• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    季銨鹽型陽離子表面活性劑與牛血清白蛋白的相互作用

    2016-12-29 08:20:21謝湖均劉程程雷群芳方文軍
    物理化學學報 2016年12期
    關(guān)鍵詞:溴化銨化學系工商大學

    謝湖均 劉程程 孫 強 顧 青 雷群芳 方文軍,*

    (1浙江工商大學應(yīng)用化學系,杭州310018;2浙江工商大學食品與生物工程學院,杭州310018;3浙江大學化學系,杭州310028)

    季銨鹽型陽離子表面活性劑與牛血清白蛋白的相互作用

    謝湖均1,*劉程程1孫 強1顧 青2,*雷群芳3方文軍3,*

    (1浙江工商大學應(yīng)用化學系,杭州310018;2浙江工商大學食品與生物工程學院,杭州310018;3浙江大學化學系,杭州310028)

    本文合成并表征了三種不同烷基鏈長度的季銨鹽型陽離子表面活性劑:N-十二烷基-N-(2-羥乙基)-N, N-二甲基溴化銨(DHDAB)、N-十四烷基-N-(2-羥乙基)-N,N-二甲基溴化銨(THDAB)、N-十六烷基-N-(2-羥乙基)-N,N-二甲基溴化銨(CHDAB)。采用熒光光譜法、紫外-可見光譜法、動態(tài)光散射法和等溫滴定量熱法對三種表面活性劑與牛血清白蛋白(BSA)的相互作用進行研究。熒光光譜研究表明,三種表面活性劑主要與BSA分子內(nèi)的色氨酸殘基發(fā)生相互作用,導(dǎo)致蛋白質(zhì)的構(gòu)象發(fā)生變化,且表面活性劑烷基鏈越長,與BSA的相互作用就越強。BSA熒光猝滅的主要原因是靜態(tài)猝滅,紫外光譜實驗同樣驗證了靜態(tài)猝滅的存在。等溫滴定量熱法結(jié)果表明低濃度的表面活性劑與BSA主要發(fā)生靜電作用和疏水作用而放熱。動態(tài)光散射結(jié)果表明高濃度的表面活性劑會使BSA結(jié)構(gòu)被破壞。本文揭示了表面活性劑與BSA相互作用的機理,為表面活性劑的廣泛應(yīng)用提供了理論基礎(chǔ)。

    表面活性劑;牛血清白蛋白;熒光猝滅;動態(tài)光散射;等溫滴定量熱

    1 Introduction

    Surfactants and proteins have attracted wide interest in the field of biology,food,medicine and cosmetics1-3.The structure,concentration,solvent,pH,ionic strength and temperature have significant effects on the interactions between surfactants and proteins.The combination of surfactants with proteins often leads to the changes of conformations of proteins and surrounding microenvironment of certain amino acid residues.The main interaction types between ionic surfactants and proteins contain specific binding(electrostatic and hydrophobic interactions)and cooperative binding4-7.The influence of the alkyl chain length and types of surfactants on these interactions have been widely studied8-11.In addition to traditional methods,such as surface tension,conductivity,electrochemical method,viscosity method, etc,some modern techniques containing UV-visible absorption spectroscopy,fluorescence spectroscopy,dynamic light scattering, circular dichroism spectroscopy,small-angle X-ray scattering, electron spin resonance spectroscopy and calorimetry were also employed to get a clear insight into the interactions between surfactants and proteins12-15.

    Bovine serum albumin(BSA)is one of the most abundant proteins in mammalian plasma,capable of storing and transporting numerous endogenous and exogenous compounds16.Thus BSA is often employed as a protein model to study the interactions of protein with metal ions,drugs,dyes,surfactants,etc17-20.Study on the interaction mechanisms between proteins and surfactants,as well as the effects of different surfactants on the conformations of proteins,function and aggregation are of great significance for the development of relevant theory and practical applications.

    In this manuscript,the interactions between quaternary ammonium surfactants and BSAhave been studied by means of UV-visible(UV-Vis)absorption spectroscopy,fluorescence(FL) spectrometry,dynamic light scattering(DLS)and isothermal titration calorimetry(ITC)methods.The effect of alkyl chain length of surfactants on the interactions have also been discussed and explored.A series of important interaction parameters have been obtained to clarify the interaction mechanisms.

    2 Materials and methods

    2.1Materials

    BSAwas purchased fromAladdin(nitrogen content≥13.5%); trihydroxy aminomethane(Tris)(purity≥99.9%);HCl(concentration 36%-38%);NaCl(purity≥99.5%).Ultra-pure water was used for the preparation of all solutions.Three kinds of quaternary ammonium surfactants:N-dodecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(DHDAB),N-tetradecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(THDAB)and N-cetyl-N-(2-hydroxyethyl)-N,N-dimethyl ammoniu bromide (CHDAB)were synthesized in our laboratory.

    The synthesis process is listed below.

    Infrared(IR)spectroscopy,1H nuclear magnetic resonance (NMR)analyses and elemental analysis(EA)of the synthesized surfactants were carried out on a NEXES 470 Fourier infrared spectrometer and Bruker Advance 2B 400 MHz NMR spectrometer and Carlabo EA1110 elemental analyzer,respectively. The spectra and EA result are presented in the Supporting Information(Figs.S1-S3,Tables S1-S3,Supporting Information).

    IR and NMR spectra of DHDAB are shown in Fig.S1 and EA result of DHDAB is listed in Table S1.The IR characteristic absorption peaks are as follows:3238.3 cm-1(OH),2917.0 cm-1(C―H),1077.0 cm-1(C―N).The information obtained from the NMR spectra is as follows:(CDCl3,400 MHz,289 K)δH,0.85(t,J=6.8 Hz,3H),1.24-1.34(m,18H),1.75(m,2H),3.35(s,6H),3.50(t, J=8.4 Hz,2H),3.76(t,J=4.6 Hz,2H),4.08-4.14(m,2H), 4.30-4.51(m,1H).

    IR and NMR spectra of THDAB are shown in Fig.S2 and EA result of THDAB is listed in Table S2.The IR characteristic absorption peaks are as follows:3232.4 cm-1(OH),2914.0 cm-1(C―H),1060.5 cm-1(C―N).The chemical shifts of THDAB are as follows:(CDCl3,400 MHz,289 K)δH,0.86(t,J=6.8 Hz,3H), 1.24-1.33(m,22H),1.73(m,2H),3.34(s,6H),3.51(t,J=8.4 Hz,2H),3.78(t,J=4.6 Hz,2H),4.08-4.12(m,2H),4.62-4.67 (m,1H).

