• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    丁酸甲酯單分子解離的非諧振效應(yīng)

    2016-12-29 05:42:36宋立國余憶玄林圣賢
    物理化學(xué)學(xué)報 2016年11期
    關(guān)鍵詞:丁酸甲酯常數(shù)

    丁 楊 宋立國 余憶玄 姚 麗,* 林圣賢

    (1大連海事大學(xué)輪機(jī)工程學(xué)院,遼寧大連116026;2臺灣交通大學(xué)應(yīng)用化學(xué)系,臺灣新竹10764)

    丁酸甲酯單分子解離的非諧振效應(yīng)

    丁 楊1宋立國1余憶玄1姚 麗1,*林圣賢2

    (1大連海事大學(xué)輪機(jī)工程學(xué)院,遼寧大連116026;2臺灣交通大學(xué)應(yīng)用化學(xué)系,臺灣新竹10764)

    使用MP2/6-311++G(2d,2p)方法和基組,計算了丁酸甲酯單分子解離反應(yīng)體系詳細(xì)的勢能面。應(yīng)用RRKM理論,計算了在1000-5000 K的溫度范圍內(nèi)的正則系綜的速率常數(shù)。與此同時,在微正則系綜下,我們計算了溫度為1000-5000 K對應(yīng)的能量從451.92到1519.52 kJ·mol-1的速率常數(shù)。計算結(jié)果表明反應(yīng)通道2、4和5的非諧振效應(yīng)比較明顯。因此對于丁酸甲酯單分子解離反應(yīng)體系來說其非諧振效應(yīng)是不能忽視的。

    非諧振效應(yīng);單分子解離反應(yīng);RRKM理論;速率常數(shù)

    1 Introduction

    The utilization of petroleum-based fuels has been associated in recent years with various social and environmental issues including energy and national securities and air pollution by net CO2emissions which has been linked to climate change1.The extensive consumption of these fuels has motivated researchers to evaluate alternative solutions.In this sense,biofuels are alternative fuels suitable for being used in the current transport sector infrastructure,since they have similar physical properties than conventional petroleum-derived fossil fuels2.Biodiesel,consisting of long chain alkyl(e.g.,methyl,ethyl,propyl)esters,has emerged as a viable alternative to petroleum-based fuels.

    Direct studies of typical biodiesel fuels(i.e.,methyl esters of fatty acids)are currently beyond our capabilities since the laboratory experiments would have to be carried out with complex and largely involatile mixtures.Methyl butanoate(MB),whose formula is CH3CH2CH2C(=O)OCH3,has been widely used as a biodiesel surrogate since it essentially possesses the chemical structure of long-chain alkyl esters including the methyl ester termination and a shorter,but similar,alkyl chain.Thus it is convenient to develop detailed reaction mechanisms for MB at a manageable size3-14.

    In this follow-up paper,the rate constants for the decomposition reaction of MB as well as the transition state were calculated according to Rice-Ramsperger-Kassel-Marcus(RRKM)theory. Additionally the anharmonic effect was discussed herein.The Morse oscillators(MOs)were employed in the calculation for convenience.The RRKM theory15was previously applied to calculate the rate constants and the microcanonical and canonical cases showing similar results than those reported herein.

    2 Calculation methodology and computational details

    2.1 Ab initio calculations

    The MP2 functional in conjunction with the 6-311++G(2d,2p) basis set were used to explore the geometry optimization of the reactants and transition states(TS)for the most important MB breakdown pathways.The vibrational frequency calculations were used to identify all of the stationary points as either minima(i.e., zero imaginary frequency)or transition states(i.e.,one imaginary frequency).Intrinsic reaction coordinate16(IRC)calculations at the same level were traced to confirm that the TS corresponded with the minima along the reaction pathways.Vibrational harmonic and anharmonic frequencies were also calculated at the same level. With the aim to obtain more accurate and reliable data,the singlepoint energies(SPEs)were recalculated by employing the CCSD (T)method with the 6-311++G(2d,2p)basis set.All the electronic structure calculations were carried out using the Gaussian 09 suite of programs17.

    2.2 Microcanonical case

    According to the famous equation of RRKM theory18,the microcanonical unimolecular reaction rate k(E)for a reaction at a given energy E and with an activation energy E≠can be expressed as follow:

    where σ is the reaction degeneracy(herein σ=1),h is Plank′s constant,ρ(E)represents the total density of the states of the reactant at energy E,and W≠(E-E≠)stands for the total number of states for the transition state with an excess energy lower or equal to E-E≠,E is the total energy and E≠represents the activation energy.

    The W(E)and ρ(E)function of can be generally defined by their respective definitions19-21:

    H(E-Ei)denotes Heaviside function while Eirepresents the energy levels.

    The Laplace transformation was used in the calculation of W(E) and ρ(E):

    where β=1/kT,k is Boltzmann′s constant,T is the system temperature in K,and Q(β)is the partition function of the system. Therefore,in case Q(β)is acquired,with the use of above equations,W(E)and ρ(E)can be determined by employing the inverse Laplace transformation.

    2.3 Canonical case

    For a canonical system,the rate constant k(T)for the decomposition reaction can be calculated by the well-known equation of the transition state theory(TST)19,21-23.

    where Q(T)and Q≠(T)represent the partition functions of the reactant and the activated complex,respectively.Thus:

    where N stands for the number of the vibrational modes of the reactant.For each mode,qi≠(T)and qi(T)represent the vibrational partition functions of the activated complex and the reactant molecule for the ith single mode,respectively.

