• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion①

    2016-12-22 05:45:36HuZhentao胡振濤HuYumeiGuoZhenWuYewei
    High Technology Letters 2016年4期

    Hu Zhentao (胡振濤), Hu Yumei, Guo Zhen, Wu Yewei

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Automation, Northwestern Polytechnical University, Xi’an 710072, P.R.China)

    ?

    Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion①

    Hu Zhentao (胡振濤)②*, Hu Yumei**, Guo Zhen*, Wu Yewei*

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Automation, Northwestern Polytechnical University, Xi’an 710072, P.R.China)

    The GM-PHD framework as recursion realization of PHD filter is extensively applied to multi-target tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First, a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second, the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore, to take the advantage of consistency fusion strategy, fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.

    multi-target tracking, probability hypothesis density (PHD), cubature Kalman filter, consistency fusion

    0 Introduction

    Multi-target tracking techniques are always the hotspot research in target tracking field. The probability hypothesis density (PHD) filter as recursion that propagates the first-order statistical moment of random finite sets (RFS) of states, is an attractive approach to track unknown and time-varying targets in the presence of measurement uncertainty, clutter, noise, and detection uncertainty[1]. However, PHD filter contains multiple integrals with no closed forms in general. Due to its inherent computational hurdle, the application and popularization of PHD filter is limited. To solve this problem, some researches and work mainly focus on two categories. One of the effective implementations is sequential Monte Carlo PHD (SMC-PHD) filter[2,3]. In the non-linear and non-Gaussian system, the relationship between PHD filter and sequential Monte Carlo method is established through approximating PHD function by a group of random samples in state space, and leads the integral computation to be replaced by samples mean[4]. However, a large number of particles, needed to ensure filtering precision in the realization of SMC-PHD filter, lead to increase of computation cost, and extracting multi-target estimation is an additional cost. Moreover, the stochastic sampling mechanism often leads particle to degeneracy after a few iterations. The adverse effect caused by particle degeneracy is mitigated in a certain degree through re-sampling, but the re-sampling process results in the reduction of particle diversity. In addition, an estimated state is obtained through dividing the particle into different clusters in SMC-PHD filter, which leads to state estimation unreliable. The other one is Gaussian mixture PHD (GM-PHD) filter[5,6], for jointly estimating the time-varying number of targets and their states, closed-form recursions are given for propagating means, covariance, and weights of the constituent Gaussian component of posterior intensity, which meets three assumptions: ① Targets and sensor follow a linear and Gaussian model. ② The survival and detection probabilities are independent. ③ The intensities of birth and spawn RFSs are Gaussian mixture. In Ref.[7], Clark proved uniform convergence of the errors in GM-PHD filter. Aiming at the multi-detection from a same target, Tang derived a general multi-detection PHD update formulation, and established its recursion realization under the GM-PHD framework[8].

    However, with regard to the non-linear feature of multi-target system, assumption ① is extended to non-linear Gaussian model. Therefore, the non-linear filter such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) are considered to unite the PHD filter under the framework of Gaussian mixture[9,10]. The implementation mechanism of EKF is to realize local linearization of state equation and observation equation. It only calculates the posterior mean and covariance accurately to the first order with all higher order moments truncated. If the nonlinearity of estimated system is very strong, usually EKF can not obtain good filtering result and even lead to the filtering divergence phenomenon[11,12]. While unscented Kalman filter (UKF)[13]and cubature Kalman filter (CKF)[14]are both typical implementation of deterministic sampling filter, UKF approaches nonlinear state posterior distribution by UT transformation strategy, and it has higher universality for non-linear system with Gaussian noise. But whether the parameters are selected reasonably or not in UKF, they may affect targets estimation precision directly. In addition, the problem that filtering variance is not positive definite may occur. However, in the implementation of CKF, a third-degree spherical-radial cubature rule is established to compute integrals numerically. The weights in CKF are positive to ensure that the filtering covariance is positive definite matrix, and it is verified that CKF is superior to UKF[15]. Therefore, CKF is adopted to realize PHD recursion under the framework of Gaussian mixture in this paper.

    The appropriate selection of filtering algorithm leads to the improvement of targets tracking precision. Measurement, obtained by sensor for providing latest information in the update step, is also an alternative vital factor to enhance estimation precision. The technique of information fusion based on multi-sensor measurement system[16,17]is a popular method to extend measurement range, improve information redundancy and credibility, through the synergy between sensors. Therefore, a consistency fusion strategy is proposed to process the multi-sensor measurement through constructing consistency matrix. On this basis, a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed.