    IR and NMR spectra of CHDAB are shown in Fig.S3 and EA result of CHDAB is listed in Table S3.The IR characteristic absorption peaks are as follows:3229.4 cm-1(OH),2914.0 cm-1(C―H),1090.2 cm-1(C―N).The chemical shifts of CHDAB are as follows:(CDCl3,400 MHz,289 K)δH,0.86(t,J=6.6 Hz,3H), 1.21-1.31(m,26H),1.72-1.77(m,2H),3.34(s,6H),3.53(t,J= 8.2 Hz,2H),3.72(t,J=4.6 Hz,2H),4.09-4.13(m,2H),4.31-4.53(m,1H).

    The thermogravimetric analysis(TGA)curves are presented in Figs.S4-S6(Supporting Information).TGA results showed that the decomposition temperature is increased with the increase of alkyl chain length of surfactants.

    Tris-HCl buffer solution(pH=7.0,containing 0.1 mol·L-1NaCl to maintain ionic strength)was prepared,which was used to prepare 50 μmol·L-1BSA solution and a series of different concentrations of surfactant solutions.

    2.2Spectral measurements

    The fluorescence spectra were obtained using a RF-5301PC fluorescence spectrophotometer(Shimadzu,Japan)equipped with a 1.0 cm path length quartz cell.The excitation and emission wavelengths of BSA were monitored at 280 and 350 nm,respectively.The excitation and emission slits are 3 nm.Synchronous fluorescence spectra acquired by fixing the difference of excitation and emission wavelength(Δλ)at 15 and 60 nm.All samples were thermostated at 298 K.

    The UV-visible absorption spectra were measured on a UV-2450 ultraviolet-visible spectrophotometer(Shimadzu,Japan)at 298 K.The absorption spectra were recorded in the wavelength range from 250 to 350 nm,and a 1.0 cm path length quartz cell was used for the absorbance measurements.

    2.3DLS measurements

    DLS experiments were performed using a Ζ-sizer nano ZS (Malvern,UK)at 298 K.The concentration of BSA was 5.0 μmol·L-1and all BSA-surfactants mixed solutions went through 0.22 μm micro membrane filter twice.For each concentration of BSA-surfactant mixed solution,particle size was measured three times and the average values are reported.

    2.4ITC determination

    ITC data were collected on a high precision microcalorimeter VP-ITC(Micro Co.,USA).The enthalpy changes(ΔH)were obtained by injecting surfactant into the 1.4 mL calorimetric cell, in the absence and presence of BSAin Tris-HCl buffer solution at pH=7.0.The experiments were performed by one injection of 10 μL with a 240 s interval between each injection and the temperature was set to 298 K.The surfactant solution in the cell was stirred at 270 r·min-1.

    3 Results and discussion

    3.1BSA-surfactants interactions by fluorescencespectrometry

    Previous studies suggested that the chromophores of BSA including tryptophan(Trp),tyrosine(Tyr)and phenylalanine(Phe) can launch strong intrinsic fluorescence21,22.In present experiments,the excitation and emission wavelengths of BSA were monitored at 280 and 340 nm,respectively(Fig.1).The results showed that three surfactants can lead to the fluorescence quenching,similar to other cationic surfactants23.With the increase of the concentration of surfactant solutions,it showed good fluorescence quenching to BSA,and the blue shift of maximum emission wavelength of BSAwas also observed,which were attributed to the unfold of the BSA structure.Previous researches reported that the interaction information involving the quenching mechanism,binding constant and binding sites between BSA and surfactants can be obtained by analyzing the fluorescence spectra24.On the basis of the fluorescence emission spectra of BSA-surfactants mixed systems,fluorescence intensity ratio(I0/I)can be obtained by the addition of different concentrations of surfactants,where I0and I are the fluorescence intensities of BSAin the absence and presence of quenchers(surfactants),respectively.

    Fig.1 Fluorescence emission spectra of BSA(5.0 μmol·L-1)in the surfactants/Tris-HCl buffer systems(T=298 K)

    As shown in Fig.2,the fluorescence quenching effect of three surfactants on BSA is related to the alkyl chain length of surfactants,and the surfactants with long alkyl chain length have strong fluorescence quenching effect on BSA.The isoelectric point of BSAwas 4.9,thus the BSAcarries negative charge at the pH value of 7.0.As three kinds of quaternary ammonium surfactants carries positive charge,electrostatic interactions between surfactants and BSA play an important role in the mixed systems25,26.Another important role is the hydrophobic interactions between the hydrophobic carbon chains of the surfactants and the hydrophobic groups of the protein.Three surfactants have same structures of cationic quaternary ammonium moiety and show similar electrostatic interactions with BSA.Thus the main factors affecting the interactions between different surfactants and BSA are hydrophobic interactions.It is interesting to note that a long length of alkyl chain of surfactant can lead to the strong hydrophobic interactions.Therefore,the hydrophobic interaction strength of surfactants follows the order.CHDAB>THDAB>DHDAB.The curve of I0/I-surfactant concentration(C)rela-tionship for CHDAB with the longest alkyl chain has an inflection point,after which it changes slowly to the platform;the curve of I0/I-C relationship for THDAB also has a inflection point,and after the inflection point the increase of I0/I tends to be gentle;the curve of I0/I-C surfactant relationship for DHDAB with the shortest alkyl chain does not show a inflection point.The inflexion point,especially with the emergence of the platform,indicates that the combination of surfactants and BSA tends to be complete or the aggregation of surfactants on the surface of BSA gradually tends to be saturated27.

    Fig.2 Fluorescence intensity ratio(I0/I)versus concentration of three surfactants(C)

    Fluorescence quenching contains static and dynamic quenching28-31,and the static quenching is caused by the formation of a non-fluorescence complex between quencher and fluorophore, while dynamic quenching is caused by collisional encounters between quencher and fluorophore.The fluorescence data were further analyzed via Stern-Volmer equation32,33.

    where I0and I are the fluorescence intensity of BSAin the absence and presence of quencher,respectively.Tois the average lifetime of BSA(To=10-8s)34.Kqstands for the quenching rate constant of the biological macromolecule;Ksvis the Stern-Volmer quenching constant.