    The aforementioned discussion demonstrates that the partition function has a significant weight in the calculation of k(E)and k(T). To calculate the partition function,the MO was taken as a simple form.And the energy of the ith vibrational mode can be calculated as follows:

    where niand ωiare the vibrational quantum number and the frequency of the ith vibrational mode,respectively.χistands for the MO parameter and can be expressed as:

    where Direpresents the well depth of the MO.In this study,χifor various molecules were obtained from the anharmonic frequencies which were calculated by the Gaussian 09 program.According to the RRKM theory,all the vibrational modes were treated as anharmonic MO.In the calculation of the density of states ρ(E),the harmonic and anharmonic degrees of freedom(DOF)of the reactant were calculated as 45(3N-6,N=17).For calculating the total number of states W(E),44 DOF were obtained excluding the harmonic and anharmonic imaginary frequencies for the transition states.The harmonic frequencies and χiwere chosen as effective dissociation energy parameters for the Morse potential in the calculations for each vibrational mode.

    3 Results and discussion

    The anharmonic and harmonic rate constants for six reaction channels were calculated for MB:

    Fig.1 depicts with an illustration of the potential energy surfaces for the decomposition reaction(labeled as pathways 1-6)computed at the MP2/6-311++G(2d,2p)level of theory.The barrier heights were also reported with the CCSDT/6-311++G(2d,2p) method.The geometric and energetic parameters of the reactant and transition states for the unimolecular dissociation of the MB are summarized in Table 1.The optimized geometries of the reactants,transition states and products were optimized with a different method and levels as compared to Ref.24.The energy barrier of the decomposition reaction was higher as compared to previous work24.

    As clearly seen from Fig.1,that CH3CH2CH2OOCH3reacts along six pathways which could be divided into three species:(i) C(8)―H(9)scission:H(9)from C(8)transfers to O(2);(ii)C(1)―O(3)scission,H(10)from C(1)transfers to O(3)or H(5)from C(4)transfers to C(1);(iii)C(8)―C(11)scission while H(15)from C(14)transfers to C(8)or O(2)or C(8)―C(1)scission and H(12) from C(11)transfers to C(1).

    3.1C―H scission

    To calculate the above mentioned energy as a function of the temperature,we applied the method by means of the relation between the total energy of a microcanonical system and the temperature of a canonical system18.

    The energy in the microcanonical system can be calculated by equation(18),and it is listed in Table 2.

    The MB reaction passes though TS2 and produces C2H5CH=C(OH)OCH3.The anharmonic and harmonic rate constants for the canonical system are summarized in Table 2 at the temperatures ranging from 1000 to 5000 K,with the energies being lower than the calculated activation energy,(i.e.317.67 kJ·mol-1).Thus,the rate constant in a microcanonical system at higher energy have to be calculated.Table 3 summarizes the harmonic and anharmonic rate constants of the microcanonical system as a function of the corresponding energy.

    Fig.1 Potential energy surface(PES)schematic of the CH3CH2CH2C(O)OCH3dissociation reactions

    Table 1 Parameters used in the rate constant calculations obtained from the MP2/6-311++G(2d,2p)calculations

    From Table 2 and Fig.2,it is clear that both the harmonic and anharmonic rate constants increased with the temperature increasing.The rate constants for the reaction(Table 2)were plotted in Fig.2.The harmonic(from 2.35×10-4to 1.06×1010s-1)and the anharmonic rate constants(from 5.46×10-4to 1.34×1011s-1) were found to change with the temperature(from 1000 to 5000 K, respectively).The gap between anharnonic and harmonic rate constants changed with the increasing temperatures.When the temperature is 1000 K,the anharmonic rate constant(5.46×10-4s-1)is 2.20 times more than the harmonic one(2.35×10-4s-1),and the anharmonic rate constant(1.34×1011s-1)is 12.64 times thanharmonic one(1.06×1010s-1)at 5000 K.The harmonic and the anharmonic rate constants increased with the total energy for the microcanonical system(Table 3 and Fig.2).The harmonics rate constants(from 0.51×102to 0.56×1010s-1)and the anharmonic rate constants(from 1.46×102to 6.36×1010s-1)changed with the increasing energy(from 452.05 to 1519.56 kJ·mol-1).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratios are 2.86 and 11.36 at 452.05 and 1519.56 kJ·mol-1,respectively).The ratio difference of canonical rate constant was compared with that of the microcanonical case.An increment of temperature or total energy resulted in significant anharmonic effects in both canonical and microcanonical systems.And there was a similar conclusion in Ref.25.

    Table 2 Rate constants of the TS2 pathway at different temperatures for the canonical system

    Table 3 Rate constants of the TS2 pathway at different energies for the microcanonical system

    3.2C―O scission and C―H scission

    The C―O scission can react with H from methyl group to O or C to form methanol and ketene or form formaldehyde and butyraldehyde.Two pathway reactions were denoted as TS3 and TS4.Similar to the TS2,the energy in the microcanonical system can be calculated through equation(18).The anharmonic and harmonic rate constants for the canonical system are summarized in Table 4 at temperatures ranging from 1000 to 5000 K.The energies are lower than the calculated activation energy(305.64 and 318.51 kJ·mol-1).Thus,the rate constants in a microcanonical system at higher energy values have to be calculated.Table 5 illustrates the harmonic and anharmonic rate constants of the microcanonical system with the corresponding energy.