    The rest of the paper is organized as follows. In Section 1, the background information on PHD filter is presented. Section 2 proposes a cubature Kalman probability hypothesis density (CK-PHD) filter for single-sensor multi-target tracking under Gaussian mixture framework. Then, in Section 3, a consistency fusion strategy is established for fusing multi-sensor measurement through constructing consistency matrix. Furthermore, a new cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion (MC-CK-PHD) is proposed by introducing the fused measurement during update step in Section 4. The proposed algorithms are illustrated in Section 5 through a simulation example. Finally, conclusions are summarized in Section 6.

    1 PHD filter

    An optical Bayesian filter using RFS or point process for multi-target tracking is very computationally challenging, especially when the target number is large. To reduce complexity, Mahler devises PHD filter as an approximation of an optimal multi-target Bayesian filter. And it propagates the first-order statistical moment of the posterior multi-target state, i.e., the posterior density is propagated in PHD filter. Let the posterior density equal to Ik-1|k-1(xk-1|Z1:k-1) at time k. The recursion steps of PHD filter are as follows:

    ? Prediction steps:

    Lk|k-1(xk|Z1:k-1)=γk(xk) + [∫pS,k(xk-1)fk|k-1(xk|xk-1) +∫βk|k-1(xk|xk-1)] ×Lk-1|k-1(xk-1|Z1:k-1)dxk-1

    (1)

    where γk(xk) is the intensity of target appearing at time k, pS,k(xk-1) is the target survival probability, fk|k-1(xk|xk-1) is the single target Markov transition density, and βk|k-1(xk|xk-1) is the intensity of spawning of target from existing ones.

    ? Update steps:

    (2)

    where ψ(zk|Z1:k-1)=∫pD,kf(zk|xk)Lk|k-1(xk|Z1:k-1), pD,k(xk-1) denotes the detection probability, f(zk|xk) is the single target likelihood function, λkand ck(zk) are the false alarm(clutter) intensity and false alarm spatial density, respectively.

    The expected number of targets is given by

    Nk|k=∫Lk|k(xk|Z1:k)dxk

    (3)

    The PHD filter completely avoids the combinatorial computation arising from the unknown association of measurements with appropriate targets. However, the closed-form solutions of recursion in PHD filter cannot be achieved in general which results in that it is difficult for PHD filter to realize engineering application. And numerical integration suffers from the “curse of dimensionality”[5]. In Ref.[3], it is shown that Gaussian mixture probability hypothesis density (GM-PHD) filter provides a closed-form solution for multi-target tracking without measurement-to-track data association.

    2 Cubature Kalman probability hypothesis density filter

    In this section, combining CKF with PHD under Gaussian mixture framework, a cubature Kalman probability hypothesis density (CK-PHD) filter is proposed for jointly estimating time-varying number and position of targets.

    (4)

    L=2n denotes the number of cubature points, and n denotes the dimension of estimated system state, ξjis the jth cubature point.

    The GM-PHD filter propagates the multi-target posterior density through Gaussian mixture components, providing a closed-form solution under the three assumptions. The mathematical express of the three assumptions is given[18]:

    fk|k-1(xk|xk-1)=N(xk; fk-1xk-1, Qk-1)

    (5)

    gk(zk|xk)=N(zk;hkxk,Rk)

    (6)

    pS,k(xk)=pS,k

    (7)

    pD,k(xk)=pD,k

    (8)

    (9)

    (10)

    where, J and ω are the number and the weight of Gaussian mixture components, respectively.

    ? Prediction steps:

    The predicted intensity for time k is also a Gaussian mixture and is given by

    Lk|k-1(xk|Z1:k-1)=LS,k|k-1(xk|Z1:k-1) +Lβ,k|k-1(xk|Z1:k-1)+γk(xk)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    State one-step prediction and its error covariance of the existing targets

    (18)

    (19)

    State one-step prediction and its error covariance of the spawned targets

    (20)

    (21)

    ? Update steps:

    (22)

    (23)

    (24)

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    3 Consistency fusion strategy

    In the situation of multi-sensor measurement system, redundant and complementary information is extracted and utilized as much as possible to reduce the dependence of measurement noise statistics information. In this paper, the consistency distance and consistency matrix is built to characterize the mutual support degree between multi-sensor measurements. On this basis, the consistency fusion strategy for multi-sensor measurement is established through constructing consistency matrix. The elements in the matrix denote the mutual support degree. The measurement weights are allocated legitimately to utilize measurement effectively in fusion process.

