• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    2016-12-27 01:08:19GopCHAKRABORTYREJEESHALBERT
    Defence Technology 2016年6期

    Gop CHAKRABORTY,R.REJEESH,S.K.ALBERT

    aMaterials Technology Division,Indira Gandhi Centre for Atomic Research,Kalpakkam,603102,India

    bNational Institute of Technology,Surathkal,India

    Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Gopa CHAKRABORTYa,*,R.REJEESHb,S.K.ALBERTa

    aMaterials Technology Division,Indira Gandhi Centre for Atomic Research,Kalpakkam,603102,India

    bNational Institute of Technology,Surathkal,India

    DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines.Welding electrodes conforming to SFA 5.5AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process.In the present study,susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test.Implant tests were conducted using this electrode at two different levels of diffusible hydrogen,measured using gas chromatography technique.It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal.In implant tests,specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal.The good resistance of this steel and the welding consumable,even with high levels of diffusible hydrogen,is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone.Hence,this study shows that,in the absence of a susceptible microstructure,hydrogen assisted cracking is unlikely to occur even if hydrogen level is high.It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode,hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

    HSLA steel;Hydrogen assisted cracking;Diffusible hydrogen;Implant test;Lower critical stress

    1.Introduction

    Microalloyed high strength low alloy(HSLA)steels containing low carbon and small additions of Nb,V,Ti exhibit an outstanding combination of high strength,resistance to brittle fracture and good weldability[1].DMR-249A is a low carbon HSLA steel with micro additions of Nb,V andTi,indigenously developed for Indian ship-building industries and is being used in the construction of war ships and submarines[2].Shielded metal arc welding(SMAW)is one of the major welding processes employed by shipping industries.Complex dynamic loading,extreme temperature conditions during service together with residual stresses generated in the weld due to fit up and fabrication can make these weld joints susceptible to brittle fracture in service[3].The presence of undetected cracks caused by hydrogen assisted cracking(HAC)during fabrication can further assist brittle fracture in service.Hence,there is a need to assess the susceptibility of these welds to HAC and ensure that there is no risk of HAC during fabrication of naval structures using this steel and consumables[4].

    Earlier studies[5]have shown that the conditions for HAC to occur in steel welds are:presence of diffusible hydrogen(HD), residual stress and susceptible microstructure in the weld and temperature in the range of ambient to 200°C.In this regard, martensiticmicrostructurewithhighhardnessismostsusceptible and ferritic microstructure with low hardness is least susceptible. Hence,duringwelding,effortsaremadetoreduceriskofHACby avoiding development of a susceptible microstructure and minimizing the hydrogen levels in welding.The probability of havingasusceptiblemicrostructureintheHAZorweldisassessed fromthecompositionofthebasemetalandweldmetal,heatinput and preheating(which will reduce the cooling rate of the weld) chosen for welding[6].In order to reduce hydrogen level,low hydrogen welding consumables,proper baking of the consumables to remove moisture content in the consumables and appropriate preheating or preheating+post heating conditionsthat would provide more time for hydrogen to diffuse out at high temperature are chosen.For HSLA steels like DMR-249A,the hardenability is very low and the as-welded microstructure is ferritic and hence susceptibility to HAC is expected to be low. However,susceptibility of a weld to HAC can be quantified from implanttestintermsoflowercriticalstress(LCS),thestressbelow whichthewelddoesnotfractureduringthetest,andinthepresent study this is attempted for welds of DMR-249A steel made with indigenously developed consumables.

    In order to achieve two different levels of hydrogen in the weld metals,welds for implant tests were made both with baked electrodes and unbaked electrodes.Baking brings down the moisture content in the flux coating which in turn reduces the diffusible hydrogen content in the welds.Hence,during fabrication using low hydrogen welding consumables,they are baked prior to use as per the instruction provided by manufactures.In the present study,implant tests were conducted using electrodes with and without baking to produce welds with different levels of diffusible hydrogen during implant testing.Diffusible hydrogen levels in electrodes were measured using thermal conductivity based gas chromatography.

    2.Experimental

    DMR-249A is a low carbon(C:0.09,Mn:1.14,Si:0.18, Ni:0.62,Al:0.026,Nb:0.039,V:0.02,Ti:0.02,S:0.006,P:0.14, N:56 ppm)HSLA steel with minimum yield strength and tensile strength of 390 MPa and 510 Mpa,respectively.AWS E8018 C1 is a basic coated low hydrogen electrode.Nominal chemical composition of the electrode(Ys:483 MPa,UTS: 552 MPa)is given in Table 1.