    Fig.2 Microcanonical and canonical rate constants for TS2

    Similar to the TS2,it is clear that both the harmonic and anharmonic rate constants increase with the temperature for the reaction of TS3 and TS4(Table 4 and Figs.3-4).Both of the harmonic and anharmonic rate constants of TS3 and TS4 increasedsharply while increasing temperature from 1000 to 5000 K.The gap between anharnonic and harmonic rate constants were found to change with the temperatures(anharmonic/harmonic rate constant ratio=2.38,2.05 at 1000 K;5.86,30.67 at 5000 K,for TS3 and TS4,respectively).The harmonic and the anharmonic rate constants increased with the total energy(from 452.05 to 1519.56 kJ·mol-1)for the microcanonical system(Table 5 and Figs.3 and 4).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratio=3.12,2.53 at 452.05 kJ·mol-1;6.46,26.63 at 1519.56 kJ·mol-1,for TS3 and TS4,respectively).The ratio differences of in the anharmonic and the harmonic rate constants in the canonical and microcanonical showed nearly similar results, Thus,with an increasing temperature or total energy,the anharmonic effect were not very pronounced in both canonical and microcanonical systems for TS3,more intense in both canonical and microcanonical systems for TS4.

    Table 4 Rate constants of TS3 and TS4 pathways at different temperatures for the canonical system

    Table 5 Rate constants of TS3 and TS4 pathways at different energies for the microcanonical system

    Fig.3 Microcanonical and canonical rate constants for TS3

    3.3C―C scission and C―H scission

    The C―C scission can react with H from the methyl group to O or C to form ethene and methyl acetate,or propene and methyl, or ethene and 1-methoxy-ethenol.The three pathway reactions can be denoted as TS1,TS5 and TS6.The anharmonic and harmonic rate constants for the canonical system were summarized in Table 6 at the temperatures ranging from 1000 to 5000 K.The energies obtained were lower than the calculated activation energy(287.63, 415.50 and 441.08 kJ·mol-1).Thus,the rate constants at higher energy have to be calculated for the microcanonical system.

    Fig.4 Microcanonical and canonical rate constants for TS4

    Similar to theTS2,the reactions ofTS1,TS5 andTS6 proceeded such that both the harmonic and anharmonic rate constants increased with the temperature(Table 6 and Figs.5-7).The harmonics and anharmonic rate constants of TS1,TS5 and TS6 increased sharply while increasing temperature from 1000 to 5000 K.The gap between the anharnonic and harmonic rate constants changed with the temperature(anharmonic/harmonic rate constantratio=2.13,2.92,0.88 at 1000 K;6.49,32.00,1.30 at 5000 K,for TS1,TS5 and TS6,respectively).The harmonic and the anharmonic rate constants increased with the total energy from 452.05 to 1519.56 kJ·mol-1for the microcanonical system(Table 7 and Figs.5-7).The gap between the anharnonic and harmonic rate constants changed with the total energy(anharmonic/harmonic rate constant ratio=2.80,1.69,1.62 at 452.05 kJ·mol-1;7.49, 26.20,1.36 at 1519.56 kJ·mol-1,for TS1,TS5 and TS6,respectively).The ratio difference between the anharmonic and the harmonic rate constants in the canonical system was lower than that in the microcanonical system.Thus,the anharmonic effect was more intense in both canonical and microcanonical systems for TS5,and weaker in both canonical and microcanonical systems for TS1 and TS6.

    Table 6 Rate constants of TS1,TS5 and TS6 pathways at different temperatures for the canonical system

    Fig.5 Microcanonical and canonical rate constants for TS1

    Additionally,we employed the following formula to obtain the tunneling probabilities for the unimolecular dissociation of MB26:

    where

    here,ωbis the magnitude of the imaginary frequency,V0is the barrier height relative to the reactant,and V1is the barrier height relative to the products.

    Fig.6 Microcanonical and canonical rate constants for TS5

    Fig.7 Microcanonical and canonical rate constants for TS6

    Table 7 Rate constants of TS1,TS5 and TS6 pathways at different energies for the microcanonical system

    Table 8 Tunneling probabilities for the CH3CH2CH2C(O)OCH3dissociation reactions

    The tunneling probabilities increased with the total energy (Table 8).The values for the decomposition of MB in the barrier were obtained by MP2 methods.Note that the tunneling effect for the decomposition of MB was very small,which can be neglected in this work.

    4 Conclusions

    The anharmonic and harmonic rate constants of the unimolecular decomposition reaction of MB were calculated by using the RRKM theory.The reaction took place along with three kinds of pathways,including six reaction channels:(i)C―H scission: H from C transfers to O;(ii)C―O scission,H from C transfers to O or C;(iii)C―C scission and while H from C transfers to C or O.The rate constants of the reaction were evaluated by using the MP2/6-311++G(2d,2p)and CCSD(T)/6-311++G(2d,2p)methods in the temperature range of 1000-5000 K.TS1 showed the lowest energy barrier,and this reaction could thus be achieved.TS6 showed the highest energy barrier such that this reaction could not be reached.The anharmonic effect was represented in the Figs.2-7 and Tables 2-7.The difference between the harmonic and anharmonic rate constants increased with both the temperature and energy level.The anharmonic of the title reaction was also examined.Thus,the anharmonic rate constants were higher than the harmonic ones in both the microcanonical and the canonical systems,especially at high total energies and temperatures.The anharmonic effect played an important role in the unimolecular dissociation,such that the anharmonic effect could not be neglected.For the different models and vibrational states,the total number of states and density of states were counted,which affected the dissociation rate constant.For the first kind of reaction, it was a process of isomerization.With an increasing temperature or total energy,the anharmonic effect were more intense in bothcanonical and microcanonical systems for TS2.For the final kind of reaction,when one of the product was ethene for TS1 and TS6, with an increasing temperature or total energy,the anharmonic effect was not very pronounced in both canonical and microcanonical systems.These computational studies would be useful in providing a further insight into the chemical kinetics of MB,and further experimental studies are expected to be carried out with this reaction.

