• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以油酸為原料的新型生物基支鏈十七烷基苯磺酸鈉的合成及性質

    2016-12-29 05:42:58卞鵬程張大鵬剛洪澤劉金峰牟伯中楊世忠
    物理化學學報 2016年11期
    關鍵詞:烷基苯磺酸鈉支鏈

    卞鵬程 張大鵬 剛洪澤 劉金峰 牟伯中,2 楊世忠,*

    (1華東理工大學應用化學研究所,生物反應器工程國家重點實驗室,上海200237;2上海生物制造技術合作創(chuàng)新中心,上海200237)

    以油酸為原料的新型生物基支鏈十七烷基苯磺酸鈉的合成及性質

    卞鵬程1張大鵬1剛洪澤1劉金峰1牟伯中1,2楊世忠1,*

    (1華東理工大學應用化學研究所,生物反應器工程國家重點實驗室,上海200237;2上海生物制造技術合作創(chuàng)新中心,上海200237)

    生物基表面活性劑由于其可再生資源和優(yōu)異的表面/界面性質吸引了越來越多的關注。本文以可再生的油酸為原料,通過四步反應,制備了新型生物基支鏈表面活性劑,并評價了其表/界面性質、潤濕性和生物降解性能。該新型生物基支鏈表面活性劑為4-(1-十七烷基)苯磺酸鈉(9ΦC17S),依次經過烷基化反應、脫羧反應、磺化反應和中和反應而制得。其化學結構已通過電噴霧質譜、紅外光譜和核磁共振波譜得以確認。4-(1-十七烷基)苯磺酸鈉展現出良好的表/界面張力,臨界膠束濃度(CMC)為317.5 mg·L-1,CMC處的表面張力為32.54 mN·m-1,當水溶液中碳酸鈉濃度為8.48×104mg·L-1、4-(1-十七烷基)苯磺酸鈉濃度為8.36× 104mg·L-1時,油水的界面張力約為10-2mN·m-1。此外,4-(1-十七烷基)苯磺酸鈉在生物降解性和潤濕性方面也顯示出了良好的性能,最終生物降解評分為2.99,0.500 g·L-19ΦC17S溶液的氣液固接觸角為63.08°。該新型生物基表面活性劑豐富了以可再生資源為原料的生物基表面活性劑的結構多樣性。

    生物基表面活性劑;支鏈十七烷基苯磺酸鈉;脫羧;油酸;可再生資源

    1 Introduction

    Traditional alkylbenzene sulfonates are a class of petroleumbased surfactants and have been widely used in many industries such as washing1,oil recovery2-4,pesticide chemistry5,6,papermaking7,etc.Most of the petroleum-based alkylbenzene sulfonates used in industries were a mixture of linear and branched alkylbenzene sulfonates.Recent studies indicated that the branched alkylbenzene sulfonates performed more outstanding interfacial activities than that of the linear ones8-10,and a great effort has been made in synthetic methods of the branched alkylbenzene sulfonate surfactants and in performance evaluations by both the experiment and computer simulations.Yang et al.11,12investigated interfacial behaviors of the three isomers of hexadecylbenzene sulfonates with the benzene ring at different site along the alkyl chain,and the surfactant molecule with a phenyl group near the center of the alkyl chain showed the best result with a reduction of the interfacial tension to ultra-low values at low alkali concentrations.The experimental results suggested that the alkylbenzene sulfonate with a phenyl group in the middle of hydrocarbon chain contributed to the lower surface tension compared to those with a phenyl group in the end of hydrocarbon chains11,12,which was coincident with the results of computer simulation13-15.However, most of the reported synthesis routes of alkylbenzene sulfonate isomers with the phenyl group at a specific site of hydrocarbon chains were considerably complicated,which has been a block for further development and application of branched alkylbenzene sulfonate surfactants in industries.

    Bio-based surfactants have received increasing attention from industrial and scientific fields,due to their renewable resource, outstanding physicochemical property,and low costs16.Bio-based surfactants were mainly using biomass as their raw materials,such as carbohydrates17,proteins18,and vegetable oils19,which inherited harvestable sustainability,high output capability,and environmental compatibility.Biomass was seen as one of the best substitutes to petroleum chemicals to be used as alternative resources of surfactants20,21.The oleic acid,obtained by hydrolyzation of vegetable oils,was one of the most common kinds in biomass and has attracted great interests as platform chemicals for surfactants. Oleic acids have been applied to produce cationic gemini surfactants,which showed better surface properties than that of similar commercial surfactants22.However,the knowledge about oleic acid-based and branched alkylbenzene sulfonates and their application are still limited.

    In the present study,the 4-(1-heptadecyl)benzene sodium sulfonate(9ΦC17S),a novel bio-based branched heptadecylbenzene sulfonate surfactant was synthesized using renewable oleic acids as starting material by a strategy of a facile four-step route.The chemical structure of the 4-(1-heptadecyl)benzene sodium sulfonate was determined by Fourier transform infrared(FT-IR) spectra,electrospray ionization high resolution mass spectrometry (ESI HRMS),and1H nuclear magnetic resonance(1H NMR) spectra,and its surface behavior,wettability,and biodegradibility were evaluated in this paper.

    2 Materials and methods

    2.1Materials

    The oleic acid(AR)was purchased from Tokyo Chemical Industry Co.,Ltd,Tokyo,Japan.AlCl3(99%)was purchased from Aladdin,Shanghai,China.NiCl2·6H2O(AR),methanol(AR),and ethanol(AR)were purchased from Sinopharm Chemical Reagent Co.,Ltd,Shanghai,China.Benzene(AR),MgCl2·6H2O(AR), AlCl3·6H2O(AR),carbamide(AR),n-hexane(AR),sulfuric acid (AR),fuming sulfuric acid(AR),phosphorus pentoxide(AR)and sodium hydroxide(AR)were purchased from Shanghai Lingfeng Chemical Reagent Co.,Ltd,Shanghai,China.All the materials were used without further purification.

    2.2Chemical analyses

    Gas chromatography mass spectrometry(GC-MS)was recorded on Agilent 6890N Network GC system and 5978 inter Mass Selective Detector.Infrared spectra were recorded on a Nicolet iS10 FT-IR spectrometer.Electrospray ionization high resolution mass spectrometry was recorded on the Waters LCT Premier XE Mass Spectrometers.1H nuclear magnetic resonance spectra were recorded on a Bruker Advance 400 spectrometer(400 MHz)in D2O at room temperature.Tetramethylsilane(TMS)was used as reference.

