• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of an adaptive Kalman filter-based storm tide forecasting model*

    2016-12-26 06:51:51MOK莫啟明LAI黎宇軒HOI許嘉賢

    K. M. MOK (莫啟明), U. H. LAI (黎宇軒), K. I. HOI (許嘉賢)

    Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China,

    E-mail: kmmok@umac.mo

    Development of an adaptive Kalman filter-based storm tide forecasting model*

    K. M. MOK (莫啟明), U. H. LAI (黎宇軒), K. I. HOI (許嘉賢)

    Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China,

    E-mail: kmmok@umac.mo

    Extreme storm tide usually causes flooding of low-lying land in a coastal city. Hence, developing an efficient and accurate forecasting model for issuing a timely warning is important. In this study, an adaptive Kalman filter-based storm tide forecasting model was proposed and applied to the inner Harbor of Macau. The model is a dynamic linear regression model with the harmonic tidal prediction, wind speed, wind direction and atmospheric pressure as its input parameters. With persistence forecast of weather assumed during the prediction period, the model was tested with 40 cases of storm tide induced by tropical cyclones in Macau between 2005 and 2012. Success was found for forecasts with lead times up to 3 hours. The proposed adaptive model is considered a practical tool for storm tide forecast in small coastal cities.

    adaptive model, flooding, Kalman filter, Macau, storm tide

    Introduction

    Storm surge is a phenomenon of abrupt rise in local sea level due to the presence of a tropical cyclone, which causes persistent strong onshore wind pushing the water body towards inland as well as the sucking effect due to decreased atmospheric pressure. These surges combined with the astronomical tide form the storm tide. Since storm tide could cause severe flooding in the low-lying regions of a coastal city, developing a model that could forecast accurately its temporal variation is important for releasing a timely flood warning. For example in Macau, a small Special Administrative Region (SAR) of only 30.4 km2in the southern coast of China, the low-lying area in its inner harbor has been suffering from flooding due to storm tide. Because of this, the Chief Executive Officer of the Macau SAR government in April of 2009 signed an administration order that stipulates the issue of a storm tide warning by the Meteorological and Geophysical Bureau (SMG) when the sea level is expected to exceed street level of the inner harbor. With a tide gauge already installed at the location, astatistical forecasting model is suitable for Macau. In fact, statistical models are commonly used for forecasting storm tide of a small urban area due to its lesser data (usually sea level and meteorological measurements) and computational demand. Many empirical storm surge prediction models in previous studies were developed based on Artificial Neural Network (ANN)[1,2], and Support Vector Regression (SVR)[3]. However, those models are non-adaptive and retraining is necessary when new data are available. To overcome this shortcoming, an adaptive storm tide forecasting model that could adjust its model coefficients automatically is proposed by using Kalman filtering in this study. The methodology is tested with 40 cases of storm tide induced by tropical cyclones in Macau.

    1. Methodology

    Based on a simulation study on the storm tide in Macau[4], the following empirical model with timevarying coefficients is proposed for predicting the storm tideat the kthh.

    where (ATk)is the astronomical tide prediction at the kthh by a harmonic model with 7 tidal constituentsandThe difference between the standard atmospheric pressure (P0) and the local atmospheric pressure at the kthhaffects the amount of sea-level rise due to decreased atmospheric pressure. The north-south component (uk-i)and the east-west component (vk-i)of the wind acceleration account for the influence of wind setup at the(k -i)thh, and they are calculated as:

    where (wk-i)and (φk-i)represent the wind speed and direction at the(k -i )thh, respectively. Finally,SSk-1represents the predicted storm surge level (STk-1-ATk-1)at the (k -1)thh. Note that when Eq.(1) is used to predict storm tide of multiple hours ahead, it requires the input of unknown meteorological information in the future. For this, a persistent meteorological condition is assumed. For example, when the storm tide levels of 9 hours aheadare predicted at the kthh, the unknown hourly wind speed, direction, and the atmospheric pressures fromh are assumed to have the same values as those measured at the kthh. It is believed that this persistence forecast assumption for weather is acceptable for a lead time of no more than 10 h. The adaptiveness of the model is realized by updating the time varying model coefficients (θ1,k,…,θ9,k)with the Kalman filter[5,6]whenever new measurements of the sea level are available.