    (1) Solomon,S.;Qin,D.;Manning,M.;Chen,Z.;Marquis,M.; Averyt,K.B.;Tignor M.;Miller,H.L.“IPCC,Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the FourthAssessment Report of the Intergovernmental Panel on Climate Change”;Cambridge University Press:Cambridge and New York,2007;p 996.

    (2) Robert,L.H.;Roger,B.;Robert,W.AIChE J.2006,52(1),2. doi:10.1002/aic.10747

    (3) Gail,S.;Thomson,M.J.;Sarathy,S.M.;Syed,S.A.;Dagaut, P.;Diévart,P.;Marchese,A.J.;Dryer,F.L.Proc.Combust.Inst 2007,31(1),305.doi:10.1016/j.proci.2006.08.051

    (4) Metcalfe,W.K.;Dooley,S.;Curran,H.J.;Simmie,J.M.;El-Nahas,A.M.;Navarro,M.V.J.Phys.Chem.A 2007,111(19), 4001.doi:10.1021/jp067582c

    (5) Huynh,L.K.;Violi,A.J.Org Chem.2008,73(1),94. doi:10.1021/jo701824n

    (6) Huynh,L.K.;Lin,K.C.;Violi,A.J.Phys.Chem.A 2008,112 (51),13470.doi:10.1021/jp804358r

    (7) Westbrook,C.K.;Pitz,W.J.;Curran,H.J.J.Phys.Chem.A 2006,110(21),6912.doi:10.1021/jp056362g

    (8) Herbinet,O.;Pitz,W.J.;Westbrook,C.K.Combustion and Flame 2008,154(4),507.doi:10.1016/j. combustflame.2008.03.003

    (9) Hill,J.;Nelson,E.;Tilman,D.;Polasky,S.;Tiffany,D.Proc. Natl.Acad.Sci.2006,103(30),11206.doi:10.1073/ pnas.0604600103

    (10) Farooqa,A.;Davidson,D.F.;Hanson,R.K.;Huynh,L.K.; Violi,A.Proc.Combust.Inst.2009,32,247.doi:10.1016/j. proci.2008.06.084

    (11) Dooley,S.;Curran,H.J.;Simmie,J.M.Combustion and Flame 2008,153(1-2),2.doi:10.1016/j.combustflame.2008.01.005

    (12) Fisher,E.M.;Pits,W.J.;Curran,H.J.;Westbrook,C.K.Proc. Combust.Inst.2000,28,1579.

    (13) Ali,M.A.;Violi,A.J.Org.Chem.2013,78(12),5898. doi:10.1021/jo400569d

    (14) Huynh,L.K.;Violi,A.J.Org.Chem.2008,73(1),94. doi:10.1021/jo701824n

    (15) (a)Yao,L.;Mebel,A.M.;Lu,H.F.;Neusser,H.J.;Lin,S.H. J.Phys.Chem.A 2007,111(29),6722.doi:10.1021/jp069012i (b)Yao,L.;Liu,Y.L.;Lin,S.H.Mod.Phys.Lett.B 2008,22 (31),3043.doi:10.1142/S0217984908017552 (c)Yao,L.;Lin,S.H.Sci.China.Ser.B 2008,51(12),1146. doi:10.1007/s11426-008-0125-1 (d)Yao,L.;He,R.X.;Mebel,A.M.;Lin,S.H.Chem.Phys. Lett.2009,470(4-6),210.doi:10.1016/j.cplett.2009.01.074 (e)Shao,Y.;Yao,L.;Lin,S.H.Chem.Phys.Lett.2009,478 (4-6),277.doi:10.1016/j.cplett.2009.07.051 (f)Yao,L.;Mebel,A.M.;Lin,S.H.J.Phys.Chem.A 2009,113 (52),14664.doi:10.1021/jp9044379 (g)Shao,Y.;Yao,L.;Mao,Y.C.;Zhong,J.J.Chem.Phys.Lett. 2010,501(1-3),134.doi:10.1016/j.cplett.2010.10.041 (h)Gu,L.Z.;Yao,L.;Shao,Y.;Yung,K.;Zhong,J.J.J.Theor. Comput.Chem.2010,9(1),813.doi:10.1142/ S0219633610006006 (i)Gu,L.Z.;Yao,L.;Shao,Y.;Liu,W.;Gao,H.Mol.Phys. 2011,109(16),1983.doi:10.1080/00268976.2011.602648 (j)Li,Q.;Xia,W.W.;Yao,L.;Shao,Y.Can.J.Chem.2012,90 (10),186.doi:10.1139/v11-137 (k)Li,Q.;Yao,L.;Shao,Y.CheM 2012,2(12),1. doi:10.5618/chem.2012.v2.n1.1 (l)Li,Q.;Yao,L.;Shao,Y.;Yang,K.J.Chin.Chem.Soc.2014, 61(3),309.doi:10.1002/jccs.201300277

    (16) Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.1989,90(4). 2154.doi:10.1063/1.456010

    (17) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09, Revision C.02;Gaussian,Inc.:Wallingford,CT,2009.

