• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    2016-12-23 05:44:05LIUYuZHOUXiaoyingZHOUGuanghui
    關(guān)鍵詞:信息科學(xué)絕緣體鐵磁

    LIU Yu, ZHOU Xiao-ying, ZHOU Guang-hui

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    ?

    Tunable Magnetic-Resistance for Topological Insulator Thin Film Modulated by a FM/N/FM Junction

    LIU Yu1, ZHOU Xiao-ying2, ZHOU Guang-hui2*

    (1. College of Information Science and Engineering, Hunan First Normal University, Changsha 410205; 2. College of Physics and Information Sciences, Hunan Normal University, Changsha 410081, China)

    The quantum transport for a topological insulator thin film was studied by a ferromagnet/normal/ferromagnet junction with a gate voltage exert on the normal segment. A quantum phase transition occurs due to the competition between the exchange field and the hybridization gap. The conductance for the junction behaves like a conventional spin valve without gate-voltage applied and can be tuned like a spin field-effect transistor via the gate-voltage. Interestingly, a conductance plateau is emerged when the exchange field is twice of the hybridization gap in the absence of voltage. Further, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    topological insulator film; ferromagnet/normal/ferromagnet junction; surface state transport

    Topological insulators (TIs)[1], possess of unusual phases of quantum matter simultaneously with insulating bulk and conducting edge or surface states, have been extensively studied in recent years[2]. The two-dimensional (2D) TI phase was firstly predicted in a HgTe quantum well[3]and observed by the followed transport measurements[4]. Thereafter, Bi2Se3family of materials have been proposed[5]as three-dimensional (3D) strong TIs. And the single Dirac cone of surface states has been observed by the followed spin- and angle-resolved photoemission spectroscopy measurements[6-7]for Bi2Se3and Bi2Te3, respectively. These results have revealed that electron spins on the surface Dirac cone are locked with their momenta, giving rise to helical Dirac fermions without spin degeneracy[5-7]. The locking of the electron spin to the momentum comes from a combination of strong spin-orbit interaction and the breaking of the inversion symmetry at the surface[5]. Such a spin texture on the surface Dirac cone leads to antilocalization property and plays a central role in inducing exotic quantum phenomena. Moreover, surface states are protected by the time-reversal symmetry[8]and the topology of the bulk gap, and are robust against disorder scattering[9]and electron-electron interactions[10].

    Furthermore, 3D TI thin films have been extensively investigated theoretically[11-12]and experimentally[13-14]due to their quite different nature from that with a single surface. Recently, two effective Hamiltonians[11,15]were proposed to describe low energy electrons for 3D TI thin film. Consequently, various interesting properties of 3D TI thin films have been predicted, particularly those relevant to quantum Hall effect[16], Landau levels[15,17], quantum phase transitions[18-20], magnetic-resistive effect[21]and electron-electron interaction[22], etc. However, unlike the 3D TI single surface state, less attention has been paid to theoretical investigation on transport property modulated by ferromagnetic (FM) stripes. It is known that the top and bottom surfaces of a 3D TI thin film are hybridized. When the Fermi level is in the hybridization gap, exotic property such as quantum phase transition may appear[18-20], which is really distinct with single surface states[23-27]. Moreover, such a promising material is vital for device designing in nanoelectronics and spintronics. Therefore, the transport property for 3D TI thin film modulated by FM stripes is an important issue.

    In this work, we study the electronic structure and transport for a 3D TI thin film modulated by a ferromagnet/normal/ferromagnet (FM/N/FM) junction with the exchange filed configuration only in thezdirection and a gate voltage on the normal metal segment. A quantum phase transition occurs when the exchange field is equal to the hybridization gap of the film. Normalized conductance is calculated for two phases with the gate is present or absent. We demonstrate that the conductance for the junction behave like a conventional spin value when no gate-voltage applied and can be tuned like a spin field transistor via the gate-voltage. Interestingly, a conductance platform emerged when the exchange field is twice of the hybridization gap with no voltage applied. Furthermore, the magnetic-resistance ratio can be up to 100%, and can also be negative due to the anomalous transport.

    The organization of this paper is as follows. In Sec.Ⅰ, we explain the Hamiltonian and present the theoretical formulism for the system. In Sec.Ⅱ, we give some numerical examples with discussions for the analytical calculation. Sec.Ⅲ summarizes our results briefly.

    1 Model and Hamiltonian

    Fig.1 (Color online) (a) Schematic illustration of a 3D TI thin film attached by a FM/N/FM junction, where a gate voltage on the normal metal segment is presented

    As shown in Fig.1, we consider a FM/N/FM junction on the surface of a 3D TI thin film with a voltage exerted in the central normal region. The bulk ferromagnetic insulators interacts with electrons in the TI film by the proximity, and the ferromagnetism is induced in two surfaces states[23-27]. The interfaces between ferromagnet (FM) and normal segment are parallel to theydirection, and the normal segment is located betweenx=0 andx=Lwith gate voltageV0exerted on it and we presume the distance between two interfaces is shorter than the mean-free path as well as the spin coherence length for simplicity.