    For implementation, Eq.(1) is expressed in the form of a generalized dynamic linear model

    where STkdenotes the predicted storm tide of theh,is a row vector containing the input functions used in Eq.(1)

    and θkis the state vector which contains the unknown model coefficients of thekthh

    Each model coefficient of the kthh is assumed to differ slightly from its value of the previous hour by

    Table 1 Tropical cyclone warning system in Macau

    The difference fi,k-1is assumed to follow a normal distribution with zero mean and a standard deviation σi. Note that there is no subscriptkin the standard deviation, meaning that it is independent of time. Then, Eq.(7) can be written in the following vector form

    Table 2 Root mean squared errors of the predictions with lead times of 1 h, 3 h, 6 h and 9 h

    Table 3 Coefficients of determination of the predictions with lead times of 1 h, 3 h, 6 h and 9 h

    where Fk-1follows a Gaussian i.i.d. vector process with zero mean and covariance matrixdiag. To update the model coefficients of theh, the measured sea levelat the kthh is required, and it relates to the parameter vectorθkthrough the following equation

    During the filtering step, the measurement of the kthh is available. Then, the model coefficients are updated by maximizing the posterior probability density function

    2. Results and discussion

    The proposed model is applied to forecast 40 cases of storm tide recorded in the Macau inner harbour caused by approaching tropical cyclones during 2005 to 2012. The warning of a threat by an approaching tropical cyclone is officially issued in Macau by the SMG. Table 1 shows their five-level warning system. The proposed model starts to predict the sea level when a warning No. 1 is issued. It stops when all warnings are cancelled. The atmospheric pressure and the wind velocity data used were obtained from a weather station installed at the SMG headquarter.

    Overall performances of the model for predicting the hourly sea levels with lead times of 1 h, 3 h, 6 h and 9 h are evaluated against measurements. Results of root-mean-squared-error (RMSE) and coefficient of determination (R2)for the 40 studied cases are shown in Table 2 and Table 3, respectively. The 40 cases listed in the tables are grouped together based on the highest tropical cyclone warning issued in each case. In general, the model performs the best for predictions of 1 h lead time with the smallest average RMSE (0.12 m) and the largest averageR2(0.95). Accuracy of the model decreases as the forecast lead time increases. For the predictions with a lead time of 3 h, the average RMSE and the average R2are 1.3 times and 96% of those with a 1 h lead time, respectively. When the forecast lead time increases to 6 h and 9 h, the average RMSE increases to 1.7 and 2.0 times of that with a 1 h lead time. The correspondingR2decreases to 87% and 85% of that with a 1 h lead time. Note that even the accuracy of the model prediction decreases, the average values ofRMSE=0.16 m and R2=0.91for the 3 h ahead prediction are still considered good. For a small coastal city like Macau, warnings with a lead time of 3 h may be sufficient.

    Temporal variations of the sea level predicted by the model for the cases with the highest storm tide level among each group shown in Tables 2 and 3 are examined with measurements. Figure 1 shows the tidal level forecasted and measured for Case 0609 (BOPHA), which had the highest storm-tide level for the cyclone warning No. 1 group. The model could predict the tidal variation including the peak value and its corresponding arrival time well even with a lead time of 9 h.

    Fig.1 Comparison of the storm tide predictions with measurements for Case 0609 (BOPHA)

    Fig.2 Comparison of the storm tide predictions with measurements for Case 1119 (NALAGE)

    Fig.3 Comparison of the storm tide predictions with measurements for Case 0814 (HAGUPIT)

    Figure 2 shows the temporal variations of the tidal level forecasted and measured for Case 1119 (NALAGE), which had the highest storm-tide level for the cyclone warning No. 3 group. The model in this case could predict the tidal variation well with a lead time of up to 3 h. The model predictions deviate much from the measurements near the third local maximum (between 26 h and 32 h) when the forecast lead time increases to 6 h and 9 h. This is caused most likely by drastic changes of the wind parameters that were assumed constant in that prediction period. However, the actual peak that occurred at around 15 h was still captured quite well by all forecasts of different lead times.