    Fig.3 shows the Stern-Volmer plots of the surfactants interactions with BSAat 289 and 298 K,and the Stern-Volmer quenching constants of three interactions can be found inTable 1.For the lowconcentration linear region of the surfactants,the fluorescence quenching effect of surfactants on the BSAis well accord with the Stern-Volmer equation.In Table 1,Ksvis inversely correlated with temperature and Kqis much greater than the value of the maximum scatter collision quenching constant of 2.0×1010L·mol-1·s-135,36, thus this quenching process is static quenching37.

    Fig.3 Stern-Volmer plots of interactions of three surfactants with BSAat 289 and 298 K

    The following double-reciprocal formula was used to deal with the experimental data for static quenching interaction38.

    where KAis the binding constant between BSAand quencher;n is the number of binding sites.Fig.4 shows the double-reciprocal curve of surfactants interacting with BSA at 289 and 298 K,and the binding constant KAand binding sites n are listed in Table 1.

    For different surfactants,both quenching(Ksv)and binding(KA) constants follow the order:CHDAB>THDAB>DHDAB.The results indicated that the long alkyl chains of surfactants have the stronger binding interactions with BSA.The numbers of binding sitesofthreesurfactantswithBSAat289and298Karecloseto1.

    Synchronous fluorescence spectroscopy can give information about the change of protein microenvironment.A shift of the maximum emission wavelength is involved in the alteration of the polarity in the microenvironment around the chromophore39.Δλ represents the value of the difference between excitation and emission wavelengths.When the values of Δλ are stabilized at 15 and 60 nm,the synchronous fluorescence shows the characteristics of tyrosine and tryptophan residues,respectively40.Since the maximum emission wavelength of residues is related to its environmental polarity,the change of the protein conformation is determined by the analysis of emission wavelength change41. When Δλ was set at 15 nm,the fluorescence intensity decreased obviously with the increase of surfactant concentrations(Figs.5A-7A);when Δλ was set at 60 nm,the fluorescence intensity increased significantly with the increase of surfactants concentrations(Figs.5B to 7B).In addition,the maximum emission wavelength showed a blue shift,which indicated that the microenvironment around Trp residues was disturbed and the hydrophobicity was increased in the presence of surfactants42. The fluorescence intensity of Trp residues was significantly higher than that of Tyr residues,indicating that the main contribution of the intrinsic fluorescence of BSA comes from Trp residues,thus three surfactants mainly interact with Trp residues of BSA.

    Table 1 Binding constant(KA),quenching constant(Ksv)and binding sites(n)of surfactants with BSAat 289 and 298 K

    Fig.4 Double-reciprocal curve of interactions of three surfactants with BSAat 289 and 298 K

    Fig.5 Synchronous fluorescence spectra of BSAin the DHDAB/Tris-HCl buffer system

    Fig.6 Synchronous fluorescence spectra of BSAin the THDAB/Tris-HCl buffer system

    3.2BSA-surfactants interactions by UV-Vis absorption spectroscopy

    Further evidence of static quenching of BSA upon addition of surfactants was provided by UV-visible absorption spectrum data. Collisional encounters between quencher and fluorophore have no effect on the absorption spectra of protein,and they only affect the excited states of the fluorophores.In contrast,the formation of a ground-state complex between quencher and fluorophore can influence on the absorption spectra43,44.Fig.8 shows the UV-visible absorption spectra of BSAin surfactants/Tris-HCl buffer systems. As shown in Fig.8,the intensity of absorption spectra decreases gradually with the increase of surfactant(DHDAB,THDAB and CHDAB)concentrations from 1 to 6,which indicates that surfactants and protein may form complex,and also proves that the fluorescence quenching of BSA is caused by static quenching. While three surfactant solutions without BSA have no absorption peak near 280 nm.

    3.3BSA-surfactants interactions by DLS

    As shown in Fig.9,the initial particle size of BSA(5.0 μmol·L-1)in the Tris-HCl buffer solution(pH=7.0)at 298 K is about 7.58 nm.The particle size of surfactant-BSAcomplexes gradually grows with the increase of the surfactants concentrations.The particle size of three surfactants-BSA complexes at low concentration(less than 1 mmol·L-1)follows the order:CHDAB>THDAB>DHDAB.Moreover,the surfactants with longer alkylchain interact much stronger with BSA.As the concentrations of DHDAB,THDAB and CHDAB reach to 6,2.56 and 1.28 mmol·L-1,it shows the largest particle size of surfactant-BSAcomplexes with the values of 10.76,11.30 and 11.42 nm,respectively.As the surfactant concentrations continue to increase,the particle size of surfactant-BSA complexes began to decline,and finally the particle diameters fall below the initial value,which indicates that the geometry of BSAhas changed.

    Fig.7 Synchronous fluorescence spectra of BSAin the CHDAB/Tris-HCl buffer system

    3.4BSA-surfactants interactions by ITC

    We then determined the CMC values of three surfactants in buffer solution by isothermal titration calorimetry(ITC)45-47.Fig.10 (A,C,E)displays the representative heat flow profiles as a function of time,which is related to 10 μL aliquot injections of three surfactants(80,10 and 1 mmol·L-1)into the cell containing Tris-HCl buffer solution(pH=7.0,T=298 K).The enthalpy changes of surfactants(ΔH)as a function of surfactants concentration are shown in Fig.10(B,D,F).ΔH was calculated by integrating each heat flow peak with time.According to Fig.10(A, C,E),when the first surfactant aliquots are added into the cell, intense endothermic peaks are observed due to the demicellization of surfactants.It is known that the concentrations of three surfactants in the cell at the first injections remain below the CMC. Upon the increase of surfactant concentration in the cell,the intensity of the endothermic peaks decreases drastically owing to the formation of micelles in solution.Further increase of surfactants concentration above the CMC,the intensity of the endothermic peaks keeps constant resulting from the micelle dilution.The CMC values of three surfactants in Tris-HCl buffer solution were determined from the first derivative of the ΔH curve against surfactant concentration.The CMC values of DHDAB,THDAB and CHDAB are around 6.44,0.58 and 0.06 mmol·L-1(Fig.10(B, D,F)),which indicates that the CMC values of surfactants increase with the increase of alkyl chain length of surfactants.