    According to the effective low-energy surface Hamiltonian for a clean 3D TI thin film[15], the Hamiltonian for our system reads

    (1)

    Fig.2 (Color online) Energy (in units of E0) spectrum for a 3D TI thin film with (a) Δt=1, mi=0, Vo=0, (b) Δt=1, mi=0, Vo=-1, (c) Δt=1, mi=1, Vo=0, (d) Δt=1, mi=2, Vo=0. In (a) and (b) the (black) dashed line is for spin-up and (red) solid line for spin-down electrons, respectively, but the slid/dashed line for conduction/valence band in (c) and (d).

    In Fig.2, for more intuitive comprehension, the energy (in units ofE0) dispersions in different cases are plotted for the system according to Eq.(2). For a clean film, as seen in Fig.2(a), the energy is degenerated for two spin orientations with a gapΔ=2Δtbetween conduction and valence bands. However, when a gate-voltage is applied both the conduction and valence bands are shifted down form the Fermi level but the degeneracy is still kept [see Fig.2(b)]. Furthermore, when an exchange field is presented, unlike the single surface states[24-26], an interesting spectrum feature emerged: the energy is spilt into four branches and a quantum phase transition occur due to the competition between the exchange field and hybridiztion. As shown in Figs. 2(c) and 2(d), in this case the thin film is conducting whenmi(t)=Δtand semiconducting with a gap Δ=2|mi(t)-Δt|, which has been well explained in Ref.[20].

    In order to investigate the transport property for 3D TI thin film modulated by the junction. We now calculate the charge transmission for the system. The thin film is divided into three regions as shown in Fig.1. In the incoming region, the wave function is

    (2)

    Inthecentralregionwhereagate-voltageisexerted,thewavefunctionis

    (3)

    wherea(b) is the left (right) going wave amplitude,kx/yis the wavevetor andky=qyfor the momentum conservation in the y direction. IfE=V0+sΔt,

    (4)

    Andthewavefunctioninthetransmittingregionis[31]

    (5)

    wheretis the transmission coefficient,Px/yis the wavevetor andpy=kyfor the momentum conservation in theydirection. Therefore, the transmission probability can express as

    (6)

    Inordertocalculatethetransmissionprobability,weapplythecontinuityconditionsforwavefunctionsatboundariesbetweendifferentregions: ψi(0,y)=ψc(0,y)andψc(L,y)=ψt(L,y).Unlikethesecond-orderderivativeSchr?dingerequation,oneonlyneedstomatchthewavefunctionbutnotitsderivative,becausetheHamiltonianemployedhereisafirst-orderlyderivative.ThenwecanobtainthetransmissionprobabilityT(E,θ).Inthispaper,weinvestigatetransportpropertiesforthestateassociatewiths=-1foritsinterestingbandstructure.Asaresult,accordingtotheLandauer-Büttikerformula[32],itisstraightforwardtoobtaintheballisticconductanceatzerotemperature

    (7)

    whereG0=2e2/hisconductanceunit.Note,weletmi=mt=moinvalueandparallel(P)oranti-parallel(AP)todistinguishtheorientationoftwoFMstripeslaterforconvenientexplanation.

    2 Numerical Examples and Discussions

    Inwhatfollowsweshowsomenumericalexamplesfora3DTIthinfilmmodulatedbythejunction.

    Fig.3 (Color online) Conductance vs transmitting energy with L=2 (a)Δt=1, V=0, mo=1, (b)Δt=1, V=0,mo=2, (c)Δt=1, V=-4, mo=1, (d)Δt=1, V=-4, mo=2, the blue solid line for parallel conductance GP and the red dashed line for the antiparallel conductance GAP.