    2.3Synthetic methods

    The branched heptadecylbenzene sulfonate was synthesized from oleic acid through four steps including the alkylation of benzene,catalyzed decarboxylation,sulfonation and neutralization.

    2.3.1 Alkylation

    The phenyl stearic acid was prepared in the presence of anhydrous AlCl3by the Friedel-Crafts reaction of oleic acids with benzene in a flask,in which the molar ratio of oleic acid,benzene and anhydrous AlCl3was 1:5:1.The mixture was heated to 65°C and maintained for 6 h with stirring.The resulted mixtures were then cooled to 0°C,and equal volume of 6 mol·L-1HCl was added slowly into the flask.The organic layer was seperated andevaporated under reduced pressure to obtain phenyl stearic acid23.

    2.3.2 Decarboxylation

    The catalyst,MgO-Al2O3-NiO,was prepared by MgCl2·6H2O, AlCl3·6H2O,NiCl2·6H2O,and carbamide,in which the molar ratio of MgO-Al2O3-NiO was 16:5:424.The catalyst was prepared by homogeneous precipitation method25.The prepared catalyst was calcined at 550°C for 3 h and then cooled down to room temperature.

    The decarboxylation reaction was carried out in a batch mode operating autoclave reactor(70 mL),which was designed for operation up to 40 MPa and 350°C.The reactor was equipped with a multi-blade impeller to mix liquid reactants and solid catalyst.In a typical batch experiment,20.0 g of phenyl stearic acid and a series of given quality of catalyst(reactant/catalyst mass ratio:40/1,20/1,10/1)was placed in the reactor.The reactor was then flushed with nitrogen to remove oxygen.Next,the reactions were carried out at a high temperature(150,180,210°C).The reactor was subsequently cooled down to room temperature.The liquid products were collected after filtering solid catalysts.

    2.3.3 Sulphonation and neutralization

    The heptadecylbenzene was sulfonated with SO3provided by the reaction of fuming sulfuric acid and phosphorus pentoxide and then neutralized with sodium hydroxide to obtain the final compounds26.The mixture was deoiled with normal hexane and desalted in anhydrous ethyl alcohol respectively.The final products were purified by recrystallization in three times with ethanol solution(ethanol/water volume ratio:1/1).

    2.4Measurements of surface tensions

    Surface tensions(SFT)were measured by a DCAT 21 surface tensiometer using the plate method at(25.0±0.1)°C.Aqueous solutions of samples were prepared with double distilled water. Each surface tension value was evaluated as the average of at least three replicate measurements.The critical micelle concentration (CMC)was obtained from the break point of the curve of surface tension versus concentration.

    Maximum surface excess at CMC(Γmax)was derived from the Gibbs adsorption isotherm equation27:

    where R=8.314 J·mol-1·K-1,Tis the absolute temperature,(?SFT/?lgC)Tis the slope of the surface tension-log concentration curve at temperature T,η(the number of species at the interface)is taken as 1 for the alkyl benzene sulfonate.The minimum area per molecule occupied at CMC,Aminwas calculated from the relationship with maximum surface excess Γmax27.

    where NAis theAvogadro constant.

    2.5Measurements of interfacial tensions

    Surfactant solutions were prepared at different concentrations from 0.10 to 0.80 g·L-1with Daqing oil field simulated formation water.Interfacial tensions(IFT)were measured by the spinningdrop method using SVT 20 tensiometer at(50.0±0.1)°C.Daqing crude oil was used as oil phase.

    2.6Measurement of the Krafft point temperature

    The conductivities of 1.0%surfactant solution at different temperatures were measured with a DDSJ-308A conductivity meter,and the Krafft point temperature was obtained at the temperature of the break point of the curve of conductivity versus temperature28.

    2.7Measurement of the HLB value

    The hydrophilic-lipophilic balance(HLB)value of the surfactant was computed by a formula where A=1.961 and B=16.235 for the sodium sulfonate surfactants29.

    2.8Measurement of contact angles

    The contact angles were measured by sessile drop technique for 0.500 g·L-1surfactant solution at 25.0°C30.The measurements were repeated 5 times and the average value was calculated.

    2.9Prediction of ultimate biodegradation

    The ultimate biodegradation of surfactant was performed using the EPI Suite,BIOWIN3 biodegradation model,which is frequently applied for the degradation estimate of organic chemicals31.

    3 Results and discussion

    3.1Yields and structural analyses

    The strategy route for synthesis of the bio-based branched alkylbenzene sulfonate was shown in Scheme 1.The branched heptadecylbenzene sulfonate was synthesized from oleic acids and intermediate products were detected by GC-MS after esterification.The GC spectrograms of methyl oleate,phenyl methyl stearate,heptadecylbenzene were shown in Fig.1,in which peaks A,B,C,and D indicated the methyl oleate,methyl stearate,phenyl methyl stearate,and heptadecylbenzene,respectively.Line 1 showed the products of esterification of oleic acid samples.There was little stearic acid in this sample,which could be used as the internal standard for the calculation of yields of Friedel-Crafts reaction.Line 2 indicated the result of Friedel-Crafts reaction of oleic acids.It showed that the oleic acid was completely expendedfrom the comparison with line 1,and it yielded 97.7%in the Friedel-Crafts reaction.The GC spectrogram of decarboxylation of phenyl stearic acid was shown in line 3.The yield of decarboxylation reaction was 93.2%,as shown for the number 6 in Table 1.The reactions of sulfonation and neutralization of heptadecylbenzene carried out with SO3yielded about 77.9%by weighing method.

    Scheme 1 Strategy route for synthesis of the bio-based branched alkylbenzene sulfonate

    Fig.1 GC spectrogram of the methyl oleate, phenyl methyl stearate,and heptadecylbenzene

    The molecular weight(MW)of 9ΦC17S was determined by ESI HRMS and the ionization way of ESI HRMS was negative ion mode without Na+.The mass-to-charge ratio(m/z)of the main peak was 395.3,as shown in Fig.2.For a further structral analysis the FT-IR and1H NMR were applied.It indicated in1H NMR spectral pattern(as Fig.S1 shown in the Supporting Information) that the hydrogen atoms in the surfactant were identified according to their chemical environment using1H NMR.The signals at 0.79 and 1.16 were attributed to the hydrogen atoms on the end methyl and methylene of the long carbon chains,respectively.Peaks at 1.49 indicated the hydrogen atoms in―CH2―CH―C6H4―.And the resonance of the hydrogen atom neighboring the benzene rings was 2.39.The signals at 7.16-7.65 were assigned to the resonances of the benzene ring.In the FT-IR spectrogram(Fig.S2 shown in the Supporting Information),the peaks at 2961.76 and 2858.59 cm-1suggested the absorbance of methylene and methyl groups in the carbon chain.The absorbance wavelengths of the benzene ring were 1650.62 and 1467.25 cm-1.And the peaks at 1186.30,1129.80,1043.35 cm-1indicated the absorbance of S=O double bond.