    Considering the matrix of mutual support degree between multi-sensor measurements, the graphical representation of confidence distance is in Fig.1, and the equation is defined as

    (37)

    Fig.1 Consistency distance

    (38)

    (39)

    (40)

    where the consistency matrix Ψkand weight coefficient vector αkare expressed

    (41)

    (42)

    The numerical characteristic of the elements in Ψkshows: all diagonal elements are equal to 1, so Ψkis a positive definite symmetric matrix. The other elements in this matrix are positive and not greater than 1. According to Perron-Frobenius theorem: there is a maximum modulus eigenvalue λk>0. Only when all elements in eigenvector corresponding to eigenvalue λkare positive, λkβk=Ψkβk. Let αk=βk, combined with Eq.(40), then

    (43)

    (44)

    (45)

    The fused measurement noise variance is

    (46)

    Combining the above analysis, the pseudo-code of consistency fusion is given as follows:

    Algorithm1:Consistencyfusiongiventhemulti?sensormeasurement{zik|zik=h(xk)+vik,i=1,2,…,N}calculatetheconfidencedistancefori=1,…,N forj=1,…,N Rijk=(zik-zjk)Τ(zik-zjk)/(Rvik+Rvjk) endendcalculatetheconsistencydistancefori=1,…,N forj=1,…,N Θijk=1-Rijk/max(max(Rijk)) endendfindthemaximumeigenvalueandcorrespondingeigenvectorofconsistencydistance[β,λ]=eig(Ψk)m=max(max(λ))calculatetheweightωikofzik,andnormalizationfori=1,…,N αik=abs(β(i,m))endαik=αik/∑Ni=1αikmeasurementfusionfori=1,…,N ^z′k=∑Ni=1αikzikend

    4 Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion

    A CK-PHD filter is extended to multi-sensor case. Assume that there are N sensors and that the measurement noises with the same covariance are irrelevant Gaussian white noise. Then consistency fusion strategy is designed to obtain fusion measurement. Based on the above work, a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. The key steps of MC-CK-PHD filter are given as follows:

    Algorithm2:CubatureKalmanprobabilityhypothesisdensi?tyfilterbasedonmulti?sensorconsistencyfusiongiven{ω(i)k-1,m(i)k-1,P(i)k-1}Jk-1i=1andthemeasurementsetZk.step1.predictionforbirthtargets i=0. forj=1,…,Jγ,k i:=i+1 ω(i)k|k-1=ω(j)γ|k,x(i)k|k-1=x(j)γ|k,P(i)k|k-1=P(j)γ|k. end forj=1,…,Jβ,k forl=1,…,Jk-1 i:=i+1 ω(i)k|k-1=ω(l)k-1ω(j)β,k ^x(i)k|k-1=f(j)β|k-1^x(l)β|k-1+v(j)β|k-1 P(i)k|k-1=Q(j)γ|k-1+f(j)β|k-1P(l)β|k-1f(j)β|k-1Τ end end forj=1,…,i setμ:=^x(j)k|k-10é?êêù?úú,C:=P(j)k|k?100Rké?êêù?úú usethethird?degreespherical?radialcubatureruletogenerateasetofcubaturepointswithmeanμ,covarianceC,andweightsdenotedby{y(l)k,μ(l)}Ll=1. z(l)k|k-1:=hk(x(l)k|k-1,ε(l)k),l=1,…,L. η(j)k|k-1=∑Ll=1μlz(l)k|k-1 P(j)zz,k=∑Ll=1μl(z(l)k|k-1-η(j)k|k-1)(z(l)k|k-1-η(j)k|k-1)Τ P(j)xz,k=∑Ll=1μl(z(l)k|k-1-^x(j)k|k-1)(z(l)k|k-1-η(j)k|k-1)Τ K(j)k=P(j)xz,k[P(j)zz,k]-1 P(j)k|k=P(j)k|k-1-K(j)k[P(j)xz,k]Τ endStep2.constructionofexistingtargetcomponents forj=1,…,i i:=i+1 ω(i)k|k-1=pS,kω(i)k-1|k-1 setμ:=^x(j)k|k-100é?êêêù?úúú,C:=P(j)k|k-1000Qk-1000Rké?êêêêù?úúúú usethethird?degreespherical?radialcubatureruletogenerateasetofcubaturepointswithmeanμ,covarianceC,andweightsdenotedby{y(l)k,μ(l)}Ll=1.