    Fig.4 (Color online) Corresponding magnetic-resistance ratio(MR) for Fig.3

    Fig.3presentsthetunnelingconductanceGpandGAPv.s.energywithL=2and(a)Δt=1, V=0, mb=1, (b)Δt=1, V=0, m0=2, (c)Δt=1, V=-4, m0=1, (d)Δt=1, V=-4, m0=2,wherethe(blue)solidlineforparallelconductanceGpandthe(red)dashedlinefortheantiparallelconductanceGAP.Whennogate-voltageapplied,theconductanceinparallelconfigurationisalwayslargethanthatinantiparallelconfigurationasintheconventionalspinvalve[33]anditscounterpartingraphene[34]andtheconductanceisanoscillatedevenfunctionofEwhichmeanselectronsandholescontributetoconductanceequally(seeFig.3(a)and3(b)).InFig.3(a),theparallelconductanceGp(the(blue)solidline)showsanonzeroplatformatsmalltransmittingenergybecauseoftheevanescentwavesthoughatransmissiongap[-1,1]formedinthecentralregion(seeFig.2(a))fortheincomingregionisinmetalphase(seeFig.2(c)),while,theantiparallelconductanceGAP(the(red)dashedline)isvanishedwhenthetunnelingenergylocatesinthetunnelinggap[-2,2]whichisdeterminedbythebandstructureoftransmittingregionaccordingtoEq. (2).Interestingly,inFig.3(b), Gp(the(blue)solidline)isalwaysG0whenelectronenergyishigherthanacriticalvaluewhichseemsquitetooursurprise.Actually,thiscanbeunderstoodasfollow.ForFig.3(c)theFMstripesareinPalignmentwithm0=2andtheincomingregionisinsemiconductorphasewithagapΔ=1,sodothetransmittingregion,andthenormalregionisalsoasemiconductorwithaΔ=1inlinewiththebandstructure(seeFig.2(a)),whicheliminatethedistinguishesinthreedifferentregionsfromtheviewofbandstructureleadingtoaperfectwavfunctionmatchinthreedifferentregions.Moregeneralconclusionisthatwhentheexchangefiledistwiceofthehybridizationgap,thereisnodifferenceinthreedistinctregions,electronsmovefreelywhentheirenergyishigherthanthetunnelinggap.However,itseemsquitedifferentfortheantiparallelconductanceGAP(the(red)dashedline)forthetransmittingregionisanisotropicwiththeothersandtheexplanationissimilarwiththatinFig.3(a).However,whennogate-voltageapplied,theparallelconductanceGpcanbelessthantheantiparallelconductanceGAPwhichissimilarwiththeconductancefeatureinaspin-fieldtransistorandatopologicaljunction[27](seeFigs.3(c)and3(d)).Meanwhile,theconductanceisasymmetrywithtunnelingenergywhichmeanselectronsandholescontributeunequallytoconductanceduetotheasymmetrybandstructureincentralregion(seeFig.2(b)).InFig.3(c),noconductinggapformedforparallelconductanceGpowingtoanegativegate-voltagepushedtheconductingbandbelowtheFermienergy(seeFig.2(a)wesetEF=0).Yet,conductingisalwaysblockedforGAPwhenthetunnelingenergylocatesintheconductinggap[-2,2]determinedbythetransmittingregion.AsforFig.3(d),theconductingfeatureissimilartoFig.3(c)apartfromaconductinggapformedforbothGpandGAP.

    AfterobtainingtheconductanceGP(GAP)fortheparallel(antiparallel)configuration,wecangetthemagneticresistance(MR)directly,whichisdefinedasMR=(GP-GAP)/GP.Fig.4plottedthecorrespondingMRv.s.energyforFig.3.TheMRcanapproach100%inallcasesfordifferentconductinggapinPandAPalignment.Moreover,thegate-voltageinfluencedtheMRgreatlyfortheMRisalwayspositiveandsymmetrywithEwhenthegate-voltageisabsent,however,theMRisasymmetrywithEandcanbenegativeowingtoanomalouselectronictransport[23,26].ThebignegativeMRalsomeansabigvariationinconductancebetweentheparallelandantiparallelconfigurations.OnecanunderstandotherfeaturesaboutMRfromFig.3.

    3 Summary and Conclusion

    Insummary,wehavestudiedtheelectronicstructureandchargetransportforatopologicalinsulatorthinfilmmodulatedbyaferromagnet/normal/ferromagnetjunctionwithagatevoltageexertonthenormalsegment.Aquantumphasetransitionoccursowingtothecompetitionbetweentheexchangefieldandthehybridizationgap.Normalizedconductanceiscalculatedfortwophaseswiththegateispresentorabsent.Wedemonstratethattheconductanceforthejunctionbehavelikeaconventionalspinvaluewhennogate-voltageappliedandcanbetuninglikeaspinfieldtransistorviathegate-voltage.Interestingly,aconductanceplatformemergedwhentheexchangefieldistwiceofthehybridizationgapwithnovoltageapplied.Furthermore,themagnetic-resistanceratiocanbe100%,andcanalsobenegativeduetoanomaloustransport.TheseinterestingfindingsfortheFMmodulatednanostructurebasedonthe3DTIthinfilmmaybetestableinthepresentexperimentaltechnique[7,37],andmayprovideafurtherunderstandingthenatureof3DTIthinfilm.

    [1] KANE C L, MELE E J. A New Spin on the Insulating State [J]. Science, 2006,314(11):1692-1693.

    [2] HASAN M Z, KANE C L. Topological insulators [J]. Rev Mod Phys, 2010,82(1):3045-3057.

    [3] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect and topological phase transition in HgTe quantum wells [J]. Science, 2006,314(4):1757-1761.

    [4] KONIG M, WIEDMANN S, BRUNE C,etal. Quantum spin hall insulator state in HgTe quantum wells [J]. Science, 2007,318(3):766-770.

    [5] ZHANG H, LIU C X, QI X L,etal. Topological insulators in Bi2Se3and Sb2Te3with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):483-442.

    [6] XIA Y, QIAN D, HSIEH D,etal. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface [J]. Nature Phys, 2009,5(2):398-402.

    [7] CHEN Y L, ANALYTIS J G, CHU J H,etal. Experimental realization of a three- dimensional topological insulator Bi2Te3[J]. Science, 2009,325(1):178-181.

    [8] FU L, KANE C L, MELE E J. Topological insulators in three dimensions [J]. Phys Rev Lett, 2007,98(4):106803.

    [9] JIANG H, CHENG S G, SUN Q F,etal. Topological insulator:a new quantized spin hall resistance robust to dephasing [J]. Phys Rev Lett, 2009,103:036803.