    Fig.8 UV-visible spectra of BSA(5.0 μmol·L-1)in surfactants/Tris-HCl buffer systems(T=298 K)

    Fig.9 Hydrodynamic diameter(DH)of BSAin surfactants/Tris-HCl buffer systems at 298 K

    In the ITC experiments,the blank experiments involving thesurfactants and BSA solutions titration into the buffer solution were separately carried out,which can offset the effects related to the dissociation of surfactant micelles and the dilution of the surfactant micelles.ΔH was then obtained via deducting the dilution effect of surfactants and BSA solution during titration (Fig.11(B,D,F)).The concentrations of surfactants in these ITC experiments are far greater than that of CMC.Several factors may mediate the interaction enthalpy ΔH between surfactants and BSA, including the dissociation of surfactant micelles,the dilution of the surfactant micelles,the interaction between surfactant monomer and BSA,the interaction between micelles and BSA,and the break of the secondary structure of BSA48.

    Fig.10 Control experiment showing typical calorimetric titration curves for three surfactants dilution in buffer solution

    Heat flow and interaction enthalpy for surfactants solution titration into BSA solution are shown in Fig.11.As shown inFig.11A,the interaction between DHDAB and BSA is an endothermic process in the experimental concentration range.In Fig. 11C,the interaction process between THDAB and BSA was initially exothermic,and then endothermic with the increase of concentration of THDAB.For Fig.11E,the interaction between CHDAB and BSAis an exothermic process.Fig.11(B,D,F)reveal that when the concentrations of three surfactants are less than CMC,the reaction enthalpy between surfactant and BSA is gradually increased with the increase of concentration of three surfactants.In the case of DHDAB,when the concentration of DHDAB goes beyond CMC,the reaction enthalpy decreases until almost zero.In the case of THDAB and CHDAB,when the concentration of surfactant goes beyond CMC,the reaction enthalpy tends to keep constant.

    Fig.11 Heat flow and interaction enthalpy for three surfactants solution titration to 5.0 μmol·L-1BSAsolution in pH 7.0 Tris-HCl buffer solution against the concentration of surfactant at 298 K

    The BSAcarries negative charge at the pH value of 7.0,thus the electrostatic interaction caused mainly by the polar positive groupsof surfactants and amino acid residues is an exothermic process. While the hydrophobic interaction between the hydrophobic carbon chains of surfactants and the hydrophobic groups of the protein is an exothermic process.The destruction of the hydrated layer structure of polar groups and BSA molecules is an endothermic process49.In addition,the alternation of secondary structure of BSAis an endothermic process50.

    The initial titration concentrations of DHDAB,THDAB and CHDAB solution in syringe are 80,10 and 1 mmol·L-1,respectively.In the case of high titration concentration of surfactant (Fig.11A),the exothermic value from the electrostatic attraction and hydrophobic interaction is less than the endothermic value from the destroyed of hydrated layer structure and the change of secondary structure of BSA.When the concentration of surfactant in the cell is higher than CMC,the surfactant micelles is formed, and the electrostatic attraction is weakened.The interaction enthalpy between surfactants and BSA becomes stable at certain concentrations of surfactants.

    4 Conclusions

    In this manuscript,the interactions between three kinds of quaternary ammonium cationic surfactants with different lengths of alkyl chains(C12,C14and C16)in the Tris-HCl buffer solution (pH=7.0)with BSAhave been investigated by UV-Vis,FL,DLS and ITC.The results showed that the conformation of BSA is changed by the addition of surfactants,and the increase of alkyl chain length of surfactant is beneficial to the binding of BSA. Three quaternary ammonium cationic surfactants have the static quenching effect on the intrinsic fluorescence of BSA and the maximum emission wavelength of BSA occurs blue shift.In the cases of solutions with low surfactant concentrations,the particle size of surfactants-BSA systems is increased with the increase of alkyl chain length of surfactants.While in concentrated surfactant solutions,surfactant is able to destroy the secondary structure of BSA.ITC results indicated that the main force types of interactions between BSAand three surfactants at low concentrations are hydrophobic and electrostatic interactions,and surfactants with long alkyl chain interact with BSA completely at very low concentrations without the break of the secondary structure of BSA.

    The results of interaction between BSAand DHDAB,THDAB, CHDAB are similar to the interaction between BSAand traditional quaternary ammonium cationic surfactants:dodecyltrimethylammonium bromide(DTAB),tetradecyltrimethylammonium bromide(TTAB),and cetyltrimethylammonium bromide(CTAB). While,since the existence of―OH group,the electrostatic interaction between DHDAB,THDAB,CHDAB and BSA is stronger than the electrostatic interaction between DTAB,TTAB, CTAB and BSA51.

    Supporting Information:The infrared spectra,NMR,EAand TG-DTG curves of DHDAB,THDAB and CHDAB have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Fainerman,V.B.;Zholob,S.A.;Leser,M.;Michel,M.;Miller, R.J.Colloid Interface Sci.2004,274,496.doi:10.1016/j. jcis.2003.12.057

    (2) Gull,N.;Chodankar,S.;Aswal,V.K.;Sen,P.;Khan,R.H. Colloids Surf.B:Biointerfaces 2009,69,122.doi:10.1016/j. colsurfb.2008.11.009

    (3) Mehta,S.K.;Bhasin,K.K.;Kumar,A.Colloids Surf.A: Physicochem.Eng.Aspects 2009,346,195.doi:10.1016/j. colsurfa.2009.06.016

    (4) Turro,N.J.;Lei,X.G.;Ananthapadmanabhan,K.P.;Aronson, M.Langmuir 1995,11,2525.doi:10.1021/la00007a035

    (5) Mehan,S.;Aswal,V.K.;Kohlbrecher,J.Langmuir 2014,30, 9941.doi:10.1021/la502410v

    (6) Mackie,A.;Wilde,P.Adv.Colloid Interface Sci.2005,117,3. doi:10.1016/j.cis.2005.04.002

    (7) Chi,E.Y.;Krishnan,S.;Randolph,T.W.;Carpenter,J.F. Pharm.Res.2003,20,1325.doi:10.1023/A:1025771421906

    (8) De,S.;Girigoswami,A.;Das,S.J.Colloid Interface Sci.2005, 285,562.doi:10.1016/j.jcis.2004.12.022

    (9) Miller,R.;Fainerman,V.B.;Makievski,A.V.;Kr?gel,J.; Grigoriev,D.O.;Kazakov,V.N.;Sinyachenko,O.V.Adv. Colloid Interface Sci.2000,86,39.doi:10.1016/S0001-8686 (00)00032-4

    (10) Coke,M.;Wilde,P.J.;Russell,E.J.;Clark,D.C.J.Colloid Interface Sci.1990,138,489.doi:10.1016/0021-9797(90) 90231-C