    Figure 3 shows the temporal variations of the tidal level forecasted and measured for Case 0814 (HAGUPIT), which had the highest storm-tide level for the cyclone warning No. 8 group as well as the highest storm-tide level among the 40 studied cases. For predictions with a lead time of 1 h, the model can capture the flood and ebb of the storm tide well. The tidal peak was slightly overestimated by 2%, and its arrival time was predicted 1 h early. Meanwhile, forecasts with a lead time of 3 h can still capture the tidal variation well with the peak being overestimated by 10%, and its arrival time also being forecasted 1 h early. As the forecast lead time becomes longer to 6 h and 9 h, the predicted tidal levels show a 2 h to 3 h lag time while keeping the peak value relatively close to the observations.

    Fig.4 Comparison of the storm tide predictions with measurements for Case 1208 (VICENTE)

    Table 4 Performance of the peak tidal level during 2005 to 2012

    Figure 4 shows the temporal variations of the tidal level forecasted and measured for Case 1208 (VICENTE), which had the highest and only cyclone warning No. 9 issued among the 40 studied cases. Similar to the Case 0814 (HAGUPIT) discussed earlier, predictions with lead times up to 3 h can capture the storm tide well. The tidal peak and its arrival time were predicted within 1% and one hour, respectively. However, as the forecast lead time becomes longer, the predicted sea level suffers again from the phase lag problem by up to 7 h.

    As storm tide could cause flooding of the lowlying area, two parameters are of great importance for a warning issuing operation. They are the maximum or peak level of the storm tide and its arrival time. Two indexes are used to evaluate the performance of the forecasting model. They relative error of the forecasted storm-tide peak level,?Hp, and the error of its arrival time,ETp. The relative error ?Hpis written as

    where Hpeand Hpodenote the peak level of the forecasted and observed storm tide, respectively. A?Hpof zero indicates that the model predicts perfectly the peak level. The error of forecasted peak-arrival timeETpis

    where Tpeand Tpoare the arrival time of the forecasted and observed peaks, respectively. Since the overall performance of the forecasting model with lead times up to 3 h is very satisfactory, evaluation of the model performance on predicting the tidal peak level and its arrival time focuses on forecasts with lead times up to 3 h. Table 4 summarizes results of the 40 studied cases in groups of the highest cyclone warning issued in each case. In general, the model tends to over-predict the peak level. Forecasts with a lead time of 1 h show that the model can predict values of the tidal peak level within 9% of the measurements with their corresponding arrival time predicted within 2 h of the observed value. As for the forecasts with a lead time of 3 h, the model can predict values of the tidal peak level within 18% of the measurements with their corresponding arrival time predicted within 3 h of the observed value.

    3. Conclusions

    An adaptive Kalman filter-based storm tide forecasting model was developed and applied to the inner Habour of Macau for verification in this study. The model was tested with 40 cases of storm tide induced by tropical cyclones with success. Forecasts with leadtimes up to 3 h have their average RMSE less than 0.16 m, average R2greater than 0.90, peak level value and its arrival time within 18% and 3 h of the measurements, respectively. Meanwhile when the forecast lead time became longer to 6 h and 9 h, the accuracy of the model decreased by 100% on average. This could be due to the persistence forecast assumption made for weather during the prediction. Therefore, the present model is practical for a small city like Macau when flood warning announcement with a lead time of 3 h is sufficient. However, if accurate forecasts of longer lead time are desired, improvement of the model performance could be achieved by providing future meteorological parameters needed for the model input through, for example the Weather Research and Forecasting (WRF) model. Further studies are recommended.

    Acknowledgements

    This work was supported by the Research Committee (Grant No. MYRG2014-00038-FST) of the University of Macau and the Science and Technology Development Fund (Grant No. 079/2013/A3) of the Macau SAR Government. The Marine and Water Bureau, and the Meteorological and Geophysical Bureau of Macau SAR are thanked for supplying the tide gauge data and meteorological data.

    [1] Lee T. L. Neural network prediction of a storm surge [J]. Ocean Engineering, 2006, 33(3-4): 483-494.