    [10] EGGER R, ZAZUNOV A, YEYATI A L. Helical luttinger liquid in topological insulator nanowires [J]. Phys Rev Lett, 2010,105:136403.

    [11] LU H Z, SHAN W Y, YAO W,etal. Massive dirac fermions and spin physics in an ultrathin film of topological insulator [J]. Phys Rew B, 2010,81:115407.

    [12] BIHLMAYER G, KOROTEEV Y M, CHULKOV E V,etal. Surface- and edge-states in ultrathin Bi-Sb films [J]. New J Phys, 2010,12:065006.

    [13] ZHANG Y, HE K, CHANG C Z,etal. Crossover of the three-dimensional topological insulator Bi2Se3to the two-dimensional limit [J]. Nature Phys, 2010,6(4):584-588.

    [14] PLUCINSKI L, MUSSLER G, KRUMRAIN J,etal. Robust surface electronic properties of topological insulators:Bi2Te3films grown by molecular beam epitaxy [J]. Appl Phys Lett, 2011,98:222503.

    [15] ZYUZIN A A, BURKOV A A. Thin topological insulator film in a perpendicular magnetic field [J]. Phys Rev B, 2011,83:195413.

    [16] LI H, SHENG L, XING D Y. Quantum hall effect in thin films of three-dimensional topological insulators [J]. Phys Rev B, 2011,84:035310.

    [17] YANG Z, HAN J H. Landau level states on a topological insulator thin film [J]. Phys Rev B, 2011,83:045415.

    [18] LI H, SHENG L, XING D Y. Quantum phase transitions in ultrathin films of three-dimensional topological insulators in the presence of an electrostatic potential and a Zeeman field [J]. Phys Rev B, 2012,85:045118.

    [19] ZYUZIN A A, HOOK M D, BURKOV A A. Parallel magnetic field driven quantum phase transition in a thin topological insulator film [J]. Phys Rev B, 2011,83:245428.

    [20] CHO G Y, MOORE J E. Quantum phase transition and fractional excitations in a topological insulator thin film with Zeeman and excitonic masses [J]. Phys Rev B, 2011,84:165101.

    [21] ZHANG H B, YU H L, BAO D H,etal. Magnetoresistance swich effect of a Sn-doped Bi2Te3topological insulator [J]. Adv Mater, 2012,24(1):132-136.

    [22] WANG J, DASILVA A M, CHANG C Z,etal. Evidence for electron-electron interaction in topological insulator thin films [J]. Phys Rev B, 2011,83:245438.

    [23] YOKOYAMA T, ZANG J, NAGAOSA N. Theoretical study of the dynamics of magnetization on the topological surface [J]. Phys Rev B, 2010,81:241410(R).

    [24] ZHU J J, YAO D X, ZHANG S C,etal. Electrically controllable surface magnetism on the surface of topological insulators [J]. Phys Rev Lett, 2011,106:097201.

    [25] ZHAI F, WU P. Tunneling transport of electrons on the surface of a topological insulator attached with a spiral multiferroic oxide [J]. Appl Phys Lett, 2011,98:022107.

    [26] WU Z, PEETERS F M, CHANG K. Spin and monentum filtering of electrons on the surface of a topological insulator [J]. Appl Phys Lett, 2011,98:162101.

    [27] ZHANG K H, WANG Z C, ZHENG Q R,etal. Gate-voltage controlled electronic transport through a ferromagnet/normal/ferromagnet junction on the surface of a topological insulator [J]. Phys Rev B, 2012,86:174416(R).

    [28] HAUGEN H, HERNANDO D H, BRATAAS A. Spin transport in proximity-induced ferromagnetic graphene [J]. Phys Rev B, 2008,77:115406.

    [29] CHAKHALIAN J, FREELAND J W, SRAJER G,etal. Magnetism at the interface between ferromagnetic and superconducting oxides [J]. Nature Phys, 2006,2(1):244-248.

    [30] PERSHOGUBA S S, YAKOVENKO V M. Spin-polarized tunneling current through a thin film of a topological insulator in a parallel magnetic field [J]. Phys Rev B, 2012,86:165404(R).

    [31] KATSNELSON M I. Zitterbewegung, chirality, and minimal conductivity in graphene [J]. Eur Phys J B, 2006,51:157-160.

    [32] DATTA S. Electronic transport in mesoscopic systems [M]. Cambridge: Cambridge University Press, 1995.

    [33] ZUTIC I, FABIAN J, SARMA S D. Spintronics: fundamentals and applications [J]. Rev Mod Phys, 2004,76(2):323-410.

    [34] BAI C, ZHANG X. Large oscillating tunnel magnetoresistance in ferromagnetic graphene single tunnel junction [J]. Phys Lett A, 2009,372(3):725-729.

    [35] DATTA S, DAS B. Electroic analog of the electro-optic modulator [J]. Appl Phys Lett, 1990,56(3):665.

    [36] SOODCHOMSHOM B. Magneto transport on the surface of a topological insulator spin valve [J]. Phys Lett A, 2010,374(9):2894-2899.