    (11) McCormack,F.X.;King,T.E.,Jr.;Voelker,D.R.;Robinson,P. C.;Mason,R.J.American Review of Respiratory Disease 1991, 144,160.doi:10.1164/ajrccm/144.1.160

    (12) Bordbar,A.K.;Taheri-Kafrani,A.Colloids Surf.B: Biointerfaces 2007,55,84.doi:10.1016/j.colsurfb.2006.11.012

    (13) Wang,Y.;Guo,R.;Xi,J.J.Colloid Interface Sci.2009,331, 470.doi:10.1016/j.jcis.2008.12.020

    (14) Gelamo,E.L.;Tabak,M.Spectrochim.Acta.A 2000,56,2255. doi:10.1016/S1386-1425(00)00313-9

    (15) Kwaambwa,H.M.;Maikokera,R.Colloids Surf.B: Biointerfaces 2008,64,118.doi:10.1016/j.colsurfb.2008.01.014

    (16) Klajnert,B.;Bryszewska,M.Bioelectrochemistry 2002,55,33. doi:10.1016/S1567-5394(01)00170-0

    (17) Carvalho,C.M.L.;Cabral,J.M.S.Biochimie 2000,82,1063. doi:10.1016/S0300-9084(00)01187-1

    (18) Rozema,D.;Gellman,S.H.J.Am.Chem.Soc.1995,117,2373. doi:10.1021/ja00113a036

    (19) Al-Shakhshir,R.H.;Regnier,F.E.;White,J.L.;Hem,S.L. Vaccine 1995,13,41.doi:10.1016/0264-410X(95)80009-3

    (20) Ahmad,A.L.;Hairul,N.A.H.Sep.Purif.Technol.2009,66, 273.doi:10.1016/j.seppur.2008.12.027

    (21) Gentili,P.L.;Ortica,F.;Favaro,G.J.Phys.Chem.B 2008,112, 16793.doi:10.1021/jp805922g

    (22) Deep,S.;Ahluwalia,J.C.Phys.Chem.Chem.Phys.2001,3,4583.doi:10.1039/B105779K

    (23) Madaeni,S.S.;Rostami,E.Chem.Eng.Technol.2008,31, 1265.doi:10.1002/ceat.200700496

    (24) Zhao,L.;Liu,R.;Zhao,X.;Yang,B.;Gao,C.;Hao,X.;Wu,Y. Sci.Total.Environ.2009,47,5019.doi:10.1016/j. scitotenv.2009.05.052

    (25) Reynolds,J.A.;Herbert,S.;Polet,H.;Steinhardt,J. Biochemistry 1967,6,937.doi:10.1021/bi00855a038

    (26) Mehta,S.K.;Bhasin,K.K.;Kumar,A.J.Colloid Interface Sci. 2008,323,426.doi:10.1016/j.jcis.2008.04.026

    (27) Lissi,E.;Abuin,E.;Lanio,M.E.;Alvarez,C.J.Biochem. Biophys.Methods 2002,50,261.doi:10.1016/S0165-022X(01) 00237-8

    2.父母在批評孩子時,切忌用手指指著孩子,這樣做只能適得其反,讓孩子產(chǎn)生更強烈的逆反心理。同時不可忽視目光的交流,真誠的目光會讓孩子有充分的安全感,這有助于雙方的溝通并取得好效果。

    (28) Wang,Y.Q.;Zhang,H.M.;Zhang,G.C.;Tao,W.H.;Tang,S. H.J.Lumin.2007,126,211.doi:10.1016/j.jlumin.2006.06.013

    (29) Gauthier,T.D.;Shane,E.C.;Guerin,W.F.;Seitz,W.R.;Grant, C.L.Environ.Sci.Technol.1986,20,1162.doi:10.1021/ es00153a012

    (30) Marras,S.A.;Kramer,F.R.;Tyagi,S.Nucleic.Acids.Res. 2002,30,122.doi:10.1093/nar/gnf121

    (31) Fraiji,L.K.;Hayes,D.M.;Werner,T.C.J.Chem.Educ.1992, 69,424.doi:10.1021/ed069p424

    (32) Lakowicz,J.R.;Weber,G.Biochemistry 1973,12,416. doi:10.1021/ed069p424

    (34) Seetharamappa,J.;Kamat,B.P.Chem.Pharm.Bul.2004,52, 1053.doi:10.1248/cpb.52.10531

    (35) Eftink,M.R.;Ghiron,C.A.Anal.Biochem.1981,114,199. doi:10.1016/0003-2697(81)90474-7

    (36) Ware,W.R.J.Phys.Chem.1962,66,455.doi:10.1021/ j100809a020

    (37) Papadopoulou,A.;Green,R.J.;Frazier,R.A.J.Agric.Food. Chem.2005,53,158.doi:10.1021/jf048693g

    (38) Barik,A.;Priyadarsini,K.I.;Mohan,H.Photochem.Photobiol. 2003,77,597.doi:10.1562/0031-8655(2003)077<0597: PSOBOC>2.0.CO;2

    (39) Congdon,R.W.;Muth,G.W.;Splittgerber,A.G.Anal. Biochem.1993,213,407.doi:10.1006/abio.1993.1439

    (40) Martin,V.I.;Rodriguez,A.;Maestre,A.;Moya,M.L. Langmuir 2013,29,7629.doi:10.1021/la400789k

    (41) Zhang,Y.Z.;Zhou,B.;Liu,Y.X.;Zhou,C.X.;Ding,X.L.; Liu,Y.J.Fluoresc.2008,18,109.doi:10.1007/s10895-007-0247-4

    (42) Hu,Y.J.;Liu,Y.;Jiang,W.;Zhao,R.M.;Qu,S.S.J. Photochem.Photobiol.B.2005,80,235.doi:10.1016/j. jphotobiol.2005.04.005

    (43) Zhou,T.;Ao,M.;Xu,G.;Liu,T.;Zhang,J.J.Colloid Interface Sci.2012,389,175.doi:10.1016/j.jcis.2012.08.067

    (44) Ojha,B.;Das,G.Chem.Phys.Lipids 2011,164,144. doi:10.1016/j.chemphyslip.2010.12.004

    (45) Jaiswal,S.;Mondal,R.;Paul,D.;Mukherjee,S.Chem.Phys. Lett.2016,646,18.doi:10.1016/j.cplett.2015.12.051