    [2] Tseng C. M., Jan C. D., Wang J. S. et al. Application of artificial neural networks in typhoon surge forecasting [J]. Ocean Engineering, 2007, 34(11-12): 1757-1768.

    [3] Rajasekaran S., Gayathri S. and Lee T. L. Support vector regression methodology for storm surge predictions [J]. Ocean Engineering, 2008, 35(16): 1578-1587.

    [4] Lai U. H., Hoi K. I., Mok K. M. Development of an adaptive empirical model for storm tide simulation [J]. Coastal Engineering Proceedings, 2014, 1(34): doi: 10.9753/icce.v34.management.3.

    [5] Choi I. C., Mok K. M., Tam S. C. Solving harmonic sealevel model with Kalman filter: A Macau case study [C]. Carbonate Beaches 2000. Virginia, USA, 2002, 38-52.

    [6] Yuen K. V. Bayesian methods for structural dynamics and civil engineering [M]. New York, USA: John Wiley and Sons, 2010, 68-98.

    (Received June 25, 2016, Revised October 31, 2016)

    * Biography:K. M. MOK, Male, Ph. D., Professor

    亚洲av熟女| 国产成人啪精品午夜网站| 18禁黄网站禁片午夜丰满| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 国产爱豆传媒在线观看 | 国内精品久久久久精免费| 亚洲一区中文字幕在线| 国产主播在线观看一区二区| 免费搜索国产男女视频| 国产高清videossex| 曰老女人黄片| 久久这里只有精品中国| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 国产精品国产高清国产av| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 亚洲人成电影免费在线| 精品第一国产精品| 久久婷婷成人综合色麻豆| 亚洲,欧美精品.| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 免费在线观看视频国产中文字幕亚洲| 五月伊人婷婷丁香| 母亲3免费完整高清在线观看| 91国产中文字幕| 99在线视频只有这里精品首页| 久久精品91无色码中文字幕| 国产av又大| 国内精品久久久久久久电影| 久久久久国产一级毛片高清牌| 亚洲第一欧美日韩一区二区三区| 日韩大码丰满熟妇| 搡老岳熟女国产| 亚洲美女视频黄频| 亚洲av成人av| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 成年女人毛片免费观看观看9| 最近最新中文字幕大全电影3| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频 | 岛国在线观看网站| 国产精品av视频在线免费观看| 岛国在线免费视频观看| 91大片在线观看| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 欧美色视频一区免费| 国产探花在线观看一区二区| 老熟妇仑乱视频hdxx| 九色成人免费人妻av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品综合一区在线观看 | 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 国产成人aa在线观看| 真人做人爱边吃奶动态| 999久久久国产精品视频| 国产午夜精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av片天天在线观看| 亚洲国产精品999在线| 国产黄色小视频在线观看| 欧美中文日本在线观看视频| 又黄又爽又免费观看的视频| 欧美午夜高清在线| 国产精品美女特级片免费视频播放器 | 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美 | 日韩免费av在线播放| 亚洲精品粉嫩美女一区| 免费在线观看亚洲国产| 激情在线观看视频在线高清| 欧美午夜高清在线| 热99re8久久精品国产| 久久精品国产综合久久久| 亚洲精品一区av在线观看| 色老头精品视频在线观看| 中出人妻视频一区二区| 午夜激情av网站| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 黄频高清免费视频| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 国产精品亚洲美女久久久| 国产精品久久久av美女十八| 中亚洲国语对白在线视频| 国产又黄又爽又无遮挡在线| 欧美一区二区精品小视频在线| 久久久国产精品麻豆| 国产区一区二久久| 