    5 Simulation results and analysis

    where, ω=0.025rad/s is the angular acceleration of targets, Τ=1 is the sampling period. pS,k=0.99, pD,k=0.98, U=5, Jmax=100, T_prun=10e-5.

    Table 1 The rest initial value of parameters in the algorithm

    Fig.2 Measurement and true trajectories

    (a) EK-PHD

    (b) UK-PHD

    (c) CK-PHD

    (d) MC-CK-PHD

    Fig.3 The target trajectories and their estimations of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD

    The proposed algorithm is compared with EK-PHD filter and UK-PHD filter presented in Ref.[5]. The results and analysis of simulation are given below.

    The measurement and the real trajectories of the targets are given in Fig.2. Note that square marks and circle marks denote the initial position and final position of targets, respectively.

    To verify the effectiveness of the proposed algorithm, Fig.3 gives the target trajectories and their estimations of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD. The figures illustrate that state estimation through MC-CK-PHD filter approximates real trajectories mostly.

    Fig.4 illustrates the comparison of the four algorithms estimation precisions of the number of targets. The plots demonstrate that both CK-PHD filter and MC-CK-PHD filter are superior to EK-PHD filter and UK-PHD filter for estimating the number of targets. Meanwhile, the MC-CK-PHD filter is more reliable than CK-PHD filter because consistency fusion strategy in MC-CK-PHD filter makes sure that fused measurement is more precise than single-sensor measurement does. For quantitative comparison, Table 2 gives the average estimation error of targets number through the four algorithms after 50 simulations. It is clear that the EK-PHD filter and UK-PHD filter have the average estimation error of 9.20 and 9.22 respectively, and the error of CK-PHD filter and MC-CK-PHD filter are 8.06 and 8.02, respectively. The results further suggest that the average estimation error of MC-CK-PHD filter is the lowest, namely, MC-CK-PHD filter outperforms others in targets number estimation.

    To verify the capability of proposed algorithm more clearly, Fig.5 gives the comparison of average OSPAs of EK-PHD filter, UK-PHD filter, CK-PHD filter and MC-CK-PHD filter after 50 Monte Carlo simulations. It shows that the average OSPA of CK-PHD filter is lower than EK-PHD’s and UK-PHD’s, and that the average OSPA of MC-CK-PHD filter is the smallest in all. Fig.5 also illustrates that both CK-PHD filter and MC-CK-PHD filter have the advantage of position estimation precision. Further, MC-CK-PHD filter is superior to CK-PHD filter. Table 3 gives the comparison of the total OSPAs of all step time.

    (a) EK-PHD

    (b) UK-PHD

    (c) CK-PHD

    (d) MC-CK-PHD

    Fig.4 Real number of targets and their estimation of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD

    Table 2 The comparison of average estimation error of the four algorithms for targets number

    Fig.5 The comparison of OSPAs

    AlgorithmsEK?PHDUK?PHDCK?PHDMC?CK?PHDOSPAsummation121.8744121.8126103.254171.4176

    6 Conclusions

    In this study, the multi-target tracking problem on estimation precision in linear is considered under PHD filter framework. Combined with the advantaged of CKF, CK-PHD filter is proposed based on single-sensor measurement system. And it is a generalized solution for estimating targets number and position. Furthermore, a consistency fusion strategy is established, and introduced into the CK-PHD filter. On this basis, the implementation denoted as MC-CK-PHD filter has been presented. Simulation results show that the CK-PHD filter and MC-CK-PHD filter outperform the published EK-PHD filter and UK-PHD filter in the scenario with time-varying number of multi-targets. Meanwhile, the MC-CK-PHD filter is superior to CK-PHD filter in targets number estimation and position estimation.