    2.1.Measurement of diffusible hydrogen content in the weld

    For diffusible hydrogen measurement,DMR-249A steel samplesarefabricatedasperISO3690specification.Thespecimen of size 30 mm×15 mm×10 mm is fixed in a copper jig with run-on and run-off pieces each of size 40 mm×15 mm×10 mm. Beadonplateweldingwascarriedoutwith3.15 mmdiametergrade SFA5.5AWSE8018C1electrode.Weldingparametersusedforthe weldingare:current–110A,voltage–23V,weldingtime–~30 s, weldinglength–~70 mm.Approximateheatinputcorresponding to the welding parameters is~1100 J/mm.Diffusible hydrogen measurementswerecarriedoutforthreedifferentconditionsofthe electrodes:(1)baking the electrode at 450°C for 4 hr and maintaining the electrode temperature at 150°C after baking prior to welding;(2)baking the electrode at 150°C for 4 hr prior to welding;and(3)without any baking.It is to be noted here that the normalpracticeofweldingistobaketheelectrodepriortowelding, which gives a minimum level of diffusible hydrogen.However,in the present study diffusible hydrogen in the electrodes in the as-receivedcondition(nobaking)aswellasintheelectrodesbaked at lower temperature was also measured.The objective was to prepare implant test specimens with different levels of diffusible hydrogen in the welds using these electrodes.Immediately after completion of the welding,the specimens for diffusible hydrogen measurement were immersed in ice cold water for 5 s and kept inside liquid nitrogen to cool to subzero temperature until they are taken out for hydrogen extraction and measurement.

    Fig.1.Schematic diagram of implant test specimen.

    The HE_GCTCD set up used for diffusible hydrogen measurement consists of a diffusible hydrogen collection chamber,a heater to heat the chamber and a gas chromatograph (GC).The detail of HE_GCTCD set up and diffusible hydrogen measurement technique is provided elsewhere[7].The specimen iskeptinsidethechamberat400°Cfor30minutesforextraction ofdiffusiblehydrogenfromthetestspecimen.Hydrogencollected inthechamberistransportedtoaGCwithathermalconductivity detectorusingArascarriergasandthesignalisrecorded.Priorto measurement,GCiscalibratedusingknownvolumesofhydrogen injected into the GC and from this,the volume of hydrogen evolved from the weld specimen and collected in the chamber is estimated.Usingtheweightofthedepositedmetalintheweld,the volumeofdiffusiblehydrogeniscalculatedinmillilitersper100g of deposited weld metal.For each condition,three tests were performed and average of the data is reported.

    2.2.Implant test

    Fig.1 shows the schematic diagram of implant specimen and base plate,prepared as per Doc.IIW-802 guidelines[8].The implant testing machine is a computer controlled and mechanically operated machine along with a load-cell attached to it to display the load and time duration during the testing[8].The specimen assembly consists of a base plate with a hole,into which implant specimen is inserted in such a way that the top surface of the implant specimen and base plate are at the same level.Single pass bead on plate welding was made on this specimen assembly using the test electrode and employing the same welding parameters used for making the specimens for diffusible hydrogen measurement in such a way that the weld bead passes over the implant specimen fusing its top surfacecompletely with the base plate.Two separate sets of test were conducted using the specimens prepared with baked(at 450°C for 4 hr)and unbaked electrodes.A thermocouple was attached to the base plate to monitor the temperature and loading was done when the assembly cools down to 100°C.A series of tests with first specimen loaded at 1000 kg were conducted.Subsequently,loading was increased to 2000 kg in steps of 200 kg and later on in steps of 100 kg until failure of the sample.Two tests were repeated for each loading condition.After implant test,selected samples were sectioned to observe for micro cracks.The samples were sliced,metallographically polished and etched with 2%nital solution to study under optical microscope.Microhardness measurements were performed on base metal,HAZ and weld metal at 500 g load.

    Table 1 Chemical composition(Wt%)of weld metal.

    Fig.2.Schematic diagram of(a)notch tensile test and(b)tensile test specimen.

    2.3.Notch tensile test and impact tests of simulated HAZ specimens

    Implant test specimens contain notch in the HAZ produced by the weld.Hence,in order to compare the LCS with notch tensile strengthoftheHAZ,notchtensiletestsoftheHAZwereconducted. For this purpose,HAZ was simulated on a plate of size 100 mm×150 mm×10 mm by heating up to 1080°C and then coolinginair,basedonHAZmicrostructureobservedfromimplant samples and available literature reference for this steel[9].Notch tensilesampleswerefabricated(Fig.2(a))fromthesimulatedHAZ and tested in tensile testing machine under 10-4/s strain rate.For comparisonpurpose,tensiletestingofthebasemetal(Fig.2(b))was also done at similar strain rate.Standard Charpy“V”notch impact testing samples were fabricated from the simulated HAZ material andimpacttestingwasdoneatroomtemperature.Fracturesurface ofthefailedsamplesaftertensileandCharpytestingwasobserved under scanning electron microscope(SEM).