    (18) Steinfeld,J.I.;Francisco,J.S.;Hase,W.L.Chemical Kinetics and Dynamic;Prentice-Hall:Englewood Cliffs,NJ,1989.

    (19) (a)Forst,W.;Prasil,Z.J.Chem.Phys.1970,53(12),3065. doi:10.1063/1.1674450 (b)Forst,W.Chem.Rev.1971,71(4),339.doi:10.1021/ cr60272a001 (c)Forst,W.Theory of Unimolecular Reactions;Academic Press:New York,1973.

    (20) Hoare,M.R.;Ruijgrok,T.W.J.Chem.Phys.1970,52(1),113. doi:10.1063/1.1672655

    (21) Eyring,H.;Lin,S.H.;Lin,S.M.Basic Chemical Kinetics; AWiley-interscience Publication:New York,1980.

    (22) Baer,T.;Hase,W.L.Unimolecular Reaction Dynamic:Theory and Experiment;Oxford University Press:New York,1996.

    (23) Gilbert,R.G.;Smith,S.C.Theory of Unimolecular and Recombination Reactions;Blackwell:Oxford,1990.

    (24) El-Nahas,A.M.;Navarro,M.V.;Simmie,J.M.;Bosselli,J.W.; Curran,H.J.;Dooley,S.;Metcalfe,W.J.Phys.Chem.A 2007, 111(19),3727.doi:10.1021/jp067413s

    (25) Zhang,L.W.;Yao,L.;Li,Q.;Wang,G.Q.;Lin,S.H. Molecular Physics 2014,112(21),2853.doi:10.1080/ 00268976.2014.915066

    (26) Miller,W.H.J.Am.Chem.Soc.1979,101(23),6810. doi:10.1021/ja00517a004

    Anharmonic Effect of the Decomposition Reaction of Methyl Butanoate

    DING Yang1SONG Li-Guo1YU Yi-Xuan1YAO Li1,*LIN Sheng-Hsien2
    (1Marine Engineering College,Dalian Maritime University,Dalian 116026,P.R.China;2Department of Applied Chemistry,National Chiao-Tung University,Hsin-chu 10764,Taiwan,P.R.China)

    In this paper,we have used the MP2/6-311++G(2d,2p)method to conduct a detailed investigation of the potential energy surface for the unimolecular dissociation reaction of methyl butanoate(MB).We have also used the Rice-Ramsperger-Kassel-Marcus(RRKM)theory to calculate the rate constants of the canonical and microcanonical systems at temperatures and total energies ranging from 1000 to 5000 K and 451.92 to 1519.52 kJ·mol-1,respectively.The results indicated that there was an obvious anharmonic effect for the TS2, TS4 and TS5 pathways,and that this effect was too pronounced to be neglected for the unimolecular dissociation reactions of MB.

    Anharmonic effect;Unimolecular decomposition reaction;RRKM theory;Rate constant

    O643

    10.3866/PKU.WHXB201607212

    Received:March 16,2016;Revised:July 20,2016;Published online:July 21,2016.

    *Corresponding author.Email:yaoli@dlmu.edu.cn;Tel:+86-13130432506.

    The project was supported by the Major Research Plan of the National Natural Science Foundation of China(91441132)and Fundamental Research Funds for the Central Universities,China(3132016127,3132016326).

    國家自然科學(xué)基金(91441132)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(3132016127,3132016326)資助項(xiàng)目