    Table 1 Design and optimum conditions of decarboxylation of phenyl stearic acid

    Fig.2 ESI HRMS spectrum of 9ΦC17S

    In general routes for synthesis of the branched alkylbenzene sulfonates there included at least 8 steps11,12.However,in this study a novel bio-based branched alkylbenzene sulfonate was synthesized by a strategy of only four-step route as shown in Sheme 1, which was more simple and convenient.In addition,the starting material used in this synthetic method was oleic acids,a class of renewable resources from oils,or even waste cooking oils.

    3.2Optimization of decarboxylation

    The yields in different conditions for the optimization were shown in Table 1.The numbers 1,2,6 were carried out at 150,210,and 180°C,respectively,in which the yields were 3.9%, 93.5%,and 93.2%,respectively.Numbers 3-11 were performed at 180°C using an optimization design method with various conditions,including reaction time,the stirring speed and the ratio of reactant to catalyst.And the yields were also listed.Number 6 suggested the optimized result for the decarboxylation reaction. Besides,the mass spectrum of the product was shown in Fig.S3 (Supporting Information).

    The Friedel-Crafts reaction and sulfonation have been extremely studied in the synthesis of alkylbenzene sulfonate,compared to the decarboxylation.Herein,the decarboxylation was researched with the catalyst MgO-Al2O3-NiO by optimization method.In the recent research about decarboxylation,the reaction temperature was 200°C for fatty acids with Pd/C catalyst32,the temperature was 400°C for microalgal oil with MG6333,and the temperature of decarboxylation of oleic acid with Ni/MgO-Al2O3was 300°C24. With the MG63 or Ni/MgO-Al2O3catalyst,the temperature for decarboxylation was higher,which implied that the reaction would need more energy consumption.However,in our study,with the catalyst MgO-Al2O3-NiO,the reaction of decarboxylation was carried out completely under the condition of 180°C,the number 6 as shown in Table 1.This temperature was much lower,while the yield with the catalyst MgO-Al2O3-NiO was 93.2%,as high as that in reaction with Pd/C catalyst.

    However,when the temperature of decarboxylation reaction was below 180°C,for example,150°C,the productivity was very low (only 3.9%).On the other hand,when the temperature was above 180°C,such as 210°C,there was not obvious improvement for the productivity(yield 93.5%).Consequently,an optimization design method was proposed with various conditions as numbers 3-11, and the optimum conditions for the decarboxylation reaction was 150 r·min-1of stirring speed,20:1 for reactant/catalyst and 6 h.

    3.3Surface properties

    Fig.3 Variation of the surface tensions with the concentrations of 9ΦC17S at 25.0°C

    The surface tension as a function of 9ΦC17S concentrations at 25.0°C was illustrated in Fig.3.The CMC and the surface tension at CMC(SFTCMC)were obtained from the breakpoint of the plot in Fig.3.The surface excess(Γmax)and the area occupied per surfactant molecule(Amin)at CMC on air/water interface were computed by Eqs.(1)and(2),respectively.It showed in Fig.3 that 9ΦC17S presented a sharp break corresponding to CMC of 317.5 mg·L-1with SFTCMC=32.54 mN·m-1at 25°C,and the calculated minimum surface area per molecule for 9ΦC17S was 0.39 nm2,as summarized in Table 2.The CMC by electrical conductivity was 304.5 mg·L-1from Fig.S4(Supporting Information),similar to that by a surface tension method.The relative deviation between them was 4.3%.

    3.4Interfacial properties

    Fig.4 showed the dynamic interfacial tensions(DIFT)between Daqing crude oil and simulated formation water at different concentrations of 9ΦC17S solutions measured at 50.0°C.Fig.4(a) displayed that the equilibrium IFT values were:2.44,1.65,0.78, and 1.16 mN·m-1at the concentrations of 9ΦC17S solutions of: 0.10,0.20,0.50,and 0.80 g·L-1,respectively.The minimum value of 0.78 mN·m-1appeared at 0.50 g·L-1,and the equilibrium IFT value between Daqing crude oil and simulated formation water without surfactants was 9.47 mN·m-1.Fig.4(b),(c),and(d)indicated the dynamic interfacial tensions between Daqing crude oil and 0.10,0.20,and 0.50 g·L-19ΦC17S solutions with adding different concentrations of extra Na2CO3,respectively.All the equilibrium values of DIFT between crude oil and 9ΦC17S solutions decreased with the concentration of Na2CO3increased.The interfacial tension of~10-2mN·m-1was obtained at 0.2 mol·L-1with 0.8 mol·L-1Na2CO3.Dynamic interfacial tensions between Daqing crude oil and different concentrations Na2CO3solutions in simulated formation water were measured at 50.0°C,displayed in Fig.S5(Supporting Information),which suggested that only Na2CO3could not decrease IFT to ultralow value in our experiments.

    One of the most important applications of alkylbenzene sulfonates was to enhance oil recovery34,35.The IFT in 10-3mN·m-1order of magnitude was critically required for availably displacement of residual crude oil from the capillaries and pores of petroleum reservoirs36.To achieved ultra-low IFT value,alkali were widely used accompanying with alkyl benzene sulfonates in oil recovery37.The alkali solution could react with acidic components of petroleum to produce in situ surfactants,which may interact with alkyl benzene sulfonates and reduce the IFT value between crude oil and water observably38-40.As the IFT value between Daqing crude oil with the 9ΦC17S solution were far away from ultra-low IFT value in Fig.4(a),different concentration of Na2CO3solution was added into different concentration of 9ΦC17S solution(Fig.4(b),(c)and(d))to achieve lower IFT values.All the minimum values of DIFT were in 10-3mN·m-1order of magnitude combined with 0.80 mol·L-1Na2CO3,which indicated that 9ΦC17S could be a class of candidate for oil re-covery.Although all the equilibrium values of DIFT between crude oil and 9ΦC17S solutions decreased with the concentration of Na2CO3increased,these decrement degrees of DIFT equilibrium values were different.The DIFT equilibrium values decreased from 0.460 to 0.026 mN·m-1in Fig.4(b),and reduced from 0.170 to 0.016 mN·m-1in Fig.4(c)with the Na2CO3concentrations increased from 0.10 to 0.80 mol·L-1.While for the higher 9ΦC17S concentration as shown in Fig.4(d),this value reduced to 0.026 mN·m-1from 0.13 mN·m-1with the same Na2CO3concentration recruitment.It illustrated that the absorbance of surfactant on the oil/water interface did not change coincident with the surfactant concentration in solution,as the dynamic equilibrium value depends on the adsorption of surfactant molecules.