    3.Results

    The HE_GCTCD data indicate that diffusible hydrogen(HD) content in the welding consumable,after baking at 450°C/4h, is 3.1 mL/100 g of weld metal.This is certainly a low value of diffusible hydrogen,and as per IIW and AWS classifications, this electrode comes under very low hydrogen category of electrode[10–12].Results of the HDmeasurement for the electrode without any baking is 9.6 mL/100 g of weld metal and the same for baking at 150°C is 8.3 mL/100 g of weld metal.Thus,by altering the baking conditions of the electrodes,one can get different levels of HDcontents for the same batch of electrodes. This enables carrying out implant tests using electrodes differing only in their HDcontent and determining LCS at these levels of HDcontents for the same consumables and base materials.

    As mentioned earlier,implant test was carried out for two sets of welding prepared with baked(450°C)and unbaked electrode. The tests were conducted in the range of 1000 kg(equivalent stress:205 MPa)to 2000 kg(410 MPa)load in steps of 200 kg and above 2000 kg;load was increased up to 2400 kg(490 MPa) in a step of 100 kg.For samples welded with baked electrode,no failureoccurredwithin24 h(Fig.3(a))uptoaloadingof2400 kg (490 MPa).No further test was carried out above 2400 kg (490 MPa)sinceitisabovetheyieldstrengthofthebasemetal[9]. To estimate the stress level at which specimen fracture,for one specimenloadwasincreaseduntilfractureandthisoccurredatthe basemetal(Fig.3(b))farawayfromtheHAZandthecorresponding fracture stress is 554 MPa(load=2700 kg),which is nearly equivalenttothetensilestrengthoftheweldjoint[9].AsLCScould not be determined for the properly baked electrode,implant tests were conducted for specimens prepared using electrodes without baking(HDlevels=9.6 mL/100 gofweldmetal).Thesespecimensalso did not fracture even after loading up to 2400 kg(490 MPa). Theimplantspecimenstestedatthehigheststresslevelsweresliced along the length,polished,etched and then examined for microcracks under optical microscope.No cracks were found as shown in Fig.4.Thus,results clearly confirm that the steel is not susceptible for HAC even at high levels of diffusible hydrogen.

    Fig.3.Implant sample tested at(a)2400 kg and(b)2700 kg loads.

    Fig.4.Micrograph of implant sample welded with(a)baked and(b)unbaked electrodes.

    The optical micrographs of DMR-249A steel base metal,weld metalandHAZareshownin Fig.5(a)-(c).Thebasemetalconsists offinegrainedequiaxedferriteandsomepercentageofpearliteasa banded structure(Fig.5(a)).Micrograph of weld metal shows fine bainitic structure along with acicular ferrite(Fig.5(b)).The HAZ microstructure consists of acicular ferrite with some polygonal ferrite(Fig.5(c)).No martensitic phase could be identified in the HAZorintheweldmetal.HardnessoftheHAZ(275VHN)isfound tobemarginallyhigherthanthebasemetal(235VHN).Weldmetal hardness(315VHN)is higher than that of HAZ(Fig.6(a)).

    Fig.5.Optical micrographs of(a)base metal,(b)weld metal and(c)HAZ.

    Fig.6.(a)Hardness profile of the weld joint and(b)stress–strain diagram for base metal and HAZ(notch-tensile specimen).

    Mechanical properties of the simulated HAZ are given in Table 2 and Fig.6(b).Since notch effect is experienced by the HAZ of the implant sample due to presence of the helical notch, the notch tensile strength of the simulated HAZ was determined and the value obtained for the same is 660 MPa,which is higher than the tensile strength of the base metal(575 MPa),revealing the strengthening effect of the notch.Toughness of the HAZ simulated structure is appreciably high(170J),although much lesser than base metal(350J)[13].Fractographs(Fig.7(a)and (b))also show ductile cup-cone fracture for tensile tested samples of both base metal and HAZ.Dimple size in case of base metal is much smaller as compared to HAZ,indicating high ductilityof thematerial.Fibrous ductile fracture(Fig.7(c)) is also noted for the impact tested specimen of simulated HAZ.