    [ 1] Mahler R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178

    [ 3] Ba-Ngu V, Sumeetpal S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4): 1224-1245

    [ 4] Baser E, Efe M. A novel auxiliary particle PHD filter. In: Proceedings of the 15th IEEE International Conference on Information Fusion, Singapore, 2012, 165-172

    [ 5] Ba-Ngu V, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104

    [ 6] Pasha S A, Ba-Ngu V, Hoang D T, et al. A Gaussian mixture PHD filter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936

    [ 7] Clark D, Ba-Ngu V. Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212

    [ 8] Tang X, Chen X, McDonald M, et al. A multiple-detection probability hypothesis density filter. IEEE Transactions on Signal Processing, 2015, 63(8): 2007-2019

    [ 9] Melzi M, Ouldali A, Messaoudi Z. Multiple target tracking using the extended Kalman particle probability hypothesis density filter. In: Proceedings of the 18th European Signal Processing Conference, Aalborg, Denmark, 2010, 1821-1826

    [10] Kurian A P, Puthusserypady S. Performance analysis of nonliner predictive filer based on chaotic synchronization. IEEE Transactions on Circuits & Systems II: Express Briefs, 2006, 53(9): 886-890

    [11] Melzi M, Ouldali A, Messaoudi Z. The unscented Kalman particle PHD filter for joint multiple target tracking and classification. In: Proceedings of the 19th International Conference on Signal Processing, Barcelona, Spain, 2011, 1415-1419

    [12] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555

    [13] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422

    [14] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269

    [15] Wang H, Yu D. Jiang J. Comparison and error analysis of integral-free Kalman tracking filter algorithms. In: Proceedings of the 7th IEEE International Conference on Image and Signal Processing, Dalian, China, 2014, 783-787

    [16] Bar-Shalom Y, Li X R. Multitarget multisensor tracking: principles and techniques. IEEE Systems Magazine on Aerospace and Electronic, 1996, 16(4):93

    [17] Mahler R P S. Statistical Multisource Multitarget Information Fusion. USA: Artech House, 2007

    [18] Chakravorty R, Challa S. Multitarget tracking algorithm-joint IPDA and Gaussian mixture PHD filter. In: Proceedings of the 12th IEEE International Conference on Information Fusion, Seattle, USA, 2009, 316-323

    Hu Zhentao,born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of college of computer and information engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2016.04.006

    ① Supported by the National Natural Science Foundation of China (No. 61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (No. 13IRTSTHN021), the Post-doctoral Science Foundation of China (No. 2014M551999), and the Outstanding Young Cultivation Foundation of Henan University (No. 0000A40366).

    ② To whom correspondence should be addressed. E-mail: hym_henu@163.com Received on Oct. 12, 2015