    Table 2 Surface properties,HLB value,contact angle,and Krafft point of 9ΦC17S

    Fig.4 Interfacial properties of 9ΦC17S solutions in simulated formation water at 50.0°C

    3.5Contact angles,HLB values,and the Krafft pointTable 2 suggested the contact angle θaverageof air/water/solid was 63.08°at 0.500 g·L-19ΦC17S solutions and the HLB value was 10.12 calculated by Eq.(3).The Krafft point was 58.15°C from Fig.S6(Supporting Information),obtained by the conductivities curve of 1%surfactant solution under different temperatures,as shown in Table 2.The average contact angle of double distilled water on the hydrophobic acrylic substrate was 92.04°at 25.0°C19.The contact angle results suggested a great wettability of 9ΦC17S.The HLB value indicated that 9ΦC17S was almost balanced in hydrophile-lipophile property and could be used as emulsifier.The Krafft points of C16H33SO3Na and C18H37SO3Na were 55.3 and 64.8°C,respectively,in the previous research41.The Krafft point for 9ΦC17S in this study was coincident with the previous report due to the relation between Krafft point and molecular structure.

    3.6Biodegradability prediction

    The ultimate biodegradation score of 9ΦC17S was 2.99.The score above 2.8 was the biodegradation order of“weeks”,and scores between 2.0 and 2.8 were in order of“months”.This result meant the expected total degradation time was between“weeks”, and suggested that 9ΦC17S was biodegradable.The ultimate biodegradation scores of normal alkyl benzene sulfonate and alkyl naphthalene sulfonate were 2.59-2.84 and 2.48-2.73,respectively19.The predicted result of 9ΦC17S was higher than that of other surfactants,indicated that the degradation period of 9ΦC17S was the shortest,which meant that 9ΦC17S was friendly allowable in surfactant′s industrial applications.

    4 Conclusions

    In summary the novel bio-based branched surfactant 4-(1-heptadecyl)benzene sodium sulfonate(9ΦC17S)was synthesizedfrom renewable oleic acids using a strategy of a four-step route of the alkylation,decarboxylation,sulfonation and neutralization. The novel bio-based branched alkylbenzene sulfonate showed a CMC as low as 317.5 mg·L-1and the higher interfacial activities in aqueous solutions with Na2CO3.The interfacial tension between crude oil and simulated formation water was greatly reduced to a ultra-low order(≤10-2mN·m-1)at 8.36×10-4mg·L-19ΦC17S in solutions,and the prediction of the ultimate biodegradation score(2.99)showed the biodegradation order of“weeks”,which suggested that the novel bio-based branched surfactant would be a very competitive candidate in surfactant flooding in oil recovery, and friendly allowable in oil spill treatment and many other industrial applications.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Cohen,L.;Moreno,A.;Berna,J.J.Am.Oil Chem.Soc.1993, 70,79.doi:10.1007/BF02641010

    (2) Llenado,R.A.Enhanced Oil Recovery.Google Patents: US4565647A,1986-01-21.

    (3) Shupe,R.D.Surfactant Oil Recovery Process Usable in High Temperature Formations.Google Patents:US4018278A,1977-04-19.

    (4) Dai,C.;Wang,K.;Liu,Y.;Li,H.;Wei,Z.;Zhao,M.Energy Fuels 2015,29,2304.doi:10.1021/acs.energyfuels.5b00507

    (5) Holmstrup,M.;Krogh,P.H.Environ.Toxicol.Chem.1996,15, 1745.doi:10.1002/etc.5620151013

    (6) Nimer,M.;Ballesteros,O.;Navalon,A.;Crovetto,G.;Verge, C.;López,I.;Berna,J.;Vílchez,J.Anal.Bioanal.Chem.2007, 387,2175.doi:10.1007/s00216-006-1069-y

    (7) Schultz,W.S.;Beyer,U.Invert Size for the Internal and Surface Sizing of Paper.Google Patents:US4983257A,1991-01-08.

    (8) Cao,Y.;Zhao,R.H.;Zhang,L.;Xu,Z.C.;Jin,Z.Q.;Luo,L.; Zhang,L.;Zhao,S.Energy Fuels 2012,26,2175.doi:10.1021/ ef201982s

    (9) Zhang,L.;Wang,X.C.;Gong,Q.T.;Zhang,L.;Luo,L.;Zhao, S.;Yu,J.Y.J.Colloid Interface Sci.2008,327,451. doi:10.1016/j.jcis.2008.08.019

    (10) Zhao,R.H.;Huang,H.Y.;Wang,H.Y.;Zhang,J.C.;Zhang,L.; Zhang,L.;Zhao,S.J.Dispersion Sci.Technol.2013,34,623. doi:10.1080/01932691.2012.685844

    (11) Zhao,Y.;Li,P.;Li,Z.;Qiao,W.;Cheng,L.;Yang,J.Pet.Sci. Technol.2007,25,1429.doi:10.1056/NEJMoa1014618

    (12) Yang,J.;Qiao,W.;Li,Z.;Cheng,L.Fuel 2005,84,1607. doi:10.1016/j.fuel.2005.01.014

    (13) He,X.;Guvench,O.;MacKerell,A.D.,Jr.;Klein,M.L. J.Phys.Chem.B 2010,114,9787.doi:10.1021/jp101860v

    (14) Jang,S.S.;Lin,S.T.;Maiti,P.K.;Blanco,M.;Goddard,W.A.; Shuler,P.;Tang,Y.J.Phys.Chem.B 2004,108,12130. doi:10.1021/jp048773n

    (15) Zhao,T.;Xu,G.;Yuan,S.;Chen,Y.;Yan,H.J.Phys.Chem.B 2010,114,5025.doi:10.1021/jp907438x

    (16) Foley,P.;Beach,E.S.;Zimmerman,J.B.Chem.Soc.Rev.2012, 41,1499.doi:10.1039/C1CS15217C

    (17) Rajabi,F.;Luque,R.RSC Adv.2014,4,5152.doi:10.1039/ C3RA45757E

    (18) Sreenu,M.;Rao,B.V.;Prasad,R.B.N.;Sujitha,P.;Chityala, G.K.Eur.J.Lipid Sci.Technol.2014,116,193.doi:10.1002/ ejlt.201300189