在线观看66精品国产| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 亚洲国产日韩欧美精品在线观看 | 欧美不卡视频在线免费观看 | 国产av麻豆久久久久久久| 神马国产精品三级电影在线观看 | 亚洲人成网站在线播放欧美日韩| 亚洲熟妇熟女久久| 狂野欧美白嫩少妇大欣赏| 在线观看舔阴道视频| 久久久久亚洲av毛片大全| 99热只有精品国产| 国产精品av久久久久免费| 久久中文字幕人妻熟女| 亚洲国产欧美一区二区综合| 久久久精品国产亚洲av高清涩受| 在线播放国产精品三级| 欧美乱码精品一区二区三区| 久久久久久免费高清国产稀缺| 久久国产乱子伦精品免费另类| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 欧美丝袜亚洲另类 | 免费在线观看亚洲国产| 看免费av毛片| 在线a可以看的网站| 国产一区在线观看成人免费| a级毛片a级免费在线| aaaaa片日本免费| 亚洲第一电影网av| 欧美日韩国产亚洲二区| av在线播放免费不卡| 亚洲精华国产精华精| 久久久精品大字幕| 亚洲真实伦在线观看| 日韩av在线大香蕉| 精品久久久久久久久久免费视频| 日韩欧美精品v在线| 老鸭窝网址在线观看| 久久人妻av系列| 男人舔女人的私密视频| 日日干狠狠操夜夜爽| 中文字幕最新亚洲高清| 人人妻人人澡欧美一区二区| 嫁个100分男人电影在线观看| 久久 成人 亚洲| 在线视频色国产色| 日韩高清综合在线| 国产精品野战在线观看| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看 | 校园春色视频在线观看| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 首页视频小说图片口味搜索| 欧美精品亚洲一区二区| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| av福利片在线观看| 国产精品自产拍在线观看55亚洲| 久久人妻av系列| 波多野结衣高清无吗| 亚洲av第一区精品v没综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 日韩大码丰满熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 日本一区二区免费在线视频| 777久久人妻少妇嫩草av网站| 亚洲18禁久久av| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 一个人免费在线观看的高清视频| 久久伊人香网站| 日韩免费av在线播放| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 在线观看一区二区三区| 久久香蕉激情| 99国产精品一区二区三区| 国产精品,欧美在线| 一进一出抽搐动态| 国产精品久久久久久久电影 | 哪里可以看免费的av片| 精品久久蜜臀av无| 91字幕亚洲| 免费人成视频x8x8入口观看| 观看免费一级毛片| 国产不卡一卡二| 国产熟女午夜一区二区三区| 白带黄色成豆腐渣| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 黄色成人免费大全| 欧美日韩乱码在线| 波多野结衣巨乳人妻| 一区福利在线观看| 国产亚洲欧美98| 国产亚洲av高清不卡| 嫩草影院精品99| 黄色丝袜av网址大全| 欧美又色又爽又黄视频| 欧美成狂野欧美在线观看| 欧美日韩国产亚洲二区| 国产三级黄色录像| 最新美女视频免费是黄的| 男人舔奶头视频| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 丰满人妻一区二区三区视频av | 90打野战视频偷拍视频| av超薄肉色丝袜交足视频| 老司机午夜福利在线观看视频| 久久久精品大字幕| 又紧又爽又黄一区二区| 久久久久久九九精品二区国产 | 18禁裸乳无遮挡免费网站照片| 精品日产1卡2卡| 免费在线观看视频国产中文字幕亚洲| 午夜影院日韩av| 免费看美女性在线毛片视频| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 亚洲精品久久成人aⅴ小说| 夜夜爽天天搞| 国产精品久久电影中文字幕| 国产精品免费视频内射| 国产欧美日韩一区二区三| 俺也久久电影网| 亚洲av成人精品一区久久| ponron亚洲| 亚洲无线在线观看| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| avwww免费| 精品久久久久久久末码| 一区二区三区国产精品乱码| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久久久久| 欧美日韩黄片免| av有码第一页| 欧美黑人精品巨大| 99精品欧美一区二区三区四区| 久久精品91无色码中文字幕| 亚洲av电影不卡..