    男女无遮挡免费网站观看| 国产免费一区二区三区四区乱码| 亚洲五月色婷婷综合| 国产亚洲精品第一综合不卡| 国产精品99久久99久久久不卡 | 波多野结衣一区麻豆| 久久天躁狠狠躁夜夜2o2o | 亚洲国产精品一区二区三区在线| 国产成人精品无人区| 精品福利永久在线观看| 超色免费av| 99香蕉大伊视频| 制服丝袜香蕉在线| 久久国产精品大桥未久av| 国产免费福利视频在线观看| 天天躁夜夜躁狠狠久久av| 女人久久www免费人成看片| 亚洲精华国产精华液的使用体验| 国产精品久久久av美女十八| 午夜福利乱码中文字幕| 亚洲第一青青草原| av有码第一页| 人体艺术视频欧美日本| 欧美日韩亚洲综合一区二区三区_| 免费观看人在逋| 亚洲av欧美aⅴ国产| 91国产中文字幕| 成人国产麻豆网| 大片电影免费在线观看免费| 亚洲 欧美一区二区三区| 精品卡一卡二卡四卡免费| 中文字幕制服av| 国产不卡av网站在线观看| 国产在线视频一区二区| 天天操日日干夜夜撸| av片东京热男人的天堂| netflix在线观看网站| 女的被弄到高潮叫床怎么办| 久久精品人人爽人人爽视色| 亚洲免费av在线视频| 色播在线永久视频| 国产精品久久久av美女十八| 1024视频免费在线观看| 精品第一国产精品| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| 亚洲国产欧美日韩在线播放| 国产在线免费精品| 成人国产av品久久久| 人妻 亚洲 视频| 久久99一区二区三区| 久久久久视频综合| 亚洲欧美一区二区三区国产| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频 | 欧美国产精品va在线观看不卡| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 国产乱人偷精品视频| 国产av精品麻豆| 视频区图区小说| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠躁躁| 99国产综合亚洲精品| 色吧在线观看| 最近手机中文字幕大全| 搡老岳熟女国产| 精品免费久久久久久久清纯 | 男人爽女人下面视频在线观看| 日本欧美视频一区| 国产精品 国内视频| 国产亚洲午夜精品一区二区久久| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 少妇被粗大猛烈的视频| 天天躁日日躁夜夜躁夜夜| 97在线人人人人妻| 成年美女黄网站色视频大全免费| 免费av中文字幕在线| 一级a爱视频在线免费观看| 考比视频在线观看| 欧美人与性动交α欧美精品济南到| 国产国语露脸激情在线看| 久久久久人妻精品一区果冻| 国产爽快片一区二区三区| videosex国产| 国产精品亚洲av一区麻豆 | 免费人妻精品一区二区三区视频| 天美传媒精品一区二区| 中文字幕制服av| 夫妻性生交免费视频一级片| 国产激情久久老熟女| 日韩 亚洲 欧美在线| 亚洲精品一二三| 青草久久国产| 99九九在线精品视频| 精品人妻一区二区三区麻豆| 日韩人妻精品一区2区三区| av天堂久久9| 亚洲av综合色区一区| 不卡视频在线观看欧美| 各种免费的搞黄视频| 亚洲四区av| tube8黄色片| 看免费成人av毛片| 国产av精品麻豆| 亚洲av国产av综合av卡| 七月丁香在线播放| 美女福利国产在线| 丝袜在线中文字幕| 亚洲第一av免费看| 亚洲精品一二三| 国产av精品麻豆| 纵有疾风起免费观看全集完整版| 哪个播放器可以免费观看大片| 国产精品 欧美亚洲| 王馨瑶露胸无遮挡在线观看| 亚洲成人一二三区av| 两个人免费观看高清视频| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 黄色怎么调成土黄色| 免费黄色在线免费观看| 丝瓜视频免费看黄片| 国产午夜精品一二区理论片| 久久av网站| 一级毛片黄色毛片免费观看视频| 亚洲欧美精品自产自拍| 啦啦啦在线观看免费高清www| 久久久久久久久免费视频了| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看| 亚洲中文av在线| 69精品国产乱码久久久| 中文字幕最新亚洲高清| 夜夜骑夜夜射夜夜干| 天天影视国产精品| 国产精品一区二区在线观看99| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 美女国产高潮福利片在线看| 精品一区二区三卡| 久久女婷五月综合色啪小说| 日本午夜av视频| 国产av国产精品国产| 免费黄网站久久成人精品| 中文字幕人妻丝袜一区二区 | 亚洲欧美中文字幕日韩二区| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆 | 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 99九九在线精品视频| 精品人妻一区二区三区麻豆| 丝袜美腿诱惑在线| 日韩精品有码人妻一区| 亚洲成人手机| 涩涩av久久男人的天堂| 欧美激情极品国产一区二区三区| 久久免费观看电影| 国产男人的电影天堂91| 在线 av 中文字幕| 一区福利在线观看| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 制服人妻中文乱码| 亚洲三区欧美一区| 不卡视频在线观看欧美| 日韩制服骚丝袜av| 亚洲自偷自拍图片 自拍| 精品亚洲成a人片在线观看| 国产av精品麻豆| av网站在线播放免费| 一区二区三区乱码不卡18| 国产精品久久久久久久久免| 伦理电影大哥的女人| 色吧在线观看| 下体分泌物呈黄色| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 69精品国产乱码久久久| 大码成人一级视频| 黄色毛片三级朝国网站| 在线观看www视频免费| 久久精品aⅴ一区二区三区四区| 国产av精品麻豆| 少妇人妻 视频| 国产99久久九九免费精品| 亚洲欧美日韩另类电影网站| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 