    猜你喜歡
    丁酸甲酯常數(shù)
    丁酸梭菌的篩選、鑒定及生物學(xué)功能分析
    中國飼料(2021年17期)2021-11-02 08:15:10
    關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級數(shù)的系數(shù)
    復(fù)合丁酸梭菌制劑在水產(chǎn)養(yǎng)殖中的應(yīng)用
    HIV-1感染者腸道產(chǎn)丁酸菌F.prausnitzii和R.intestinalis變化特點(diǎn)
    傳染病信息(2021年6期)2021-02-12 01:52:14
    離子交換樹脂催化合成苯甲酸甲酯
    云南化工(2020年11期)2021-01-14 00:50:52
    幾個常數(shù)項(xiàng)級數(shù)的和
    萬有引力常數(shù)的測量
    丁酸乙酯對卷煙煙氣的影響
    煙草科技(2015年8期)2015-12-20 08:27:06
    K/γ-Al2O3催化丙酸甲酯合成甲基丙烯酸甲酯
    卡前列甲酯栓聯(lián)合鈣劑預(yù)防及治療產(chǎn)后出血的效果觀察
    国产私拍福利视频在线观看| 欧美日韩综合久久久久久| 亚洲人成网站高清观看| 国产精品国产高清国产av| 久久精品人妻少妇| 嫩草影院精品99| 亚洲四区av| 国产精品久久电影中文字幕| 成人综合一区亚洲| 中文字幕av在线有码专区| 黄色欧美视频在线观看| 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 亚洲精品456在线播放app| 亚洲丝袜综合中文字幕| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 一级av片app| kizo精华| 国产精品无大码| 舔av片在线| 久久精品夜色国产| 中文字幕av在线有码专区| 日韩欧美 国产精品| 亚洲精品色激情综合| 视频中文字幕在线观看| 成人无遮挡网站| 男人和女人高潮做爰伦理| 又爽又黄无遮挡网站| 精品人妻一区二区三区麻豆| 中文在线观看免费www的网站| 久久久精品大字幕| 亚洲性久久影院| 三级男女做爰猛烈吃奶摸视频| 91午夜精品亚洲一区二区三区| 亚洲精品,欧美精品| 亚洲av男天堂| 日韩强制内射视频| 六月丁香七月| 能在线免费观看的黄片| 中文字幕免费在线视频6| 最近最新中文字幕大全电影3| 中文资源天堂在线| 少妇人妻一区二区三区视频| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 国产精品一区二区三区四区免费观看| 99久久精品热视频| 精品欧美国产一区二区三| 国产成人a区在线观看| 日本免费在线观看一区| 国产一区二区在线av高清观看| 国产老妇伦熟女老妇高清| 亚洲人成网站高清观看| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 久久久久性生活片| 特级一级黄色大片| 免费观看a级毛片全部| 免费观看性生交大片5| 99久国产av精品| 少妇熟女aⅴ在线视频| 少妇被粗大猛烈的视频| 男人的好看免费观看在线视频| 国产在视频线在精品| 99视频精品全部免费 在线| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| av黄色大香蕉| 天堂中文最新版在线下载 | 麻豆av噜噜一区二区三区| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| 精品国产一区二区三区久久久樱花 | 黄片无遮挡物在线观看| 日本免费a在线| 婷婷色av中文字幕| 国产高清不卡午夜福利| 成年女人永久免费观看视频| 成年免费大片在线观看| 国产精品1区2区在线观看.| www.色视频.com| 日韩高清综合在线| 麻豆一二三区av精品| 久久久午夜欧美精品| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 一个人看视频在线观看www免费| 国产 一区精品| 亚洲av熟女| 99久久人妻综合| 亚洲中文字幕日韩| 国产亚洲最大av| 中文字幕精品亚洲无线码一区| 91精品一卡2卡3卡4卡| 麻豆久久精品国产亚洲av| 国国产精品蜜臀av免费| 一卡2卡三卡四卡精品乱码亚洲| 网址你懂的国产日韩在线| 菩萨蛮人人尽说江南好唐韦庄 | 午夜精品一区二区三区免费看| 亚洲成av人片在线播放无| 色综合色国产| 中文字幕av成人在线电影| 2021天堂中文幕一二区在线观| 99久久中文字幕三级久久日本| 精品免费久久久久久久清纯| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 国产免费男女视频| 22中文网久久字幕| 久久久久久伊人网av| 一级二级三级毛片免费看| 日本欧美国产在线视频| 亚洲国产精品久久男人天堂| 小蜜桃在线观看免费完整版高清| 精品国产露脸久久av麻豆 | 日韩精品有码人妻一区| 国产淫片久久久久久久久| 亚洲人成网站在线观看播放| 国产一区二区在线观看日韩| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| eeuss影院久久| 欧美成人一区二区免费高清观看| 看片在线看免费视频| 午夜福利在线在线| 好男人视频免费观看在线| 男女那种视频在线观看| 国产三级在线视频| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久 | 亚洲国产欧美人成| 欧美成人免费av一区二区三区| .国产精品久久| 亚洲av成人av| 久久精品久久久久久久性| 九草在线视频观看| 欧美精品国产亚洲| 91精品国产九色| 在线观看66精品国产| 国产精品一区二区三区四区久久| 青春草国产在线视频| 亚洲国产精品合色在线| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 人人妻人人澡人人爽人人夜夜 | a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 看十八女毛片水多多多| 久久精品综合一区二区三区| 一级av片app| 色网站视频免费| 99在线人妻在线中文字幕| 建设人人有责人人尽责人人享有的 | 亚洲乱码一区二区免费版| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 午夜视频国产福利| 2022亚洲国产成人精品| av卡一久久| 日韩视频在线欧美| 久久精品国产自在天天线| 国产在视频线精品| 国产精品人妻久久久久久| 午夜a级毛片| 好男人在线观看高清免费视频| 亚洲成av人片在线播放无| 亚洲美女视频黄频| 国产精品久久久久久精品电影小说 | 国产成人免费观看mmmm| 色视频www国产| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 三级国产精品片| 亚洲色图av天堂| 99在线人妻在线中文字幕| 嘟嘟电影网在线观看| 