    4.Discussion

    In the present investigation,the results indicate that HSLA steel of grade DMR-249A is not susceptible to HAC irrespective of HDcontent of the welding consumable.The reason for the same is investigated in the following section.

    It is clear from the results presented above that without baking, HDcontentinthefluxoftheelectrodeisquitehigh,andbybakingat 150°Conlythemoistureabsorbedbythefluxcoatingisdrivenoff, whereas by baking at a temperature recommended by the manufacturer(450°C),chemically bonded water in some of the flux constituents is also removed.During arc welding processes, hydrogen gets introduced into the weld from the moisture of the atmosphereaswellasflux,andfromhydrogenousmaterialssuchas oil,grease,paint,etc.[14].Themoisturecanberemovedbydrying at moderately higher temperature whereas elevated temperature (above400°C)isrequiredtodrivethechemicallyassociatedwater of the flux[14].

    It can be further seen from the results that LCS could not be determined for weldments produced from either properly baked or unbaked electrode by implant tests as the LCS values areabove the yield strength of the material in both the conditions. It can be assumed that fully ferritic microstructure of the HAZ, similar to base metal,and predominantly ferritic structure of the weld metal are the major reasons for good resistance of the weld joint to HAC.It has also been seen for other grades of HSLA steel that ferritic microstructures are resistant to HAC irrespective of HDcontent of the weld[15].Another factor contributing to HAC resistance could be the presence of carbides,especially TiC in the weld metal,which are known to be strong traps for hydrogen[16].Though Rishi et al.[13]have characterized in detail the inclusion content of SMAW weld metal of DMR-249A steel with similar electrode,detailed study on effectiveness of various precipitates and inclusion as hydrogen traps has not been attempted.Such a study may reveal more information about high resistance to HAC of these welds.

    Table 2 Mechanical test results of DMR-249A steel.

    The tendency of HAC is much higher in weldments with a stringent variation in hardness from base metal to weld or HAZ [8].However,in this case variation in hardness between HAZ (275 VHN)and base metal(235 VHN)is only marginal due to the presence of predominantly ferritic microstructure.Weld metal hardness(315 VHN)is slightly higher probably because of the presence of bainite in the weld metal.However,adverse effect of high diffusible hydrogen content is much nullified by the almost uniform hardness distribution across the weldment [7].Mechanical properties of the simulated HAZ also indicate that fine acicular ferritic structure of HAZ contributes to its good mechanical properties.From the notch tensile strength of the HAZ and fractographs of the same,it can be concluded that a ferritic microstructure of low hardness and high toughness is resistant to HAC,irrespective of the hydrogen level in the weld.

    In this context,susceptibility to HAC of DMR-249A can be compared to that of modified 9Cr-1Mo steel.For modified 9Cr-1Mo steel,the LCS is reported to be 185 MPa corresponding to HDcontent of 3.7 mL/100 g of weld metal,which is considerably lower than the yield strength of the material (1000 MPa)[8].With preheat to a temperature of 250°C before welding,HDcontent comes down to 1.8 mL/100 g of weld metal;however,LCS increases only to 267 Mpa,which is still much below the yield strength of the steel[8].In contrast to this,in spite of high hydrogen levels LCS could not be determined for DMR-249A grade of steel because of the good resistance of the steel to HAC.Results emphasize the point thatin the absence of a susceptible microstructure,high hydrogen content may not cause HAC[15].This comparison clearly indicates that even very low hydrogen level can cause HAC in a martensitic microstructure as in case of modified 9Cr-1Mo steel;but if it is a ferritic microstructure,even high hydrogen level does not cause HAC.

    Fig.7.Fractograph of(a)impact tested base material,(b)tensile tested base material and(c)notch tensile tested HAZ.

    5.Conclusions

    The following conclusions can be made from the present study:

    1)HSLA steel grade DMR-249A is not susceptible to HAC.

    2)Thefineacicularferritic/bainiticmicrostructureproducedin HAZ and weld can adequately resist HAC in this steel.

    3)In absence of a susceptible microstructure,HAC is unlikely to occur even if hydrogen levels in the welding consumables are high.

    [1]Show BK,Veerababu R,Balamuralikrishnan R,Malakondaiah G.Effect of vanadium and niobium modification on the microstructure and mechanical properties of a microalloyed HSLA steel.Mater Sci Eng A 2010;527:1595–604.

    [2]RodriguesPCM,PerelomaEV,SantosDB.MaterSciEng A 2000;283:136–43.

    [3]Yue X,Lippold JC.Evaluation of heat affected zone hydrogen induced cracking in navy steels.Welding Res Suppl 2013;92:20s–28s.

