell Membrane and Its Mechanism
ZENGXin-an1,2,3OUYun1,2WANGMan-sheng1
(1.School of Food Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China; 2.Food Green Processing and Nutrition Regulation Research Center of Guangdong Province,South China University of Technology,Guangzhou 510640,Guangdong,China;3.Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety,South China University of Technology,Guangzhou 510640,Guangdong,China)
In the investigation,the effects of the pulsed electric field(PEF)treatment on the survival ratio and cytomembrane permeability ofSalmonellaTyphimurium are discussed,and the effect of the PEF treatment time on the phospholipid conformation ofS.Typhimurium is also analyzed by using the Raman spectra.The results show that(1)as the energy of PEF inputs continuously,the cell viability decreases and the cytomembrane permeability increases;(2)with the increase of the PEF treatment time,the peak value ratio of the Raman spectra ofS.Typhimurium phospholipid,namelyI1 139/I1 082,first increases and then decreases,and it is always higher than that without PEF treatment(P<0.05),which indicates that the PEF treatment can increase the number of the all-trans conformation of C—C and decrease the number of the gauche conformation of C—C;and(3)as the PEF treatment time increases,I2 874/I2 862increases(P<0.05),which means that the PEF treatment increases the lateral chain interaction of C—H and thus results in the increase of the intrachain order of phospholipid molecules and the decrease of the cytomembrane fluidity ofS.Typhimurium.Therefore,it is concluded that the PEF treatment can cause cell damage or cell death by increasing the cytomembrane permeability and decreasing the cytomembrane fluidity.This investigation provides a theoretical basis for the mechanism research of inactivating micro-organisms with the PEF treatment.
pulsed electric field;SalmonellaTyphimurium;Raman spectra;phospholipid conformation;cytomembrane fluidity
2016- 04- 08
國家自然科學(xué)基金資助項(xiàng)目(21576099,21376094,31301559);廣東省科技攻關(guān)項(xiàng)目(2015A030312001,2013B051000010,2013B020203001) Foundation items: Supported by the National Natural Science Foundation of China(21576099,21376094,31301559) and the Key Science and Technology Program of Guangdong Province(2015A030312001,2013B051000010,2013B020203001)
曾新安(1972-),男,博士,教授,主要從事非熱加工技術(shù)及果酒果醋釀造研究.E-mail:xazeng@scut.edu.cn
1000- 565X(2016)10- 0132- 05
TS 201.1
10.3969/j.issn.1000-565X.2016.10.019