美女脱内裤让男人舔精品视频| 国产一区二区在线av高清观看| 亚洲欧美精品综合久久99| 最近中文字幕2019免费版| 一级毛片电影观看 | av播播在线观看一区| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 成人鲁丝片一二三区免费| 最近中文字幕2019免费版| 国产精品爽爽va在线观看网站| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 丰满少妇做爰视频| 两性午夜刺激爽爽歪歪视频在线观看| 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 国产亚洲5aaaaa淫片| 少妇猛男粗大的猛烈进出视频 | 最近最新中文字幕大全电影3| 国产av在哪里看| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 美女黄网站色视频| 成人亚洲精品av一区二区| 国产免费一级a男人的天堂| 视频中文字幕在线观看| 国产淫语在线视频| 亚洲怡红院男人天堂| 亚洲成人久久爱视频| 久久久久国产网址| 国产精品爽爽va在线观看网站| 亚洲国产精品国产精品| 91av网一区二区| 久久国内精品自在自线图片| 免费看光身美女| 中文精品一卡2卡3卡4更新| 极品教师在线视频| 婷婷色麻豆天堂久久 | 亚洲精品亚洲一区二区| 午夜福利在线观看吧| 97超碰精品成人国产| 亚洲av男天堂| 又爽又黄无遮挡网站| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 国内精品一区二区在线观看| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 热99在线观看视频| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在| 亚洲av一区综合| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 在线免费十八禁| 不卡视频在线观看欧美| 中文字幕熟女人妻在线| 一级毛片aaaaaa免费看小| 亚洲精品日韩av片在线观看| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 伦精品一区二区三区| 国产精品国产三级专区第一集| 国产成人免费观看mmmm| 2021少妇久久久久久久久久久| 啦啦啦观看免费观看视频高清| 国产三级中文精品| 久久鲁丝午夜福利片| 亚洲av中文字字幕乱码综合| 国产一区二区在线观看日韩| 男插女下体视频免费在线播放| 精品久久久噜噜| 中文天堂在线官网| 久久综合国产亚洲精品| 99热这里只有精品一区| 亚洲av二区三区四区| 国产不卡一卡二| 乱人视频在线观看| 午夜福利成人在线免费观看| 国语自产精品视频在线第100页| 欧美一区二区精品小视频在线| 精品久久久久久久久av| 国产精品美女特级片免费视频播放器| 一级爰片在线观看| 纵有疾风起免费观看全集完整版 | 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 国产老妇伦熟女老妇高清| 啦啦啦韩国在线观看视频| 国产女主播在线喷水免费视频网站 | 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 干丝袜人妻中文字幕| 伦理电影大哥的女人| 久久婷婷人人爽人人干人人爱| 99久久精品国产国产毛片| 国产一区有黄有色的免费视频 | 久久人人爽人人爽人人片va| 99久久人妻综合| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 国产免费福利视频在线观看| 插阴视频在线观看视频| 不卡视频在线观看欧美| 日本免费a在线| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| 大香蕉97超碰在线| 大香蕉久久网| 在线观看美女被高潮喷水网站| 99热精品在线国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜亚洲福利在线播放| 久久亚洲国产成人精品v| 国产一区二区在线av高清观看| av在线老鸭窝| 日韩大片免费观看网站 | 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 亚洲va在线va天堂va国产| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 少妇的逼水好多| 国产男人的电影天堂91| 国产色爽女视频免费观看| 日本wwww免费看| 中文字幕制服av| 亚洲自拍偷在线| 韩国av在线不卡| 22中文网久久字幕| 99久国产av精品国产电影| 黄色配什么色好看| av视频在线观看入口| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 联通29元200g的流量卡| 99在线人妻在线中文字幕| 又黄又爽又刺激的免费视频.| 九九久久精品国产亚洲av麻豆| 国产v大片淫在线免费观看| 亚洲精品,欧美精品| 非洲黑人性xxxx精品又粗又长| 欧美一区二区精品小视频在线| 一本一本综合久久| av在线蜜桃| 免费看美女性在线毛片视频| 亚洲天堂国产精品一区在线| 亚洲精品自拍成人| 超碰av人人做人人爽久久| 成人亚洲精品av一区二区| 精品国产一区二区三区久久久樱花 | 国产av在哪里看| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| 日韩欧美精品v在线| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 久久精品久久久久久噜噜老黄 | 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 又黄又爽又刺激的免费视频.| 国产av在哪里看| videossex国产| 国产成人午夜福利电影在线观看| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 欧美日韩综合久久久久久| 女人十人毛片免费观看3o分钟| 国产又色又爽无遮挡免| 亚洲伊人久久精品综合 | 成人一区二区视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久精品电影| 岛国在线免费视频观看| 国产日韩欧美在线精品| 日本五十路高清| 一级毛片久久久久久久久女| 天堂影院成人在线观看| 精品人妻视频免费看| 人妻少妇偷人精品九色| 夫妻性生交免费视频一级片| 激情 狠狠 欧美| 久久人妻av系列| 人人妻人人澡欧美一区二区| 日韩亚洲欧美综合| 人人妻人人澡人人爽人人夜夜 | 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 一区二区三区高清视频在线| 色播亚洲综合网| 中文资源天堂在线| 国产成人精品婷婷| 国产在线一区二区三区精 | 亚洲av熟女| 特级一级黄色大片| 