    [4]Devletian JH,Fichtelberg ND.Controlling hydrogen cracking in ship building.Welding J 2011;80:46s–52s.

    [5]Dickinsons DW,Ries GD.Implant testing of medium to high strength steel-a model for predicting delayed cracking susceptibility.Welding Res Suppl 1979;205s–211s.

    [6]Padhy GK,Komizo Y.Diffusible hydrogen in steel weldments-a status review.Trans JWRI 2013;42:39–62.

    [7]Padhy GK,Ramasubbu V,Albert SK,Murugesan N,Ramesh C.Hot extraction of diffusible hydrogen and its measurement using a hydrogen sensor.Welding World 2012;56:7–8.

    [8]Albert SK,Ramasubbu V,Sunder Raj SI,Bhaduri AK.Hydrogen assisted cracking susceptibility of modified 9Cr-1Mo steel and its weld metal. Welding World 2011;7–8.

    [9]Pamnani R,Vasudevan M,Jayakumar T,Vasantharaja P,Ganesh KC. Numerical simulation and experimental validation of arc welding of DMR-249A steel.Def Technol 2016;12:305–15.

    [10]ISO 2560:2009,Welding consumables-covered electrodes for manual arc welding og non-alloy and fine grain steels-Classification.

    [11]Specification for carbon steel electrodes for shielded metal arc welding, American National Standard,AWS A5.1/5.1M:2004,approved by American National Standards Institute;2003.

    [12]Specifications for low alloy steel electrodes for shielded metal arc welding,American National Standard,AWSA5.5/A5.5M:2006,approved by American National Standards Institute;2006.

    [13]Pamnani R,Jayakumar T,Vasudevan M,Sakthivel T.Investigation on the impact toughness of HSLA steel arc welded joints.J Manuf Process 2016;21:75–86.

    [14]Magudeeswaranan G,Balasubramaniana V,Madhusudhan Reddy G. Hydrogen induce cold cracking studies on armour grade high strength, quenched and tempered steel weldments.Int J Hydrogen Energy 2008;33:1897–908.

    [15]Madhusudhan Reddy G,Mohandas T,Sarma DS.Cold cracking studies on low alloy steel weldments:effect of filler metal composition.Sci Technol Welding Joining 2003;8:407–14.

    [16]Depover T,Monbaliu O,Wallaert E,Verbeken K.Effect ofTi,Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe-C-X Q&T alloys.Int J Hydrogen Energy 2015;40:47.

    Received 30 August 2016;revised 21 September 2016;accepted 22 September 2016 Available online 7 October 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+914424780500.

    E-mail address:gopa_mjs@igcar.gov.in(G.CHAKRABORTY).