    (46) Ró?ycka-Roszak,B.;Wo?niak,E.;Misiak,P.;Fr?ckowiak,R.; Wilk,K.A.J.Chem.Thermodyn.2013,66,1.doi:org/10.1016/j. jct.2013.06.012

    (47) Covis,R.;Vives,T.;Gaillard,C.;Benoit,M.;Benvegnu,T. Carbohydrate Polymers 2015,121,436.doi:10.1016/j. carbpol.2015.01.001

    (48) Xiang,J.;Fan,J.B.;Chen,N.;Chen,J.;Liang,Y.Colloids Surf. B:Biointerf.2006,49,175.doi:10.1016/j.colsurfb.2006.03.015

    (49) Asker,D.;Weiss,J.;McClements,D.J.Langmuir 2009,25, 116.doi:10.1021/la803038w

    (50) Bordbar,A.K.;Taheri-Kafrani,A.;Mousavi,H.A.;Haertle,T. Arch.Biochem.Biophys.2008,470,103.doi:10.1016/j. abb.2007.11.015

    (51) Misra,P.K.;Dash,U.;Maharana,S.Colloids Surf.A: Physicochem.Eng.Aspects 2015,483,36. doi:10.1016/j.colsurfa.2015.06.052

    The Interactions between Quaternary Ammonium Cationic Surfactants and Bovine Serum Albumin

    XIE Hu-Jun1,*LIU Cheng-Cheng1SUN Qiang1GU Qing2,*LEI Qun-Fang3FANG Wen-Jun3,*
    (1Department of Applied Chemistry,Zhejiang Gongshang University,Hangzhou 310018,P.R.China;
    2School of Food Science and Biotechnology,Zhejiang Gongshang University,Hangzhou 310018,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310028,P.R.China)

    UV-visible(UV-Vis)absorption spectroscopy,fluorescence spectroscopy(FL),dynamic light scattering(DLS)and isothermal titration calorimetry(ITC)were used to study the interactions between bovine serum albumin(BSA)and the three quaternary ammonium surfactants N-dodecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(DHDAB),N-tetradecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide (THDAB)and N-cetyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(CHDAB).These surfactants quenched the intrinsic fluorescence of BSA,with longer alkyl chains resulting in more significant quenching. This was attributed to static quenching.Further evidence of static quenching was provided by UV-Vis absorption spectroscopy.The particle size of BSA was found to initially increase and then decrease with increasing surfactant concentration.The concentration of surfactant changed the type of interaction mode.This work revealed the mechanism and binding characteristics between surfactants and protein,and provides the basisfor further applications of surfactants.

    Surfactants;Bovine serum albumin;Fluorescence quenching;Dynamic light scattering; Isothermal titration calorimetry

    O648

    10.3866/PKU.WHXB201609231

    Received:July 18,2016;Revised:September 22,2016;Published online:September 23,2016.

    *Corresponding authors.XIE Hu-Jun,Email:hujunxie@gmail.com;Tel:+86-571-28008974.FANG Wen-Jun,Email:fwjun@zju.edu.cn.

    GU Qing,Email:guqing2002@hotamail.com.

    The project was supported by the National Natural Science Foundation of China(21203166,21473157),Natural Science Foundation of Zhejiang

    Province,China(LY16B030001),and Food Science and Engineering the Most Important Discipline of Zhejiang Province,China(JYTsp2014111).

    國家自然科學基金(21203166,21473157),浙江省自然科學基金(LY16B030001)與浙江省重中之重學科食品科學與工程(JYTsp2014111)資助項目