    [37] PAN Z H, VESCOVO E, FEDOROV A V,etal. Electronic structure of the topological insulator Bi2Se3using angle-resolved photoemission spectroscopy: evidence for a nearly full surface spin polarization [J]. Phys Rev Lett, 2011,106:257004.

    (編輯 CXM)

    2016-09-18

    國(guó)家自然科學(xué)基金資助項(xiàng)目(11274108)

    O441.6

    A

    1000-2537(2016)06-0061-07

    鐵磁/正常/鐵磁結(jié)調(diào)制的拓?fù)浣^緣體薄膜表面輸運(yùn)性質(zhì)

    劉 宇1, 周小英2, 周光輝2*

    (1.湖南第一師范學(xué)院信息科學(xué)與工程學(xué)院, 中國(guó) 長(zhǎng)沙 410205; 2.湖南師范大學(xué)物理與信息科學(xué)學(xué)院, 中國(guó) 長(zhǎng)沙 410081)

    研究了拓?fù)浣^緣體薄膜表面態(tài)在鐵磁/正常/鐵磁結(jié)調(diào)制下的電子自旋相關(guān)輸運(yùn). 發(fā)現(xiàn)由于交換場(chǎng)與雜化帶隙的競(jìng)爭(zhēng)而產(chǎn)生量子相變, 在結(jié)無(wú)門(mén)電壓時(shí)電導(dǎo)行為類(lèi)似于自旋閥, 加門(mén)電壓后為自旋場(chǎng)效應(yīng)管. 有趣的是, 無(wú)門(mén)電壓且交換場(chǎng)能是雜化帶隙的兩倍時(shí)出現(xiàn)一個(gè)電導(dǎo)平臺(tái), 磁阻比率可達(dá)100%.

    拓?fù)浣^緣體薄膜; 鐵磁/正常/鐵磁結(jié); 表面態(tài)輸運(yùn)