    http://dx.doi.org/10.1016/j.dt.2016.09.003

    2214-9147/?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产在线免费精品| 日韩伦理黄色片| 亚洲成色77777| 亚洲精品自拍成人| 免费不卡黄色视频| 天堂8中文在线网| 我要看黄色一级片免费的| 又黄又粗又硬又大视频| 每晚都被弄得嗷嗷叫到高潮| 91成人精品电影| 国产主播在线观看一区二区 | 狠狠婷婷综合久久久久久88av| 在线天堂中文资源库| 国产成人精品久久二区二区91| 欧美日韩综合久久久久久| 侵犯人妻中文字幕一二三四区| 激情视频va一区二区三区| 日韩视频在线欧美| 大陆偷拍与自拍| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品94久久精品| 亚洲精品一卡2卡三卡4卡5卡 | 久久国产精品男人的天堂亚洲| 午夜福利,免费看| 日韩人妻精品一区2区三区| 成人国语在线视频| 欧美日韩国产mv在线观看视频| 国产精品一区二区精品视频观看| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 久久这里只有精品19| 两个人看的免费小视频| 亚洲欧美激情在线| 亚洲av美国av| 一区在线观看完整版| 男女高潮啪啪啪动态图| 国产精品免费视频内射| 久久天堂一区二区三区四区| 汤姆久久久久久久影院中文字幕| 极品人妻少妇av视频| 欧美久久黑人一区二区| 一区二区三区激情视频| 18禁国产床啪视频网站| 大香蕉久久成人网| 高潮久久久久久久久久久不卡| 成年人午夜在线观看视频| 国产野战对白在线观看| 成年美女黄网站色视频大全免费| 七月丁香在线播放| 中文字幕精品免费在线观看视频| 丁香六月天网| 在线看a的网站| 国产精品秋霞免费鲁丝片| 国产99久久九九免费精品| 国产精品一二三区在线看| 国产av一区二区精品久久| 国产熟女欧美一区二区| 精品欧美一区二区三区在线| 2021少妇久久久久久久久久久| 另类精品久久| 亚洲久久久国产精品| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 19禁男女啪啪无遮挡网站| 久久人人97超碰香蕉20202| 亚洲国产最新在线播放| 久久ye,这里只有精品| 日韩制服骚丝袜av| 久久精品久久久久久噜噜老黄| 制服诱惑二区| 美女主播在线视频| 一级毛片 在线播放| 国产男女内射视频| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 精品少妇内射三级| av不卡在线播放| 亚洲欧美日韩另类电影网站| 999精品在线视频| 国产精品久久久av美女十八| 国产熟女欧美一区二区| 夫妻午夜视频| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 日韩人妻精品一区2区三区| 国产精品欧美亚洲77777| 亚洲午夜精品一区,二区,三区| 国产日韩欧美亚洲二区| 老鸭窝网址在线观看| 日本猛色少妇xxxxx猛交久久| 欧美乱码精品一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲国产av新网站| 国产人伦9x9x在线观看| 美女视频免费永久观看网站| 天天添夜夜摸| 桃花免费在线播放| 黄色视频在线播放观看不卡| 亚洲av美国av| 亚洲av男天堂| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 爱豆传媒免费全集在线观看| 一边摸一边做爽爽视频免费| 看十八女毛片水多多多| 少妇的丰满在线观看| 2021少妇久久久久久久久久久| 欧美av亚洲av综合av国产av| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 国产又爽黄色视频| 91国产中文字幕| 亚洲精品久久午夜乱码| 国产高清视频在线播放一区 | 国产国语露脸激情在线看| 91精品国产国语对白视频| 韩国精品一区二区三区| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 国产精品二区激情视频| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 一本大道久久a久久精品| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 激情五月婷婷亚洲| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 操出白浆在线播放| 曰老女人黄片| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 女性被躁到高潮视频| 国产av一区二区精品久久| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 日韩视频在线欧美| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 97在线人人人人妻| 大香蕉久久成人网| 欧美 亚洲 国产 日韩一| 精品一区二区三卡| 只有这里有精品99| 婷婷色综合www| 欧美变态另类bdsm刘玥| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 在线精品无人区一区二区三| 成人三级做爰电影| 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人| 国产人伦9x9x在线观看| 亚洲国产成人一精品久久久| 欧美在线一区亚洲| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 国产精品成人在线| 五月天丁香电影| 亚洲国产精品999| 国产成人av教育| 老司机亚洲免费影院| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 久久久久久免费高清国产稀缺| 在线天堂中文资源库| 爱豆传媒免费全集在线观看| 飞空精品影院首页| 天天躁夜夜躁狠狠久久av| 午夜免费鲁丝| 一区二区日韩欧美中文字幕| 国产麻豆69| a 毛片基地| 亚洲精品美女久久久久99蜜臀 | 免费少妇av软件| 国产黄色免费在线视频| av电影中文网址| 宅男免费午夜| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看| 