久久精品综合一区二区三区| 级片在线观看| 中文欧美无线码| 在现免费观看毛片| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看| 内地一区二区视频在线| 中文欧美无线码| 国产视频内射| 国产精品综合久久久久久久免费| 成人无遮挡网站| 麻豆成人av视频| 国产精品人妻久久久影院| 内地一区二区视频在线| 国产三级在线视频| av女优亚洲男人天堂| 国产精品99久久久久久久久| 床上黄色一级片| 久久草成人影院| 亚洲激情五月婷婷啪啪| 午夜福利在线观看吧| 久久亚洲国产成人精品v| 国产欧美另类精品又又久久亚洲欧美| 国产一级毛片在线| 国产成人精品久久久久久| 日日干狠狠操夜夜爽| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 在现免费观看毛片| 大香蕉久久网| 国产精品爽爽va在线观看网站| 亚洲国产精品国产精品| 午夜福利在线在线| 2021少妇久久久久久久久久久| 九草在线视频观看| 亚洲精品国产成人久久av| 极品教师在线视频| 日韩一本色道免费dvd| 欧美成人一区二区免费高清观看| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 精品久久久久久成人av| 日本午夜av视频| 免费在线观看成人毛片| 天堂中文最新版在线下载 | 精品国产一区二区三区久久久樱花 | 久久久a久久爽久久v久久| 国产精品一区二区三区四区久久| 免费av观看视频| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版 | 午夜福利成人在线免费观看| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 免费看美女性在线毛片视频| 人人妻人人澡人人爽人人夜夜 | 啦啦啦啦在线视频资源| 国产色婷婷99| 欧美精品国产亚洲| 久久久久免费精品人妻一区二区| 日韩av在线大香蕉| 天堂中文最新版在线下载 | 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲欧美清纯卡通| av在线蜜桃| 青春草国产在线视频| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 舔av片在线| 国产精品国产高清国产av| 插阴视频在线观看视频| 亚洲精品亚洲一区二区| 欧美另类亚洲清纯唯美| av又黄又爽大尺度在线免费看 | av又黄又爽大尺度在线免费看 | 国产成人精品婷婷| 亚洲性久久影院| 欧美成人a在线观看| 免费观看在线日韩| 国产乱来视频区| 最新中文字幕久久久久| 老女人水多毛片| 国产一区二区亚洲精品在线观看| 久久鲁丝午夜福利片| 亚洲综合精品二区| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 99热网站在线观看| 国产午夜精品一二区理论片| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久成人| 国产在视频线精品| 2022亚洲国产成人精品| 国产精品永久免费网站| 一级毛片电影观看 | 中国国产av一级| 国产黄片美女视频| 精品人妻熟女av久视频| 欧美bdsm另类| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 日本-黄色视频高清免费观看| 免费在线观看成人毛片| 色综合亚洲欧美另类图片| 国产精品野战在线观看| 一区二区三区四区激情视频| 国内精品美女久久久久久| 日本黄色片子视频| 亚洲国产精品专区欧美| 看片在线看免费视频| 日日干狠狠操夜夜爽| 亚洲欧美精品自产自拍| 欧美3d第一页| 亚州av有码| 国产又色又爽无遮挡免| 美女内射精品一级片tv| 欧美一区二区精品小视频在线| 91精品国产九色| 黑人高潮一二区| 国产午夜精品论理片| 亚洲五月天丁香| 国产乱人视频| 精品久久久久久成人av| 国产亚洲午夜精品一区二区久久 | 久久久久免费精品人妻一区二区| 一级毛片我不卡| 午夜日本视频在线| 欧美成人午夜免费资源| 久久久久久国产a免费观看| 国产成人freesex在线| 99久国产av精品国产电影| 亚洲成人精品中文字幕电影| 丝袜喷水一区| 少妇裸体淫交视频免费看高清| 高清午夜精品一区二区三区| 久久久久性生活片| 高清日韩中文字幕在线| 国产伦理片在线播放av一区| 春色校园在线视频观看| 欧美日韩在线观看h| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美精品综合久久99| 亚洲国产欧洲综合997久久,| 久久鲁丝午夜福利片| 99在线视频只有这里精品首页| 婷婷色综合大香蕉| 一级毛片aaaaaa免费看小| 69av精品久久久久久| 国产爱豆传媒在线观看| 免费黄网站久久成人精品| 日本猛色少妇xxxxx猛交久久| 精品酒店卫生间| 国产精品久久久久久精品电影小说 | 欧美xxxx性猛交bbbb| 免费播放大片免费观看视频在线观看 | 国产午夜福利久久久久久| 女人被狂操c到高潮| 亚洲精品色激情综合| 不卡视频在线观看欧美| 久久久国产成人免费| 久久精品久久久久久噜噜老黄 | 99国产精品一区二区蜜桃av| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 亚洲av二区三区四区| 99热全是精品| 97超视频在线观看视频| 国产精品乱码一区二三区的特点| 99在线视频只有这里精品首页| 色噜噜av男人的天堂激情| 亚洲av中文字字幕乱码综合| 一边摸一边抽搐一进一小说| 国产午夜精品久久久久久一区二区三区| 真实男女啪啪啪动态图| 狠狠狠狠99中文字幕| 日本免费一区二区三区高清不卡| 国产在线一区二区三区精 | 免费一级毛片在线播放高清视频| 99久久无色码亚洲精品果冻| 2022亚洲国产成人精品| 国产高清三级在线| 国产高清有码在线观看视频| 久久久亚洲精品成人影院| 级片在线观看| 国产黄色小视频在线观看| 大话2 男鬼变身卡| 中文字幕免费在线视频6| 91久久精品国产一区二区三区| 国产av码专区亚洲av| 嘟嘟电影网在线观看| 亚洲欧洲日产国产| 国产老妇女一区| 又爽又黄无遮挡网站| 精品久久久久久久久av| 色网站视频免费| 一级av片app| 国产一区二区亚洲精品在线观看| 美女脱内裤让男人舔精品视频| 成人二区视频| 有码 亚洲区| 最近中文字幕2019免费版| 一级av片app| 国产精品日韩av在线免费观看| 国产老妇女一区| 久热久热在线精品观看| 丰满乱子伦码专区| av.在线天堂| 午夜精品国产一区二区电影 | 欧美日本亚洲视频在线播放| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 国产高潮美女av| 99热这里只有是精品在线观看| 搡女人真爽免费视频火全软件| 国产成人精品一,二区| 久久久久久久午夜电影| 亚洲,欧美,日韩| 国模一区二区三区四区视频| 1000部很黄的大片| 免费在线观看成人毛片| 26uuu在线亚洲综合色| 国产日韩欧美在线精品|