    10.7612/j.issn.1000-2537.2016.06.011

    *通訊作者,E-mail:ghzhou@hunnu.edu.cn

    猜你喜歡
    信息科學(xué)絕緣體鐵磁
    關(guān)于兩類(lèi)多分量海森堡鐵磁鏈模型的研究
    多孔位插頭絕緣體注塑模具設(shè)計(jì)分析
    玩具世界(2022年1期)2022-06-05 07:42:20
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專(zhuān)業(yè)模塊化課程設(shè)計(jì)探究
    發(fā)電廠(chǎng)直流系統(tǒng)接地故障分析與處理策略解析
    你好,鐵磁
    基于文獻(xiàn)類(lèi)型矯正影響因子在信息科學(xué)與圖書(shū)館學(xué)期刊中的實(shí)證分析
    你好,鐵磁
    一維交替鐵磁-反鐵磁耦合的海森堡鏈[Mn(N3)2(pybox)]n
    很黄的视频免费| 国产熟女xx| 午夜福利免费观看在线| 国产精品久久久av美女十八| 日韩精品青青久久久久久| 午夜福利在线在线| 最好的美女福利视频网| 午夜福利在线在线| 精华霜和精华液先用哪个| 国产精品,欧美在线| av在线天堂中文字幕| 亚洲七黄色美女视频| 久久精品成人免费网站| 18禁黄网站禁片午夜丰满| 亚洲欧洲精品一区二区精品久久久| 国产精品电影一区二区三区| 免费无遮挡裸体视频| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线观看日韩 | 精品无人区乱码1区二区| 无人区码免费观看不卡| 99在线视频只有这里精品首页| 国产熟女午夜一区二区三区| 国产成人av教育| 欧美成狂野欧美在线观看| 久久亚洲真实| 亚洲精华国产精华精| 一级片免费观看大全| 国产成人精品久久二区二区91| 一夜夜www| 亚洲精品中文字幕一二三四区| 亚洲精品中文字幕一二三四区| 精品免费久久久久久久清纯| 亚洲精品国产精品久久久不卡| 欧美一区二区国产精品久久精品 | 成人国语在线视频| 人人妻人人看人人澡| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 国产成人aa在线观看| 脱女人内裤的视频| www.自偷自拍.com| 精品国产乱码久久久久久男人| 精品无人区乱码1区二区| 看黄色毛片网站| 日本免费一区二区三区高清不卡| 91成年电影在线观看| 18禁黄网站禁片午夜丰满| 国产探花在线观看一区二区| 国产三级中文精品| 天天躁狠狠躁夜夜躁狠狠躁| 1024香蕉在线观看| 久久精品成人免费网站| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 国产精品一及| 久久香蕉激情| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 中文字幕av在线有码专区| 一级a爱片免费观看的视频| 欧美日韩瑟瑟在线播放| 午夜两性在线视频| 国产精品无大码| 99久久中文字幕三级久久日本| 我要看日韩黄色一级片| 床上黄色一级片| 免费看美女性在线毛片视频| 久久久色成人| 成人鲁丝片一二三区免费| 久久这里有精品视频免费| 人人妻人人澡人人爽人人夜夜 | 波多野结衣高清无吗| 亚洲精品成人久久久久久| 国国产精品蜜臀av免费| 欧美性感艳星| 18禁裸乳无遮挡免费网站照片| 六月丁香七月| 婷婷色av中文字幕| 精品久久久噜噜| 联通29元200g的流量卡| 国产毛片a区久久久久| 日本免费一区二区三区高清不卡| 22中文网久久字幕| 91aial.com中文字幕在线观看| 天天躁夜夜躁狠狠久久av| 国内精品一区二区在线观看| 永久网站在线| 婷婷色综合大香蕉| 九九热线精品视视频播放| 国产精品嫩草影院av在线观看| 韩国av在线不卡| av在线老鸭窝| 岛国毛片在线播放| 大型黄色视频在线免费观看| 18禁黄网站禁片免费观看直播| 亚洲一级一片aⅴ在线观看| 国产国拍精品亚洲av在线观看| 最近视频中文字幕2019在线8| 国产黄色小视频在线观看| 午夜福利在线观看吧| 99久国产av精品| kizo精华| 人妻夜夜爽99麻豆av| 蜜臀久久99精品久久宅男| 久久久久久久久久黄片| 日日摸夜夜添夜夜爱| 人妻少妇偷人精品九色| 一级黄片播放器| 人妻久久中文字幕网| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 中文字幕免费在线视频6| 国产日韩欧美在线精品| 亚洲丝袜综合中文字幕| 99久久九九国产精品国产免费| 两个人的视频大全免费| 欧美一区二区精品小视频在线| av天堂中文字幕网| 人体艺术视频欧美日本| 亚洲成人久久性| 中文字幕av成人在线电影| 又粗又爽又猛毛片免费看| 五月伊人婷婷丁香| 日日撸夜夜添| 国产精品日韩av在线免费观看| 淫秽高清视频在线观看| 成人漫画全彩无遮挡| 一级毛片久久久久久久久女| 性插视频无遮挡在线免费观看| 亚洲国产精品成人久久小说 | 日本黄大片高清| 精品人妻视频免费看| 哪里可以看免费的av片| 一边摸一边抽搐一进一小说| 热99re8久久精品国产| 99热这里只有是精品在线观看| 美女 人体艺术 gogo| 少妇熟女欧美另类| 国产精品嫩草影院av在线观看| 禁无遮挡网站| 搡老妇女老女人老熟妇| 一区二区三区免费毛片| 1024手机看黄色片| 嘟嘟电影网在线观看| 国产又黄又爽又无遮挡在线| 精品久久久久久久久久免费视频| 国产精品.久久久| 3wmmmm亚洲av在线观看| 床上黄色一级片| 亚洲精品久久国产高清桃花| 国产精品美女特级片免费视频播放器| 99久久精品国产国产毛片| 男女视频在线观看网站免费| 毛片女人毛片| 久久午夜亚洲精品久久| 中出人妻视频一区二区| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 国产亚洲精品av在线| 婷婷精品国产亚洲av| 亚洲精品自拍成人| 长腿黑丝高跟| 少妇猛男粗大的猛烈进出视频 | 国产精品女同一区二区软件| 黄色视频,在线免费观看| 卡戴珊不雅视频在线播放| 国模一区二区三区四区视频| 欧美成人一区二区免费高清观看| 日韩av在线大香蕉| 成人午夜高清在线视频| 一边摸一边抽搐一进一小说| 精品欧美国产一区二区三| 69人妻影院| 国产一区二区三区av在线 | 免费搜索国产男女视频| 禁无遮挡网站| 可以在线观看的亚洲视频| 成人美女网站在线观看视频| 久久久久久久亚洲中文字幕| 亚洲国产精品合色在线| 两个人的视频大全免费| 国内揄拍国产精品人妻在线| 美女xxoo啪啪120秒动态图| 国产精华一区二区三区| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 亚洲成人久久性| 亚洲一级一片aⅴ在线观看| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 精品少妇黑人巨大在线播放 | a级一级毛片免费在线观看| 国产大屁股一区二区在线视频| 精品人妻一区二区三区麻豆| 国产成人freesex在线| 国产精品1区2区在线观看.