    猜你喜歡
    溴化銨化學系工商大學
    重慶工商大學作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    重慶工商大學學科簡介
    離子沉淀浮選法回收廢水中的Cu2+
    溶液濃度對四丁基溴化銨水合物蓄冷性能的影響
    云南化工(2021年11期)2022-01-12 06:06:16
    重慶工商大學
    磷鎢酸電極材料的超級電容器性能研究
    重慶工商大學
    首都師范大學化學系自充電功能材料研究取得重要進展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 老司机影院成人| 免费黄网站久久成人精品| 国产亚洲精品综合一区在线观看| 又粗又爽又猛毛片免费看| 九九久久精品国产亚洲av麻豆| 亚洲精品粉嫩美女一区| 能在线免费观看的黄片| a级一级毛片免费在线观看| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| or卡值多少钱| 乱系列少妇在线播放| 又爽又黄a免费视频| 国产精品国产高清国产av| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 岛国在线免费视频观看| 亚洲欧美精品综合久久99| 日韩在线高清观看一区二区三区| 人人妻,人人澡人人爽秒播| 九色成人免费人妻av| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 国产精品一区二区性色av| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 欧美3d第一页| 日本熟妇午夜| 看非洲黑人一级黄片| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看| 97超级碰碰碰精品色视频在线观看| 乱系列少妇在线播放| 免费看av在线观看网站| 美女高潮的动态| 日韩 亚洲 欧美在线| 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| 一级毛片aaaaaa免费看小| 永久网站在线| 成年女人永久免费观看视频| 少妇人妻精品综合一区二区 | 欧美一区二区亚洲| 综合色av麻豆| 日韩强制内射视频| 国产高清视频在线观看网站| 少妇的逼好多水| 我要看日韩黄色一级片| 亚洲一级一片aⅴ在线观看| 午夜a级毛片| 欧美日本亚洲视频在线播放| 此物有八面人人有两片| 人人妻人人澡欧美一区二区| av国产免费在线观看| www日本黄色视频网| 国产私拍福利视频在线观看| 嫩草影院精品99| 亚洲av熟女| 免费人成视频x8x8入口观看| 97超视频在线观看视频| 亚洲av中文av极速乱| 久久亚洲国产成人精品v| 精品一区二区三区av网在线观看| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 狂野欧美激情性xxxx在线观看| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 波多野结衣高清无吗| 久久久精品94久久精品| 国产黄色小视频在线观看| 99国产精品一区二区蜜桃av| 在线观看免费视频日本深夜| 国内精品美女久久久久久| 精品不卡国产一区二区三区| 国产视频一区二区在线看| av天堂在线播放| 国内揄拍国产精品人妻在线| 成人av在线播放网站| 最新在线观看一区二区三区| 精品久久久久久成人av| 国产激情偷乱视频一区二区| 99久久九九国产精品国产免费| 熟妇人妻久久中文字幕3abv| 青春草视频在线免费观看| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 在线观看午夜福利视频| 99精品在免费线老司机午夜| 人人妻人人澡欧美一区二区| 18禁在线无遮挡免费观看视频 | 国产真实伦视频高清在线观看| 久久综合国产亚洲精品| 日本在线视频免费播放| 三级国产精品欧美在线观看| 床上黄色一级片| 能在线免费观看的黄片| 精品少妇黑人巨大在线播放 | 波多野结衣高清无吗| 国产一区二区三区在线臀色熟女| 亚洲av不卡在线观看| 伦理电影大哥的女人| 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 在线播放国产精品三级| 12—13女人毛片做爰片一| 女生性感内裤真人,穿戴方法视频| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 日日撸夜夜添| 亚洲人与动物交配视频| 黄色一级大片看看| 亚洲18禁久久av| 别揉我奶头~嗯~啊~动态视频| 亚洲丝袜综合中文字幕| 亚洲国产精品sss在线观看| 嫩草影院新地址| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 久久久色成人| 国产伦一二天堂av在线观看| 99热网站在线观看| 国产中年淑女户外野战色| 亚洲精华国产精华液的使用体验 | 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 男人舔奶头视频| av在线天堂中文字幕| 美女高潮的动态| 少妇高潮的动态图| 免费高清视频大片| 欧美成人免费av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 黑人高潮一二区| 热99re8久久精品国产| 国产精品99久久久久久久久| 亚州av有码| 最近2019中文字幕mv第一页| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久| 性欧美人与动物交配| 色综合色国产| 精品久久久久久久久av| 国产91av在线免费观看| 久久精品人妻少妇| 亚洲高清免费不卡视频| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 国产亚洲精品久久久com| 赤兔流量卡办理| 国产真实伦视频高清在线观看| 18禁在线无遮挡免费观看视频 | 日本a在线网址| 国产精品永久免费网站| 成人av一区二区三区在线看| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 97碰自拍视频| 亚洲精品久久国产高清桃花| 久久久久久久久久成人| 久久精品国产清高在天天线| 一级黄片播放器| 黄色配什么色好看| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 国产精品国产高清国产av| 国产一区亚洲一区在线观看| 欧美中文日本在线观看视频| h日本视频在线播放| 少妇的逼好多水| 成年女人毛片免费观看观看9| 小说图片视频综合网站| 欧美性感艳星| 久久精品国产亚洲av天美| 亚洲成人久久性| 一个人免费在线观看电影| av黄色大香蕉| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 九九在线视频观看精品| 校园人妻丝袜中文字幕| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 美女cb高潮喷水在线观看| 欧美日本视频| 日韩制服骚丝袜av| 日本黄色片子视频| 精品一区二区三区人妻视频| 亚洲高清免费不卡视频| 欧美人与善性xxx| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 免费av不卡在线播放| 成年女人永久免费观看视频| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 精品乱码久久久久久99久播| 亚洲四区av| 秋霞在线观看毛片| 麻豆国产97在线/欧美| 亚洲七黄色美女视频| videossex国产| 干丝袜人妻中文字幕| 日韩欧美在线乱码| 在线a可以看的网站| 精品人妻视频免费看| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 成年av动漫网址| 波多野结衣巨乳人妻| 插逼视频在线观看| 国产男靠女视频免费网站| 舔av片在线| 性色avwww在线观看| 99久国产av精品| 在线播放无遮挡| 日本五十路高清| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看 | 一区二区三区四区激情视频 | 国产爱豆传媒在线观看| 亚洲五月天丁香| 成人精品一区二区免费| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 波多野结衣高清无吗| 最近手机中文字幕大全| 黄色日韩在线| 国产高清有码在线观看视频| 国产在线男女| 日韩制服骚丝袜av| 精品日产1卡2卡| 日本免费一区二区三区高清不卡| 97热精品久久久久久| 在线播放无遮挡| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看的www视频| 成年免费大片在线观看| 大型黄色视频在线免费观看| 欧美色视频一区免费| 国产精品国产高清国产av| 成人特级av手机在线观看| 亚洲第一电影网av| 在线观看一区二区三区| 欧美中文日本在线观看视频| ponron亚洲| 六月丁香七月| 少妇熟女aⅴ在线视频| 国产一区二区亚洲精品在线观看| av在线老鸭窝| 少妇被粗大猛烈的视频| 干丝袜人妻中文字幕| 成人毛片a级毛片在线播放| 免费搜索国产男女视频| 国产免费男女视频| 俄罗斯特黄特色一大片| 午夜视频国产福利| 天堂动漫精品| 久久久a久久爽久久v久久| 少妇人妻一区二区三区视频| 国产视频内射| 寂寞人妻少妇视频99o| 男女视频在线观看网站免费| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 日韩一区二区视频免费看| 一进一出好大好爽视频| 国产精品久久电影中文字幕| 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 在线观看午夜福利视频| 一级黄色大片毛片| 亚洲精品影视一区二区三区av| av在线亚洲专区| 久久人人爽人人爽人人片va| 国产 一区 欧美 日韩| 日韩中字成人| 99久国产av精品| 亚洲精品在线观看二区| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6| 免费av观看视频| 精品午夜福利在线看| 亚洲第一电影网av| 婷婷六月久久综合丁香| 男人狂女人下面高潮的视频| 深夜a级毛片| 中文字幕精品亚洲无线码一区| 99视频精品全部免费 在线| 久久6这里有精品| 真人做人爱边吃奶动态| 亚洲乱码一区二区免费版| 精品不卡国产一区二区三区| 91午夜精品亚洲一区二区三区| 久久久久久大精品| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 天堂网av新在线| 成人亚洲欧美一区二区av| www.