    (19) Zhang,Q.Q.;Cai,B.X.;Xu,W.J.;Gang,H.Z.;Liu,J.F.; Yang,S.Z.;Mu,B.Z.Colloids Surf.A 2015,483,87. doi:10.1016/j.colsurfa.2015.05.060

    (20) Melero,J.A.;Iglesias,J.;Garcia,A.Energy Environ.Sci.2012, 5,7393.doi:10.1039/C2EE21231E

    (21) Climent,M.J.;Corma,A.;Iborra,S.Green Chem.2014,16, 516.doi:10.1039/C3GC41492B

    (22) Sakai,K.;Saito,Y.;Uka,A.;Matsuda,W.;Takamatsu,Y.; Kitiyanan,B.;Endo,T.;Sakai,H.;Abe,M.J.Oleo Sci.2013, 62,489.doi:10.5650/jos.62.489

    (23) Zhang,Q.Q.;Cai,B.X.;Xu,W.J.;Gang,H.Z.;Liu,J.F.; Yang,S.Z.;Mu,B.Z.Sci.Rep.2015,5,9971.doi:10.1038/ srep09971

    (24) Roh,H.S.;Eum,I.H.;Jeong,D.W.;Yi,B.E.;Na,J.G.;Ko,C. H.Catal.Today 2011,164,457.doi:10.1016/j. cattod.2010.10.048

    (25) Ogawa,M.;Kaiho,H.Langmuir 2002,18,4240.doi:10.1021/ la0117045

    (26) Ortega,J.A.T.;Aldana,L.A.D.;Castellanos,F.J.S.Ing. Investig.2009,29,48.

    (27) Du,X.;Lu,Y.;Li,L.;Wang,J.;Yang,Z.Colloids Surf.A 2006, 290,132.doi:10.1016/j.colsurfa.2006.05.013

    (28) Guo,Y.J.;Liu,J.X.;Zhang,X.M.;Feng,R.S.;Li,H.B.; Zhang,J.;Lv,X.;Luo,P.Y.Energy Fuels 2012,26,2116. doi:10.1021/ef202005p

    (29) Jiahua,Z.;Yingde,C.Special Petrochem.2001,2,004.

    (30) Nedyalkov,M.;Alexandrova,L.;Platikanov,D.;Levecke,B.; Tadros,T.F.Colloid.Polym.Sci.2008,286,713.doi:10.1007/ s00396-007-1823-5

    (31) Song,S.;Song,M.;Zeng,L.;Wang,T.;Liu,R.;Ruan,T.;Jiang, G.Environ.Pollut.2014,186,14.doi:10.1016/j. envpol.2013.11.023

    (32) Santillan-Jimenez,E.;Morgan,T.;Lacny,J.;Mohapatra,S.; Crocker,M.Fuel 2013,103,1010.doi:10.1016/j. fuel.2012.08.035

    (33) Na,J.G.;Han,J.K.;Oh,Y.K.;Park,J.H.;Jung,T.S.;Han,S. S.;Yoon,H.C.;Chung,S.H.;Kim,J.N.;Ko,C.H.Catal. Today 2012,185,313.doi:10.1016/j.cattod.2011.08.009

    (34) Li,Y.;He,X.;Cao,X.;Zhao,G.;Tian,X.;Cui,X.J.Colloid Interface Sci.2007,307,215.doi:10.1016/j.jcis.2006.11.026

    (35) Li,Y.;Zhang,P.;Dong,F.L.;Cao,X.L.;Song,X.W.;Cui,X.H.J.Colloid Interface Sci.2005,290,275.doi:10.1016/j. jcis.2005.04.035

    (36) Qiao,W.;Li,J.;Zhu,Y.;Cai,H.Fuel 2012,96,220. doi:10.1016/j.fuel.2012.01.014

    (37) Dai,X.;Suo,J.;Duan,X.;Bai,Z.;Zhang,L.J.Surfactants Deterg.2008,11,111.doi:10.1007/s11743-008-1061-y

    (38) Chen,L.;Zhang,G.;Ge,J.;Jiang,P.;Tang,J.;Liu,Y.Colloids Surf.A 2013,434,63.doi:10.1016/j.colsurfa.2013.05.035

    (39) Tang,M.;Zhang,G.;Ge,J.;Jiang,P.;Liu,Q.;Pei,H.;Chen,L. Colloids Surf.A 2013,421,91.doi:10.1016/j. colsurfa.2012.12.055

    (40) Zhao,X.;Bai,Y.;Wang,Z.;Shang,X.;Qiu,G.;Chen,L. J.Dispersion Sci.Technol.2013,34,756.doi:10.1080/ 01932691.2012.686252

    (41) Fekarcha,L.;Tazerouti,A.J.Surfactants Deterg.2012,15,419. doi:10.1007/s11743-012-1335-2

    Synthesis and Properties of a Novel Bio-Based Branched Heptadecylbenzene Sulfonate Derived from Oleic Acid

    BIAN Peng-Cheng1ZHANG Da-Peng1GANG Hong-Ze1LIU Jin-Feng1MU Bo-Zhong1,2YANG Shi-Zhong1,*
    (1State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry,East China University of Science and Technology,Shanghai 200237,P.R.China;2Shanghai Collaborative Innovation Center for Biomanufacturing Technology,Shanghai 200237,P.R.China)

    Bio-based surfactants have attracted increasing attention because they are made from renewable resources and have excellent surface/interfacial properties.In this study we prepared a novel bio-based branched alkylbenzene sulfonate surfactant by a four-step route using renewable oleic acids as starting materials.We evaluated the surface behavior,wettability,and biodegradability of our surfactant.The surfactant, 4-(1-heptadecyl)benzene sodium sulfonate(9ΦC17S),was synthesized using a facile four-step route involving alkylation,decarboxylation,sulfonation and neutralization,respectively.The chemical structure of 4-(1-heptadecyl)benzene sodium sulfonate was confirmed by infrared(IR)spectroscopy,electrospray ionization high resolution mass spectrometry(ESIHRMS)and1H nuclear magnetic resonance(1H NMR)spectroscopy. The surfactant demonstrated an excellent surface tension of 32.54 mN·m-1at the critical micelle concentration (CMC)of 317.5 mg·L-1and outstanding interfacial tension of~10-2mN·m-1at 8.36×104mg·L-1with 8.48×104mg·L-1Na2CO3.The surfactant also showed good biodegradability with an ultimate biodegradation score of 2.99.The surfactant had good wettability with an air/water/solid contact angle(θaverage)of 63.08°for a 0.500 g·L-19ΦC17S solution.This novel bio-based branched surfactant contributes to the structural diversity of biobased surfactants from renewable feedstock.