| 少妇高潮的动态图| 12—13女人毛片做爰片一| 久久国产乱子免费精品| 波多野结衣高清作品| 91久久精品国产一区二区成人| 亚洲欧美中文字幕日韩二区| 日韩欧美国产在线观看| 亚洲国产精品合色在线| 久久久午夜欧美精品| 丰满的人妻完整版| 精品久久久久久久末码| 午夜激情福利司机影院| 国产精品一二三区在线看| 久久久精品大字幕| 国产高清不卡午夜福利| av国产免费在线观看| 久久综合国产亚洲精品| 国产日本99.免费观看| 成人亚洲精品av一区二区| 亚洲四区av| 欧美色欧美亚洲另类二区| 国产综合懂色| 久久精品国产99精品国产亚洲性色| 国产激情偷乱视频一区二区| 欧美日韩一区二区视频在线观看视频在线 | 国模一区二区三区四区视频| 久99久视频精品免费| 九九爱精品视频在线观看| 内射极品少妇av片p| 国产真实伦视频高清在线观看| 黑人高潮一二区| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲电影在线观看av| 99在线人妻在线中文字幕| 久久久色成人| 国产探花极品一区二区| 精品一区二区免费观看| 毛片女人毛片| 午夜精品一区二区三区免费看| 亚洲精品日韩av片在线观看| 日韩一区二区三区影片| 国产高潮美女av| 欧美成人a在线观看| 在线播放无遮挡| 99热只有精品国产| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 丝袜美腿在线中文| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 蜜桃久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 99热全是精品| 国内少妇人妻偷人精品xxx网站| 免费搜索国产男女视频| 亚洲最大成人中文| 免费观看人在逋| 国产精品电影一区二区三区| av又黄又爽大尺度在线免费看 | 99精品在免费线老司机午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲电影在线观看av| 乱人视频在线观看| 精品99又大又爽又粗少妇毛片| 免费av不卡在线播放| 日本色播在线视频| 日本免费a在线| 午夜爱爱视频在线播放| 免费人成在线观看视频色| 不卡一级毛片| 免费不卡的大黄色大毛片视频在线观看 | 赤兔流量卡办理| 三级国产精品欧美在线观看| 国产亚洲91精品色在线| 午夜精品在线福利| 国产色爽女视频免费观看| 一级黄色大片毛片| 日韩三级伦理在线观看| 久久国内精品自在自线图片| 国产av一区在线观看免费| 免费观看在线日韩| 嫩草影院入口| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 中文资源天堂在线| 欧美性猛交黑人性爽| 成人美女网站在线观看视频| 日日撸夜夜添| 精品人妻一区二区三区麻豆| 久久99热这里只有精品18| 黄色视频,在线免费观看| 十八禁国产超污无遮挡网站| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱 | 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 国产av在哪里看| 国产人妻一区二区三区在| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 成年版毛片免费区| 女人十人毛片免费观看3o分钟| 国产精品不卡视频一区二区| 舔av片在线| av专区在线播放| 亚州av有码| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 一级黄片播放器| 男的添女的下面高潮视频| 99久久精品国产国产毛片| av天堂中文字幕网| 能在线免费看毛片的网站| 99久久九九国产精品国产免费| 免费观看人在逋| 在线播放无遮挡| 丰满乱子伦码专区| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 久99久视频精品免费| 精品熟女少妇av免费看| 午夜老司机福利剧场| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 成人欧美大片| 99热只有精品国产| 久久久久久久久久久丰满| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 国产极品精品免费视频能看的| 18禁裸乳无遮挡免费网站照片| 婷婷精品国产亚洲av| 欧美在线一区亚洲| 久久久久久久久久久免费av| av卡一久久| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 免费看光身美女| 我要搜黄色片| 国内精品一区二区在线观看| 少妇猛男粗大的猛烈进出视频 | 久久午夜亚洲精品久久| 两个人的视频大全免费| 国产麻豆成人av免费视频| 欧美精品一区二区大全| 国产人妻一区二区三区在| 99久久久亚洲精品蜜臀av| 好男人在线观看高清免费视频| 国产极品精品免费视频能看的| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 欧美区成人在线视频| 国模一区二区三区四区视频| 成人特级黄色片久久久久久久| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区 | 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 村上凉子中文字幕在线| 女的被弄到高潮叫床怎么办| 男人舔女人下体高潮全视频| 99久久成人亚洲精品观看| 国产成人91sexporn| 国产av一区在线观看免费| 亚洲av.av天堂| 国产综合懂色| 哪里可以看免费的av片| 在线国产一区二区在线| 99九九线精品视频在线观看视频| 一个人看视频在线观看www免费| 日本av手机在线免费观看| 国产伦一二天堂av在线观看| 国产高清有码在线观看视频| 欧美最新免费一区二区三区| 一本久久中文字幕| 91久久精品电影网| 三级毛片av免费| 亚洲av中文av极速乱| 国产日本99.免费观看| 国产精品福利在线免费观看| 亚洲av电影不卡..