国产亚洲精品久久久久5区| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 亚洲精品日韩在线中文字幕| 一本综合久久免费| a级片在线免费高清观看视频| 男人操女人黄网站| a 毛片基地| 国产在线免费精品| 制服人妻中文乱码| 青春草视频在线免费观看| 婷婷色麻豆天堂久久| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 少妇人妻 视频| a 毛片基地| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 精品一区二区三卡| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 极品人妻少妇av视频| 侵犯人妻中文字幕一二三四区| 欧美黑人欧美精品刺激| 男女边吃奶边做爰视频| 亚洲国产毛片av蜜桃av| 中文欧美无线码| 亚洲欧美一区二区三区久久| 国产91精品成人一区二区三区 | 国产精品偷伦视频观看了| 一本综合久久免费| 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 国产色视频综合| 欧美 亚洲 国产 日韩一| www.999成人在线观看| 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| 视频区欧美日本亚洲| 夫妻午夜视频| tube8黄色片| 日本色播在线视频| 久久久久国产精品人妻一区二区| 国产男女超爽视频在线观看| 男女国产视频网站| 国产免费又黄又爽又色| 黄色片一级片一级黄色片| 老司机深夜福利视频在线观看 | 国产xxxxx性猛交| 亚洲av欧美aⅴ国产| 校园人妻丝袜中文字幕| 精品少妇一区二区三区视频日本电影| 日本欧美视频一区| 欧美日韩综合久久久久久| 国产不卡av网站在线观看| 久久人妻福利社区极品人妻图片 | 丰满饥渴人妻一区二区三| 久久精品国产亚洲av涩爱| 老司机午夜十八禁免费视频| 欧美日韩av久久| 亚洲精品一二三| 亚洲天堂av无毛| 一本久久精品| 两个人免费观看高清视频| 一区在线观看完整版| 精品少妇内射三级| 国产一区有黄有色的免费视频| 黄频高清免费视频| 少妇的丰满在线观看| 妹子高潮喷水视频| 18禁国产床啪视频网站| 99香蕉大伊视频| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 美女视频免费永久观看网站| 国产亚洲精品久久久久5区| 久久影院123| 亚洲少妇的诱惑av| 久久国产精品大桥未久av| 国产一区亚洲一区在线观看| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 国产精品 国内视频| 国产片内射在线| 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| 免费人妻精品一区二区三区视频| 午夜免费鲁丝| 嫩草影视91久久| 日本a在线网址| 激情五月婷婷亚洲| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 又粗又硬又长又爽又黄的视频| 亚洲一区中文字幕在线| 午夜免费男女啪啪视频观看| 日本午夜av视频| 最近手机中文字幕大全| 两个人免费观看高清视频| 亚洲免费av在线视频| 三上悠亚av全集在线观看| 青草久久国产| 777久久人妻少妇嫩草av网站| videosex国产| 午夜福利视频精品| 大香蕉久久网| 国产成人免费无遮挡视频| 亚洲成人国产一区在线观看 | 亚洲第一av免费看| 欧美黄色淫秽网站| 97在线人人人人妻| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区 | 欧美日韩黄片免| 亚洲激情五月婷婷啪啪| 手机成人av网站| 丝袜美腿诱惑在线| 午夜91福利影院| 成人免费观看视频高清| 丁香六月欧美| 国产亚洲欧美在线一区二区| 在线观看免费高清a一片| 亚洲,欧美,日韩| 国产高清国产精品国产三级| 免费看不卡的av| 久久久国产一区二区| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 国产日韩欧美视频二区| 国产黄色免费在线视频| 欧美成人午夜精品| 在线观看免费日韩欧美大片| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| www.999成人在线观看| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 大码成人一级视频| 日韩视频在线欧美| 亚洲国产欧美在线一区| 久久狼人影院| 国产精品欧美亚洲77777| 亚洲国产看品久久| 国产激情久久老熟女| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| 嫩草影视91久久| 免费在线观看黄色视频的| 欧美日韩亚洲高清精品| 18禁黄网站禁片午夜丰满| 飞空精品影院首页| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 日本色播在线视频| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 国产深夜福利视频在线观看| 两人在一起打扑克的视频| 亚洲少妇的诱惑av| 狂野欧美激情性xxxx| tube8黄色片| 一本色道久久久久久精品综合| 欧美亚洲日本最大视频资源| 美国免费a级毛片| 亚洲欧美中文字幕日韩二区| h视频一区二区三区| 欧美人与性动交α欧美精品济南到| 亚洲精品av麻豆狂野| 国产主播在线观看一区二区 | 高清不卡的av网站| 久久精品熟女亚洲av麻豆精品| 青草久久国产| 不卡av一区二区三区| 一二三四社区在线视频社区8| 亚洲伊人久久精品综合| 亚洲五月色婷婷综合| 欧美日韩亚洲综合一区二区三区_| xxx大片免费视频| 女人被躁到高潮嗷嗷叫费观| 美女大奶头黄色视频| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 七月丁香在线播放| 黑人巨大精品欧美一区二区蜜桃| 操出白浆在线播放| 女人被躁到高潮嗷嗷叫费观| 一区二区av电影网| av在线老鸭窝| 日韩av免费高清视频| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 女人精品久久久久毛片| 亚洲国产看品久久| 成人影院久久| 亚洲成av片中文字幕在线观看| 免费av中文字幕在线| 久久精品aⅴ一区二区三区四区| 久久久久国产一级毛片高清牌| 午夜免费成人在线视频| 婷婷丁香在线五月| 国产欧美日韩一区二区三 | 激情五月婷婷亚洲| 一本一本久久a久久精品综合妖精| 制服人妻中文乱码| 看免费成人av毛片| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 久久精品国产亚洲av高清一级| 中文字幕精品免费在线观看视频| 成年美女黄网站色视频大全免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲成色77777| 亚洲欧美一区二区三区久久| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 久久精品亚洲av国产电影网| 亚洲国产成人一精品久久久| 99热网站在线观看| 日本欧美视频一区| av天堂久久9| 男女床上黄色一级片免费看| 精品少妇内射三级| 久久精品国产亚洲av高清一级| 在现免费观看毛片| 久久免费观看电影| 亚洲精品在线美女| 女警被强在线播放| 欧美av亚洲av综合av国产av| 男女高潮啪啪啪动态图| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 天天添夜夜摸| 下体分泌物呈黄色| 大香蕉久久成人网| 亚洲图色成人| 精品久久蜜臀av无| 国产一卡二卡三卡精品| 黄色毛片三级朝国网站| 黄频高清免费视频| 麻豆乱淫一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 三上悠亚av全集在线观看| 两人在一起打扑克的视频| 国产免费又黄又爽又色| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 在线 av 中文字幕| 国产精品国产三级专区第一集| 久久久精品区二区三区| 亚洲国产av影院在线观看| 波多野结衣av一区二区av| 美女扒开内裤让男人捅视频| 亚洲久久久国产精品| 丝袜美足系列| 在线看a的网站| 麻豆乱淫一区二区| 人人妻人人澡人人看| 欧美av亚洲av综合av国产av| 中文字幕最新亚洲高清| 成人免费观看视频高清| 中文乱码字字幕精品一区二区三区| 亚洲国产欧美一区二区综合| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 国产精品偷伦视频观看了| 久久人人97超碰香蕉20202| 国产成人欧美在线观看 | 久久久久久久久免费视频了| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 亚洲国产欧美一区二区综合| 欧美日韩亚洲高清精品| 爱豆传媒免费全集在线观看| 日韩电影二区| 久久青草综合色| 色网站视频免费| 欧美精品亚洲一区二区| 日本午夜av视频| 一个人免费看片子| 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 亚洲午夜精品一区,二区,三区| 婷婷色麻豆天堂久久| 老司机靠b影院| 成人国语在线视频| 欧美老熟妇乱子伦牲交| netflix在线观看网站| 亚洲av欧美aⅴ国产| 蜜桃国产av成人99| 中文字幕色久视频| 一本一本久久a久久精品综合妖精| 黄色毛片三级朝国网站| 天天操日日干夜夜撸| 欧美亚洲日本最大视频资源| 少妇的丰满在线观看| 亚洲,欧美精品.| 亚洲成人手机| 男女下面插进去视频免费观看| 国产精品免费视频内射| 亚洲欧洲国产日韩| 欧美在线黄色| 久久青草综合色| 天堂中文最新版在线下载| 久久人人爽人人片av| 久久久精品国产亚洲av高清涩受| 国产一区有黄有色的免费视频| 欧美国产精品一级二级三级| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 女人久久www免费人成看片| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 男女无遮挡免费网站观看| 久久青草综合色| 亚洲国产精品一区二区三区在线| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| av视频免费观看在线观看| 免费一级毛片在线播放高清视频 | 国产精品九九99| 热99国产精品久久久久久7| 中文欧美无线码| 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 丝袜人妻中文字幕| 久久久精品区二区三区| 操出白浆在线播放| 黄色怎么调成土黄色| 国产老妇伦熟女老妇高清| 久久久亚洲精品成人影院| 又紧又爽又黄一区二区| 啦啦啦在线观看免费高清www| 亚洲 国产 在线| av福利片在线| 人人妻,人人澡人人爽秒播 | 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 美女主播在线视频| 亚洲成人免费av在线播放| svipshipincom国产片| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 51午夜福利影视在线观看| 曰老女人黄片| 一区二区三区精品91| 丝袜在线中文字幕| 欧美黄色淫秽网站| 欧美97在线视频| 婷婷丁香在线五月| 欧美老熟妇乱子伦牲交| 一区二区三区四区激情视频| 精品久久久久久久毛片微露脸 | 丁香六月欧美| 欧美激情高清一区二区三区| 手机成人av网站| 欧美精品一区二区免费开放| 婷婷成人精品国产| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一区蜜桃| 性少妇av在线| 亚洲欧美色中文字幕在线| 国产男女内射视频| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 午夜福利,免费看| 在线观看免费高清a一片| 香蕉丝袜av| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 一边摸一边做爽爽视频免费| 婷婷色综合大香蕉| 在线观看人妻少妇| 欧美国产精品一级二级三级| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 高清欧美精品videossex| 美女主播在线视频| 亚洲人成网站在线观看播放| 欧美人与性动交α欧美软件| 久久精品久久久久久噜噜老黄| 国产av一区二区精品久久| 人妻人人澡人人爽人人| 中文字幕人妻熟女乱码| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 99香蕉大伊视频| 国产一卡二卡三卡精品| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久噜噜老黄|