在线观看| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 久久久久九九精品影院| 久久热在线av| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 成年免费大片在线观看| 老司机深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 1024视频免费在线观看| 男女那种视频在线观看| 嫩草影视91久久| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 国产一级毛片七仙女欲春2| 男女床上黄色一级片免费看| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 亚洲精品在线美女| 日韩高清综合在线| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 窝窝影院91人妻| 国产精品一及| 日本三级黄在线观看| 午夜影院日韩av| 最近在线观看免费完整版| 老司机在亚洲福利影院| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 成人国产一区最新在线观看| 一级作爱视频免费观看| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 中文字幕熟女人妻在线| 99国产精品99久久久久| 麻豆国产97在线/欧美 | 日韩欧美三级三区| 91大片在线观看| 国产精品香港三级国产av潘金莲| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| xxxwww97欧美| 日本五十路高清| 别揉我奶头~嗯~啊~动态视频| 亚洲专区国产一区二区| 日日干狠狠操夜夜爽| 在线观看舔阴道视频| 久久久久久久午夜电影| 男男h啪啪无遮挡| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 国产高清激情床上av| 久久久久国产一级毛片高清牌| 亚洲精品在线观看二区| aaaaa片日本免费| 动漫黄色视频在线观看| 在线观看免费日韩欧美大片| 亚洲中文字幕日韩| 午夜福利视频1000在线观看| 成人特级黄色片久久久久久久| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻aⅴ院| 丝袜美腿诱惑在线| 无限看片的www在线观看| a级毛片a级免费在线| 亚洲 欧美一区二区三区| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| 99久久精品热视频| 国产人伦9x9x在线观看| 午夜免费观看网址| 中文字幕最新亚洲高清| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 波多野结衣高清作品| 天堂影院成人在线观看| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 亚洲av成人精品一区久久| 亚洲成人国产一区在线观看| 久久久久久久久免费视频了| 国产高清视频在线观看网站| 九色国产91popny在线| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 国产高清激情床上av| 亚洲精品国产一区二区精华液| 啦啦啦免费观看视频1| 成年免费大片在线观看| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 久久久久国产一级毛片高清牌| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区| 丁香欧美五月| 亚洲国产中文字幕在线视频| 国产精品av视频在线免费观看| 欧美中文综合在线视频| 国产主播在线观看一区二区| 在线播放国产精品三级| 99热只有精品国产| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 国产成年人精品一区二区| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 一级毛片精品| 舔av片在线| 国产亚洲精品av在线| 午夜福利免费观看在线| 久久精品亚洲精品国产色婷小说| 亚洲av熟女| 激情在线观看视频在线高清| 欧美成人一区二区免费高清观看 | 国产私拍福利视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 九色成人免费人妻av| 成人欧美大片| 亚洲av电影在线进入| 国产亚洲精品av在线| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人一区二区免费高清观看 | 亚洲18禁久久av| 免费观看精品视频网站| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 中文字幕熟女人妻在线| 国产精品乱码一区二三区的特点| a级毛片在线看网站| 国产精品免费视频内射| 香蕉国产在线看| 我的老师免费观看完整版| 午夜久久久久精精品| 久久中文看片网| 欧美一级a爱片免费观看看 | 国产精品一区二区三区四区免费观看 | 在线视频色国产色| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 精品久久久久久久毛片微露脸| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 99久久久亚洲精品蜜臀av| av福利片在线| 亚洲美女黄片视频| 国产成人啪精品午夜网站| 午夜免费观看网址| 一级毛片精品| 我要搜黄色片| av免费在线观看网站| 一本久久中文字幕| 悠悠久久av| 国产成人av教育| 亚洲美女黄片视频| 久久伊人香网站| 亚洲精品色激情综合| 亚洲精品av麻豆狂野| 国产精品爽爽va在线观看网站| 久久精品亚洲精品国产色婷小说| 欧美黑人巨大hd| av免费在线观看网站| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看 | 久久久精品大字幕| 国产一区二区在线观看日韩 | 人妻夜夜爽99麻豆av| 麻豆av在线久日| 午夜激情av网站| 搡老妇女老女人老熟妇| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 国产不卡一卡二| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 