色视频.com| 一区二区三区免费毛片| 亚洲不卡免费看| 国产探花极品一区二区| 欧美日本亚洲视频在线播放| 亚洲最大成人av| 一级黄片播放器| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站| 国产高清视频在线观看网站| 午夜福利视频1000在线观看| 少妇的逼水好多| 欧美+亚洲+日韩+国产| 免费观看的影片在线观看| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 亚洲,欧美,日韩| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 深夜精品福利| 亚洲在线观看片| 高清日韩中文字幕在线| 又黄又爽又刺激的免费视频.| 亚洲综合色惰| 一本精品99久久精品77| 免费不卡的大黄色大毛片视频在线观看 | av福利片在线观看| 欧美成人一区二区免费高清观看| 黄色日韩在线| 久久久久国内视频| 你懂的网址亚洲精品在线观看 | 日本爱情动作片www.在线观看 | 最近手机中文字幕大全| 久久精品91蜜桃| 男人的好看免费观看在线视频| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 国内精品美女久久久久久| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 日本黄色视频三级网站网址| 久久午夜亚洲精品久久| 麻豆久久精品国产亚洲av| 亚洲av免费高清在线观看| 欧美三级亚洲精品| 久久久国产成人免费| 日本黄大片高清| 国产精品嫩草影院av在线观看| 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 成人特级黄色片久久久久久久| 午夜福利在线观看吧| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 国产成人影院久久av| 九九在线视频观看精品| 国产激情偷乱视频一区二区| 久久久久久大精品| 亚洲精华国产精华液的使用体验 | 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 婷婷精品国产亚洲av| 中国国产av一级| 国产综合懂色| 国产精品久久电影中文字幕| 国产探花极品一区二区| 精品午夜福利在线看| 精品一区二区三区视频在线| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 日韩,欧美,国产一区二区三区 | 在线a可以看的网站| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 国内久久婷婷六月综合欲色啪| 深夜a级毛片| 免费在线观看成人毛片| 22中文网久久字幕| 春色校园在线视频观看| 老熟妇乱子伦视频在线观看| 激情 狠狠 欧美| av在线老鸭窝| 欧美bdsm另类| 三级毛片av免费| 我的老师免费观看完整版| av卡一久久| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区久久| 国产91av在线免费观看| 欧美又色又爽又黄视频| 亚洲最大成人手机在线| 日韩国内少妇激情av| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 日本 av在线| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 国产亚洲精品久久久com| 人人妻人人澡人人爽人人夜夜 | 少妇的逼好多水| 国内久久婷婷六月综合欲色啪| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 在线a可以看的网站| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 日韩精品有码人妻一区| 久久草成人影院| 国产av在哪里看| 一进一出抽搐动态| 1000部很黄的大片| 国产精品久久视频播放| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 国产av麻豆久久久久久久| 高清日韩中文字幕在线| 久久久久精品国产欧美久久久| 国产三级在线视频| 久久久色成人| .国产精品久久| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 亚洲内射少妇av| 天堂影院成人在线观看| 午夜a级毛片| 麻豆乱淫一区二区| 日韩欧美 国产精品| 俺也久久电影网| 免费无遮挡裸体视频| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app| 亚洲精品在线观看二区| 精品一区二区三区视频在线| 亚洲国产高清在线一区二区三| 免费搜索国产男女视频| 国产精品不卡视频一区二区| 久久久成人免费电影| 亚洲精品456在线播放app| 神马国产精品三级电影在线观看| 最近手机中文字幕大全| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 99久久成人亚洲精品观看| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| av天堂在线播放| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 欧美最新免费一区二区三区| 亚洲国产精品成人综合色| 亚洲欧美日韩东京热| 一个人免费在线观看电影| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 听说在线观看完整版免费高清| 亚洲欧美成人精品一区二区| 舔av片在线| 国产免费男女视频| 91在线精品国自产拍蜜月| 国产免费男女视频| 校园人妻丝袜中文字幕| 亚洲中文字幕日韩| 麻豆乱淫一区二区| 一区福利在线观看| av专区在线播放| 国产精品女同一区二区软件| 日本成人三级电影网站| 在线免费观看不下载黄p国产| 亚洲成人中文字幕在线播放| 淫妇啪啪啪对白视频| 欧美性感艳星| 国产亚洲精品久久久久久毛片| 午夜激情福利司机影院| 男女做爰动态图高潮gif福利片| 99热精品在线国产| 亚洲av熟女| 三级国产精品欧美在线观看| 男人狂女人下面高潮的视频| 黑人高潮一二区| 色5月婷婷丁香| 一边摸一边抽搐一进一小说| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品| 国产黄片美女视频| 成人av在线播放网站| 精品久久久久久久久亚洲| 国产高清三级在线| 日本免费a在线| 九九在线视频观看精品| 桃色一区二区三区在线观看| 国产精品国产三级国产av玫瑰| 亚洲欧美成人精品一区二区| 久久久久国内视频| 国产男靠女视频免费网站| 又爽又黄a免费视频| 综合色av麻豆| 日本成人三级电影网站| 亚洲成a人片在线一区二区| 久久精品国产清高在天天线| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡免费网站照片| 蜜臀久久99精品久久宅男| av黄色大香蕉| 18禁在线播放成人免费| 精品熟女少妇av免费看| 老司机午夜福利在线观看视频| 五月玫瑰六月丁香| 少妇熟女aⅴ在线视频| 欧美色视频一区免费| www日本黄色视频网| 啦啦啦韩国在线观看视频| 女人十人毛片免费观看3o分钟| 身体一侧抽搐| 午夜精品国产一区二区电影 | a级毛片免费高清观看在线播放| 网址你懂的国产日韩在线| 欧美xxxx性猛交bbbb| 波多野结衣高清无吗| 成人二区视频| 成人高潮视频无遮挡免费网站| 欧美激情在线99| 国产高清不卡午夜福利| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 美女内射精品一级片tv| 女同久久另类99精品国产91| 久久国内精品自在自线图片| 99久久久亚洲精品蜜臀av| 美女cb高潮喷水在线观看| 麻豆久久精品国产亚洲av| 秋霞在线观看毛片| 五月伊人婷婷丁香| 国产91av在线免费观看| 欧美bdsm另类| 日韩欧美国产在线观看| 国产av不卡久久| 欧美潮喷喷水| 久久综合国产亚洲精品| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 国产精品乱码一区二三区的特点| 观看美女的网站| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 久久综合国产亚洲精品| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 看十八女毛片水多多多| 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 插阴视频在线观看视频| 黄色日韩在线| 美女cb高潮喷水在线观看| 一级黄色大片毛片| 久久久久国内视频| 日本-黄色视频高清免费观看| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| 黄色配什么色好看| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕一区二区三区有码在线看| 最近2019中文字幕mv第一页| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 日本撒尿小便嘘嘘汇集6| 久久精品夜夜夜夜夜久久蜜豆| 黄色欧美视频在线观看| 国产精品女同一区二区软件| 亚洲成人av在线免费| 国产美女午夜福利| 婷婷色综合大香蕉| 国产综合懂色| 舔av片在线| 亚洲成人av在线免费| 能在线免费观看的黄片| 久久国产乱子免费精品| 十八禁国产超污无遮挡网站| 亚洲性夜色夜夜综合| av福利片在线观看|