在线观看| 免费av毛片视频| 午夜久久久久精精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品久久久久久噜噜老黄 | 在线观看免费视频日本深夜| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 精品久久久久久久久久久久久| 91麻豆精品激情在线观看国产| 亚洲人成网站高清观看| 色综合站精品国产| 色5月婷婷丁香| 亚洲av第一区精品v没综合| 国产毛片a区久久久久| 亚洲精品影视一区二区三区av| 在线a可以看的网站| 国产亚洲av嫩草精品影院| 悠悠久久av| 狂野欧美白嫩少妇大欣赏| 久久99精品国语久久久| 成熟少妇高潮喷水视频| 美女黄网站色视频| 99热这里只有是精品50| 欧美一区二区国产精品久久精品| 中文资源天堂在线| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 国产麻豆成人av免费视频| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 国产一区二区在线观看日韩| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 成人午夜精彩视频在线观看| 深爱激情五月婷婷| 色综合色国产| 一个人免费在线观看电影| 久久久久国产网址| 最近手机中文字幕大全| 国产精品综合久久久久久久免费| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 欧美性猛交黑人性爽| 亚洲在线观看片| 男女做爰动态图高潮gif福利片| 日本黄色片子视频| 国产免费一级a男人的天堂| 一级毛片我不卡| 国产探花极品一区二区| 精品久久国产蜜桃| 亚洲在线自拍视频| 精品一区二区免费观看| 中出人妻视频一区二区| 2022亚洲国产成人精品| 国产淫片久久久久久久久| 天堂中文最新版在线下载 | 亚洲av二区三区四区| 最近手机中文字幕大全| 亚洲精品自拍成人| 亚洲人成网站在线播| 久久中文看片网| 啦啦啦韩国在线观看视频| 精品熟女少妇av免费看| 麻豆乱淫一区二区| 少妇丰满av| 国产亚洲av片在线观看秒播厂 | 久久热精品热| 欧美丝袜亚洲另类| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影| 国产探花在线观看一区二区| 欧美日韩乱码在线| 在线天堂最新版资源| 国产麻豆成人av免费视频| 亚洲精品日韩av片在线观看| 最近最新中文字幕大全电影3| 久久久久久国产a免费观看| 91狼人影院| 天天躁日日操中文字幕| 麻豆久久精品国产亚洲av| a级毛色黄片| 国产高清激情床上av| 成人综合一区亚洲| 日韩成人av中文字幕在线观看| 成人亚洲欧美一区二区av| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 久久精品国产鲁丝片午夜精品| 亚洲内射少妇av| 内射极品少妇av片p| 性色avwww在线观看| 久久精品人妻少妇| 九九爱精品视频在线观看| 久久精品影院6| 熟妇人妻久久中文字幕3abv| 午夜老司机福利剧场| 日韩av不卡免费在线播放| 国产单亲对白刺激| 99热只有精品国产| 国产成人一区二区在线| 一本久久中文字幕| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频| 一级毛片电影观看 | 人妻夜夜爽99麻豆av| 干丝袜人妻中文字幕| 国产私拍福利视频在线观看| 亚洲欧美成人精品一区二区| videossex国产| 男女啪啪激烈高潮av片| 午夜福利成人在线免费观看| 国产国拍精品亚洲av在线观看| 日韩欧美在线乱码| 欧美成人一区二区免费高清观看| 亚洲精品日韩在线中文字幕 | 国产一区二区在线av高清观看| 成人永久免费在线观看视频| 禁无遮挡网站| 深夜a级毛片| 乱码一卡2卡4卡精品| 中文字幕熟女人妻在线| 精品不卡国产一区二区三区| 日韩一区二区三区影片| 久久久久久伊人网av| 免费av观看视频| 成人无遮挡网站| 2022亚洲国产成人精品| 天堂影院成人在线观看| 最近视频中文字幕2019在线8| 在线观看66精品国产| 在线免费观看不下载黄p国产| 久久这里只有精品中国| 久久久欧美国产精品| 精品久久久久久久末码| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 久久久久久久午夜电影| av天堂中文字幕网| 国产视频内射| 国产伦精品一区二区三区视频9| 啦啦啦韩国在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品自产自拍| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 久久久精品大字幕| 一夜夜www| 成人毛片60女人毛片免费| 极品教师在线视频| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 少妇熟女欧美另类| 99热只有精品国产| 久久鲁丝午夜福利片| 成人av在线播放网站| 亚洲欧洲国产日韩| 99热精品在线国产| 夜夜爽天天搞| av天堂在线播放| 国产亚洲av片在线观看秒播厂 | 神马国产精品三级电影在线观看| 99久久人妻综合| 最近视频中文字幕2019在线8| 国产熟女欧美一区二区| 国产精品伦人一区二区| 天堂√8在线中文| 国产精品一区二区三区四区免费观看| 国产片特级美女逼逼视频| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 最后的刺客免费高清国语| 亚洲成人精品中文字幕电影| 国产色爽女视频免费观看| 超碰av人人做人人爽久久| 成年女人看的毛片在线观看| 精品日产1卡2卡| 波多野结衣高清作品| 亚洲欧美成人精品一区二区| 高清毛片免费观看视频网站| 少妇人妻一区二区三区视频| 日韩大尺度精品在线看网址| 日本爱情动作片www.在线观看| 欧美一区二区精品小视频在线| 国内久久婷婷六月综合欲色啪| 美女xxoo啪啪120秒动态图| 寂寞人妻少妇视频99o| 免费黄网站久久成人精品| 成人特级av手机在线观看| 中文亚洲av片在线观看爽| 免费看日本二区| 男女边吃奶边做爰视频| .国产精品久久| 成人鲁丝片一二三区免费| 变态另类丝袜制服| 成人亚洲欧美一区二区av| 男人狂女人下面高潮的视频| 国产一区二区激情短视频| 国产精品一区二区在线观看99 | 日本免费a在线| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 嫩草影院新地址| 又粗又爽又猛毛片免费看| 国产色爽女视频免费观看| 99国产精品一区二区蜜桃av| 国产三级中文精品| 亚洲av成人精品一区久久| 少妇猛男粗大的猛烈进出视频 | 国产亚洲av片在线观看秒播厂 | 久久婷婷人人爽人人干人人爱| av在线亚洲专区| 人妻少妇偷人精品九色| 色吧在线观看| 欧美不卡视频在线免费观看| 青春草国产在线视频 | 天堂影院成人在线观看| 最近中文字幕高清免费大全6|