    Bio-based surfactant;Branched heptadecylbenzene sulfonate;Decarboxylation;Oleic acid; Renewable feedstock

    O647

    10.3866/PKU.WHXB201608231

    Received:May 23,2016;Revised:August 17,2016;Published online:August 23,2016.

    *Corresponding author.Email:meor@ecust.edu.cn;Tel:+86-21-64252063.

    The project was supported by the National Natural Science Foundation of China(51574125,21203063),National High Technology Research and Development Program of China(2013AA064403),and Foundation of the Ministry of Education of China for Outstanding Young Teachers in University(WJ1514313).

    國家自然科學基金(51574125,21203063),國家高技術研究發(fā)展計劃項目(863)(2013AA064403)及國家教育部高等學校優(yōu)秀青年教師研究基金(WJ1514313)資助

    猜你喜歡
    烷基苯磺酸鈉支鏈
    驅油用烷基苯的組成分析
    臭氧護理皮支鏈皮瓣200例觀察分析
    微反應器中十二烷基苯液相SO3磺化過程
    卵內注射支鏈氨基酸對雞胚胎生長發(fā)育和孵化時間的影響
    飼料博覽(2015年4期)2015-04-05 10:34:14
    3UPS-S并聯機構單支鏈驅動奇異分析
    丹參酮 IIA 磺酸鈉注射液對造影劑引起腎臟損害的作用
    丹參酮ⅡA磺酸鈉注射液治療室性早搏療效觀察(附18例報告)
    芭蕉芋支鏈淀粉的結構表征與流變學特性分析
    食品科學(2013年19期)2013-03-11 18:27:27
    脂肪酸甲酯磺酸鈉在餐具洗滌中的復配性能研究
    直鏈烷基苯的未來
    亚洲精品久久成人aⅴ小说| 999久久久国产精品视频| 69精品国产乱码久久久| 99国产综合亚洲精品| 午夜激情av网站| 黄片大片在线免费观看| 精品国产一区二区三区四区第35| 咕卡用的链子| 女人被狂操c到高潮| 少妇裸体淫交视频免费看高清 | av电影中文网址| 成人三级做爰电影| 在线观看免费日韩欧美大片| 久久精品国产清高在天天线| 悠悠久久av| 看黄色毛片网站| 制服诱惑二区| 亚洲精品中文字幕一二三四区| 成年动漫av网址| 免费在线观看影片大全网站| 人妻丰满熟妇av一区二区三区 | 露出奶头的视频| 精品一区二区三区视频在线观看免费 | 精品一区二区三区四区五区乱码| 亚洲精品国产精品久久久不卡| 亚洲专区中文字幕在线| 国产精品久久久久成人av| 黄片大片在线免费观看| 亚洲第一av免费看| 亚洲一区二区三区不卡视频| 日本wwww免费看| 99国产综合亚洲精品| 日韩欧美国产一区二区入口| 又黄又爽又免费观看的视频| 大码成人一级视频| 热99re8久久精品国产| 天天操日日干夜夜撸| 90打野战视频偷拍视频| 91字幕亚洲| 亚洲一区中文字幕在线| 久久影院123| 99热国产这里只有精品6| 满18在线观看网站| 在线免费观看的www视频| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 视频区欧美日本亚洲| 欧美+亚洲+日韩+国产| 久久精品国产综合久久久| 极品人妻少妇av视频| 精品国产乱码久久久久久男人| 午夜福利视频在线观看免费| 国产精品乱码一区二三区的特点 | 国产精品电影一区二区三区 | 欧美人与性动交α欧美软件| 大码成人一级视频| 久久久久国内视频| 久久久久精品人妻al黑| 好男人电影高清在线观看| 精品国产国语对白av| 成年女人毛片免费观看观看9 | 欧美日韩亚洲综合一区二区三区_| 亚洲五月色婷婷综合| 日韩有码中文字幕| 久久狼人影院| 欧美 日韩 精品 国产| av国产精品久久久久影院| 女人精品久久久久毛片| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 熟女少妇亚洲综合色aaa.| 人成视频在线观看免费观看| 亚洲成人国产一区在线观看| 久久久久久人人人人人| 高清欧美精品videossex| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 老司机在亚洲福利影院| 99国产精品一区二区三区| 在线观看免费高清a一片| 午夜老司机福利片| 久久久久久久精品吃奶| 在线观看免费视频网站a站| 国产精品99久久99久久久不卡| av国产精品久久久久影院| 国产精品久久电影中文字幕 | 18禁美女被吸乳视频| 丁香欧美五月| 欧美日韩精品网址| 人人妻人人添人人爽欧美一区卜| e午夜精品久久久久久久| 久久久久久久精品吃奶| 亚洲久久久国产精品| 久久久国产欧美日韩av| a级毛片黄视频| 亚洲色图综合在线观看| 欧美精品一区二区免费开放| 亚洲男人天堂网一区| 久久久久久人人人人人| 欧美日韩瑟瑟在线播放| 9色porny在线观看| av片东京热男人的天堂| 桃红色精品国产亚洲av| 一二三四社区在线视频社区8| 动漫黄色视频在线观看| 精品少妇一区二区三区视频日本电影| 久久久国产成人精品二区 | 在线观看舔阴道视频| 操美女的视频在线观看| 国产亚洲精品久久久久5区| av视频免费观看在线观看| 午夜视频精品福利| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全电影3 | 999久久久国产精品视频| 国产一区二区三区视频了| 国产精品99久久99久久久不卡| 色综合婷婷激情| 久久ye,这里只有精品| 欧美日韩亚洲国产一区二区在线观看 | 搡老岳熟女国产| 美女视频免费永久观看网站| 久久久精品区二区三区| 日本黄色视频三级网站网址 | 亚洲成人免费电影在线观看| 欧美精品av麻豆av| 中文欧美无线码| 中文字幕人妻丝袜制服| 亚洲视频免费观看视频| 女人高潮潮喷娇喘18禁视频| 国产精品1区2区在线观看. | 下体分泌物呈黄色| 一级毛片精品| 法律面前人人平等表现在哪些方面| 日本一区二区免费在线视频| 亚洲七黄色美女视频| 成年人免费黄色播放视频| 在线视频色国产色| 在线观看www视频免费| 王馨瑶露胸无遮挡在线观看| 在线播放国产精品三级| 99久久精品国产亚洲精品| 大香蕉久久成人网| 天堂中文最新版在线下载| 99在线人妻在线中文字幕 | 欧美日韩乱码在线| 天堂动漫精品| 黄片小视频在线播放| 黄片小视频在线播放| 日本黄色日本黄色录像| 国产精品久久久人人做人人爽| 国产精品99久久99久久久不卡| 看免费av毛片| 在线av久久热| 午夜精品在线福利| 成人手机av| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区三区综合在线观看| 精品人妻在线不人妻| 日韩 欧美 亚洲 中文字幕| videos熟女内射| 人人妻,人人澡人人爽秒播| 丝袜在线中文字幕| 欧美 日韩 精品 国产| 999久久久精品免费观看国产| a级毛片黄视频| 免费在线观看视频国产中文字幕亚洲| 亚洲色图av天堂| 香蕉久久夜色| 中文字幕最新亚洲高清| 成人18禁高潮啪啪吃奶动态图| 99热网站在线观看| 免费久久久久久久精品成人欧美视频| 日本vs欧美在线观看视频| 热99re8久久精品国产| 日韩大码丰满熟妇| 亚洲aⅴ乱码一区二区在线播放 | 老司机亚洲免费影院| 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一小说 | 欧美成人免费av一区二区三区 | 狂野欧美激情性xxxx| 男人的好看免费观看在线视频 | www.