亚洲色图 男人天堂 中文字幕| 一二三四在线观看免费中文在| 亚洲av熟女| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 99国产极品粉嫩在线观看| 在线看三级毛片| 国产在线观看jvid| 国产aⅴ精品一区二区三区波| 日韩三级视频一区二区三区| 一本综合久久免费| 久久亚洲真实| 两个人的视频大全免费| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 国产高清videossex| 99在线人妻在线中文字幕| 欧美乱码精品一区二区三区| a级毛片在线看网站| 久久婷婷成人综合色麻豆| 久久久久性生活片| 草草在线视频免费看| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 无限看片的www在线观看| 中亚洲国语对白在线视频| 两个人的视频大全免费| 欧美中文日本在线观看视频| 91麻豆精品激情在线观看国产| 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 一级黄色大片毛片| 无人区码免费观看不卡| 午夜a级毛片| 高潮久久久久久久久久久不卡| 听说在线观看完整版免费高清| 亚洲色图av天堂| 亚洲欧美日韩高清专用| 少妇人妻一区二区三区视频| 日韩欧美国产在线观看| a级毛片a级免费在线| 又黄又爽又免费观看的视频| 国产av又大| 人人妻人人澡欧美一区二区| 国产av一区在线观看免费| 久久久水蜜桃国产精品网| 特级一级黄色大片| 91国产中文字幕| av天堂在线播放| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 日韩国内少妇激情av| 在线观看午夜福利视频| 欧美又色又爽又黄视频| 黄色丝袜av网址大全| 琪琪午夜伦伦电影理论片6080| 757午夜福利合集在线观看| 两性夫妻黄色片| 午夜影院日韩av| 日韩欧美国产在线观看| 精品久久久久久久毛片微露脸| 免费无遮挡裸体视频| 后天国语完整版免费观看| 日韩成人在线观看一区二区三区| 欧美久久黑人一区二区| 91成年电影在线观看| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 免费看a级黄色片| 日韩欧美国产在线观看| 天天添夜夜摸| 午夜两性在线视频| 最新在线观看一区二区三区| 在线免费观看的www视频| 搡老熟女国产l中国老女人| 免费看十八禁软件| 婷婷精品国产亚洲av在线| 色尼玛亚洲综合影院| 久久久国产精品麻豆| 国产麻豆成人av免费视频| 免费看a级黄色片| 午夜久久久久精精品| 天天添夜夜摸| 中文亚洲av片在线观看爽| 免费在线观看成人毛片| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜添小说| 欧美在线一区亚洲| 大型黄色视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 女警被强在线播放| 一区福利在线观看| 一区二区三区国产精品乱码| 中国美女看黄片| 日韩精品青青久久久久久| 国产成人啪精品午夜网站| 精品乱码久久久久久99久播| av福利片在线观看| 看黄色毛片网站| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看 | 亚洲国产精品999在线| 91老司机精品| 亚洲一码二码三码区别大吗| 18禁观看日本| 伦理电影免费视频| av在线天堂中文字幕| 日本黄色视频三级网站网址| 成年女人毛片免费观看观看9| 老汉色av国产亚洲站长工具| 亚洲一区中文字幕在线| 18禁黄网站禁片午夜丰满| 婷婷六月久久综合丁香| 精品久久久久久久人妻蜜臀av| 中亚洲国语对白在线视频| 人人妻,人人澡人人爽秒播| 伦理电影免费视频| 日韩欧美免费精品| 免费在线观看影片大全网站| www.精华液| 久久久国产精品麻豆| 小说图片视频综合网站| 久久久国产成人精品二区| 免费高清视频大片| 国产精品国产高清国产av| 黄色片一级片一级黄色片| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www| 毛片女人毛片| 国产又色又爽无遮挡免费看| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| www日本黄色视频网| 免费一级毛片在线播放高清视频| 一边摸一边抽搐一进一小说| 日韩成人在线观看一区二区三区| 最新美女视频免费是黄的| 90打野战视频偷拍视频| 国内精品一区二区在线观看| 这个男人来自地球电影免费观看| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 啦啦啦免费观看视频1| 国产精品永久免费网站| 天堂动漫精品| 国产亚洲精品av在线| 啪啪无遮挡十八禁网站| 日本黄色视频三级网站网址| 午夜激情福利司机影院| 国产一区二区在线观看日韩 | 久久午夜亚洲精品久久| 久久精品91蜜桃| 亚洲成人久久爱视频| av国产免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 五月玫瑰六月丁香| 一级毛片高清免费大全| 制服丝袜大香蕉在线| 亚洲专区国产一区二区| 国产熟女午夜一区二区三区| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 亚洲精品国产精品久久久不卡| 又黄又粗又硬又大视频| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 欧美3d第一页| 久久中文看片网| 99久久99久久久精品蜜桃|