熟女人妻精品国产| 黄色怎么调成土黄色| 看黄色毛片网站| 正在播放国产对白刺激| 淫妇啪啪啪对白视频| 久久 成人 亚洲| 好看av亚洲va欧美ⅴa在| 97人妻天天添夜夜摸| 久久精品亚洲熟妇少妇任你| 黄色a级毛片大全视频| 久久ye,这里只有精品| 精品欧美一区二区三区在线| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 亚洲国产中文字幕在线视频| 国产亚洲欧美98| 欧美大码av| 日韩欧美免费精品| 日韩欧美一区二区三区在线观看 | 亚洲成av片中文字幕在线观看| 久久中文看片网| 欧美老熟妇乱子伦牲交| 两个人免费观看高清视频| 日本欧美视频一区| 欧美在线黄色| 国产一区在线观看成人免费| 亚洲第一青青草原| 80岁老熟妇乱子伦牲交| 人妻一区二区av| 99国产综合亚洲精品| 69av精品久久久久久| 国产精品偷伦视频观看了| 亚洲色图 男人天堂 中文字幕| 亚洲av第一区精品v没综合| 91av网站免费观看| 狠狠婷婷综合久久久久久88av| 亚洲av日韩精品久久久久久密| 日韩三级视频一区二区三区| 日韩三级视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 一个人免费在线观看的高清视频| 国产av精品麻豆| 久久中文字幕一级| 母亲3免费完整高清在线观看| 久久中文字幕一级| 高清黄色对白视频在线免费看| 后天国语完整版免费观看| 国产成人免费观看mmmm| 最新美女视频免费是黄的| 美女扒开内裤让男人捅视频| 黄色丝袜av网址大全| 日日爽夜夜爽网站| 欧美乱色亚洲激情| 免费在线观看视频国产中文字幕亚洲| 一进一出抽搐gif免费好疼 | 欧美激情久久久久久爽电影 | tocl精华| 久久九九热精品免费| 交换朋友夫妻互换小说| 男女免费视频国产| 久久久久久久精品吃奶| 国产黄色免费在线视频| 免费观看a级毛片全部| 最新的欧美精品一区二区| 久久性视频一级片| 美女 人体艺术 gogo| 久久久久视频综合| 国产精品一区二区免费欧美| 黄色a级毛片大全视频| 黑人猛操日本美女一级片| 丰满人妻熟妇乱又伦精品不卡| 国内久久婷婷六月综合欲色啪| 午夜成年电影在线免费观看| 成熟少妇高潮喷水视频| 制服人妻中文乱码| 国产99久久九九免费精品| 在线观看免费高清a一片| 亚洲专区字幕在线| 欧美激情久久久久久爽电影 | av视频免费观看在线观看| 99国产综合亚洲精品| 男人操女人黄网站| 免费久久久久久久精品成人欧美视频| 午夜日韩欧美国产| 免费在线观看视频国产中文字幕亚洲| 在线观看免费视频日本深夜| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 69av精品久久久久久| 大香蕉久久成人网| 久99久视频精品免费| 人妻丰满熟妇av一区二区三区 | 国产亚洲一区二区精品| 波多野结衣av一区二区av| 国产欧美日韩精品亚洲av| www.999成人在线观看| 99在线人妻在线中文字幕 | 亚洲avbb在线观看| 亚洲情色 制服丝袜| 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 天天影视国产精品| 成年动漫av网址| 无限看片的www在线观看| 精品少妇一区二区三区视频日本电影| 建设人人有责人人尽责人人享有的| 国产主播在线观看一区二区| 国产黄色免费在线视频| 老司机福利观看| 成年版毛片免费区| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 母亲3免费完整高清在线观看| www.精华液| av电影中文网址| 成人特级黄色片久久久久久久| 19禁男女啪啪无遮挡网站| 又大又爽又粗| 久久久久久久久免费视频了| 超碰97精品在线观看| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 黄色a级毛片大全视频| 欧美 日韩 精品 国产| 国产欧美日韩精品亚洲av| 成人黄色视频免费在线看| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 欧美精品人与动牲交sv欧美| 成人影院久久| 亚洲欧美激情在线| 午夜福利,免费看| tocl精华| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 国产精品一区二区在线观看99| 人人妻人人澡人人看| 真人做人爱边吃奶动态| 久久精品国产a三级三级三级| 美女高潮喷水抽搐中文字幕| 18在线观看网站| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 日韩三级视频一区二区三区| 国产麻豆69| 午夜福利影视在线免费观看| 色在线成人网| 精品福利永久在线观看| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女 | 中文字幕高清在线视频| 国产野战对白在线观看| а√天堂www在线а√下载 | 99re在线观看精品视频| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 老汉色∧v一级毛片| 国产欧美亚洲国产| 久久久精品国产亚洲av高清涩受| 国产在视频线精品| 黄色 视频免费看| 精品一区二区三区av网在线观看| 欧美国产精品一级二级三级| 真人做人爱边吃奶动态| 久热爱精品视频在线9| 在线视频色国产色| 在线天堂中文资源库| 国产成人精品久久二区二区91| 99香蕉大伊视频| 午夜成年电影在线免费观看| 中文字幕精品免费在线观看视频| 老熟女久久久| 国产午夜精品久久久久久| 男人操女人黄网站| 我的亚洲天堂| 国产99白浆流出| 亚洲成av片中文字幕在线观看| 麻豆av在线久日| a在线观看视频网站| 欧美黄色淫秽网站| 99香蕉大伊视频| 男女高潮啪啪啪动态图| 国产激情欧美一区二区| 亚洲专区国产一区二区| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 国产有黄有色有爽视频| 日本一区二区免费在线视频| 国产精品一区二区免费欧美| 国产精品一区二区精品视频观看| 亚洲美女黄片视频| 老司机影院毛片| 国产成人一区二区三区免费视频网站| 一级毛片精品| 久久久久久久国产电影| 大香蕉久久网| 午夜精品久久久久久毛片777| 正在播放国产对白刺激| 久久国产精品影院| 亚洲精品一二三| 99国产精品一区二区蜜桃av | 最近最新中文字幕大全电影3 | 国产一区有黄有色的免费视频| 国产成人精品无人区| av天堂久久9| 久久人人97超碰香蕉20202| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全电影3 | 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 欧美激情久久久久久爽电影 | 咕卡用的链子| av视频免费观看在线观看| 国产熟女午夜一区二区三区| 咕卡用的链子| 宅男免费午夜| 99久久国产精品久久久| 国产精品98久久久久久宅男小说| 久久久国产精品麻豆| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 99国产精品一区二区蜜桃av | 宅男免费午夜| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 天天操日日干夜夜撸| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 一个人免费在线观看的高清视频| 亚洲成a人片在线一区二区| 高清毛片免费观看视频网站 | 国产精品亚洲一级av第二区| 男人舔女人的私密视频| avwww免费| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 亚洲欧美一区二区三区久久| 久久精品国产a三级三级三级| 精品久久久久久,| 狠狠狠狠99中文字幕| 如日韩欧美国产精品一区二区三区| 午夜老司机福利片| 一级毛片高清免费大全| 伊人久久大香线蕉亚洲五| 99精品欧美一区二区三区四区| 国产色视频综合| 黑人欧美特级aaaaaa片| 日本黄色视频三级网站网址 | 日本vs欧美在线观看视频| 女人精品久久久久毛片| 老汉色∧v一级毛片| 日韩欧美三级三区| 18在线观看网站| 国产在线精品亚洲第一网站| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 久久久国产成人免费| 国产精品国产高清国产av | 51午夜福利影视在线观看| 精品国产一区二区久久| 久久午夜综合久久蜜桃| 999久久久国产精品视频| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 国产99白浆流出| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 18禁观看日本| 老司机影院毛片| 大片电影免费在线观看免费| 侵犯人妻中文字幕一二三四区| 日韩欧美三级三区| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲 | 黄色成人免费大全| 国产一区二区激情短视频| 女人精品久久久久毛片| 精品福利观看| 99在线人妻在线中文字幕 | 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区| 大码成人一级视频| 国产99白浆流出| 露出奶头的视频| 国产成人啪精品午夜网站| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 99热网站在线观看| 激情在线观看视频在线高清 | 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 国产一区在线观看成人免费| 桃红色精品国产亚洲av| 日日爽夜夜爽网站| 久久国产乱子伦精品免费另类| 久久亚洲真实| 国产日韩一区二区三区精品不卡| 亚洲全国av大片| 51午夜福利影视在线观看| 制服人妻中文乱码| 男人舔女人的私密视频| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 国产成人欧美| 成人亚洲精品一区在线观看| 亚洲精品国产一区二区精华液| 老汉色∧v一级毛片| 精品免费久久久久久久清纯 | 国产一区有黄有色的免费视频| 91国产中文字幕| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 在线看a的网站| 两个人看的免费小视频| 国产日韩欧美亚洲二区| 一级片免费观看大全| 成人影院久久| 日本五十路高清| 一边摸一边抽搐一进一小说 | 久久久精品免费免费高清| 无人区码免费观看不卡| 精品福利观看| 国产精品.久久久| 国产精品 欧美亚洲| 精品电影一区二区在线| cao死你这个sao货| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 久久性视频一级片| 无限看片的www在线观看| 大香蕉久久网| 免费不卡黄色视频| 国产精品永久免费网站| 久久人人97超碰香蕉20202| 国产av又大| 国产精品亚洲一级av第二区| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 91精品三级在线观看| 欧美另类亚洲清纯唯美| 在线视频色国产色| 热99re8久久精品国产| 女人被躁到高潮嗷嗷叫费观| 中国美女看黄片| 国产成+人综合+亚洲专区| 亚洲精品粉嫩美女一区| 两个人看的免费小视频| av视频免费观看在线观看| 久久精品国产99精品国产亚洲性色 | 热99re8久久精品国产| 美女视频免费永久观看网站| 超色免费av| 曰老女人黄片| 成在线人永久免费视频| 亚洲精品av麻豆狂野| 国产欧美日韩精品亚洲av| av天堂久久9| 日韩欧美一区二区三区在线观看 | 午夜日韩欧美国产| 精品一区二区三区av网在线观看| 国产精品一区二区精品视频观看| 亚洲av熟女| 看黄色毛片网站| 人妻 亚洲 视频| a级片在线免费高清观看视频| 免费不卡黄色视频| 国产99白浆流出| 视频在线观看一区二区三区| 99国产精品一区二区三区| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区久久| 宅男免费午夜| www.熟女人妻精品国产| tube8黄色片| 免费在线观看亚洲国产| 国产99白浆流出| 高清毛片免费观看视频网站 | 视频区欧美日本亚洲| 久久影院123| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 黄片大片在线免费观看| 一级a爱视频在线免费观看| 久久人妻熟女aⅴ| av国产精品久久久久影院| 国产精品免费一区二区三区在线 | 91老司机精品| 久久国产精品男人的天堂亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 亚洲人成电影观看| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 色综合欧美亚洲国产小说| 久久国产精品影院| 99精国产麻豆久久婷婷| 久久影院123| 丝瓜视频免费看黄片| 高清黄色对白视频在线免费看| 黄片播放在线免费| 日韩成人在线观看一区二区三区| 国产精品成人在线| 91精品国产国语对白视频| 午夜影院日韩av| 丝袜人妻中文字幕| 精品高清国产在线一区| 久久精品熟女亚洲av麻豆精品| 久久香蕉激情| 欧美日韩精品网址| 国产亚洲欧美在线一区二区| av网站在线播放免费| 国产亚洲一区二区精品| 午夜福利在线免费观看网站| 国产高清国产精品国产三级| 婷婷精品国产亚洲av在线 |