日本av免费视频播放| 丰满乱子伦码专区| av不卡在线播放| 天天影视国产精品| 一级片免费观看大全| av网站在线播放免费| 蜜桃国产av成人99| 永久免费av网站大全| 一区二区三区四区激情视频| avwww免费| av福利片在线| 一级a爱视频在线免费观看| 国产探花极品一区二区| 各种免费的搞黄视频| 亚洲熟女毛片儿| 国产成人精品在线电影| 国产一区二区 视频在线| 国产野战对白在线观看| av免费观看日本| 女性被躁到高潮视频| 日韩欧美精品免费久久| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 日韩中文字幕欧美一区二区 | 国产 一区精品| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 热re99久久精品国产66热6| 欧美激情高清一区二区三区 | 黄片小视频在线播放| 别揉我奶头~嗯~啊~动态视频 | 久久精品久久精品一区二区三区| av视频免费观看在线观看| 久久这里只有精品19| 久久久久国产精品人妻一区二区| 人体艺术视频欧美日本| 国精品久久久久久国模美| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| av卡一久久| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 99国产综合亚洲精品| 精品第一国产精品| av视频免费观看在线观看| 精品一区二区三区四区五区乱码 | 免费黄网站久久成人精品| 国产精品 国内视频| 99九九在线精品视频| 欧美黑人欧美精品刺激| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 99re6热这里在线精品视频| 久久久国产一区二区| 九九爱精品视频在线观看| av在线观看视频网站免费| 超碰成人久久| 国产熟女欧美一区二区| 国产免费视频播放在线视频| 国产精品二区激情视频| 国产视频首页在线观看| 日韩欧美一区视频在线观看| 成人三级做爰电影| 午夜福利视频在线观看免费| 精品国产一区二区久久| 飞空精品影院首页| 国产 一区精品| 国产黄色视频一区二区在线观看| 男女下面插进去视频免费观看| 久久韩国三级中文字幕| 岛国毛片在线播放| 91老司机精品| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片| 国产日韩欧美亚洲二区| 精品一区二区免费观看| 国产深夜福利视频在线观看| 视频区图区小说| 激情视频va一区二区三区| 久久精品国产亚洲av高清一级| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 精品一区在线观看国产| 午夜免费观看性视频| e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 一区二区三区精品91| av女优亚洲男人天堂| 天天添夜夜摸| 大片免费播放器 马上看| 99re6热这里在线精品视频| 一级毛片电影观看| 一区福利在线观看| 大片电影免费在线观看免费| 国产成人系列免费观看| 亚洲一级一片aⅴ在线观看| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 无限看片的www在线观看| 高清视频免费观看一区二区| 青青草视频在线视频观看| 少妇被粗大的猛进出69影院| 精品午夜福利在线看| av在线app专区| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 亚洲五月色婷婷综合| 人成视频在线观看免费观看| 人妻人人澡人人爽人人| 中文字幕另类日韩欧美亚洲嫩草| 午夜91福利影院| 性高湖久久久久久久久免费观看| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 色综合欧美亚洲国产小说| 日本91视频免费播放| bbb黄色大片| 国产精品蜜桃在线观看| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| 亚洲精品自拍成人| 亚洲欧美激情在线| 青草久久国产| 国产一级毛片在线| av福利片在线| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频 | 免费黄色在线免费观看| 国产极品天堂在线| 国产日韩欧美视频二区| 中文欧美无线码| 建设人人有责人人尽责人人享有的| 老鸭窝网址在线观看| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 免费在线观看视频国产中文字幕亚洲 | 一级黄片播放器| 日韩人妻精品一区2区三区| 久久久久精品性色| 亚洲激情五月婷婷啪啪| 亚洲熟女毛片儿| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 1024视频免费在线观看| 青春草国产在线视频| 国产黄色免费在线视频| 性色av一级| 亚洲精品久久久久久婷婷小说| 免费黄色在线免费观看| 久久精品亚洲av国产电影网| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 亚洲国产精品国产精品| av片东京热男人的天堂| 国产日韩欧美在线精品| 一级片'在线观看视频| 国产免费又黄又爽又色| 美女扒开内裤让男人捅视频| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 亚洲国产精品999| 国产精品一区二区在线不卡| 99re6热这里在线精品视频| 天美传媒精品一区二区| 成人免费观看视频高清| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区久久| 你懂的网址亚洲精品在线观看| 婷婷色综合www| 天堂中文最新版在线下载| 久久精品亚洲熟妇少妇任你| 母亲3免费完整高清在线观看| 777久久人妻少妇嫩草av网站| 交换朋友夫妻互换小说| 国产亚洲av高清不卡| 一区二区三区精品91| 国产无遮挡羞羞视频在线观看| 青草久久国产| 久久久久久久国产电影| 桃花免费在线播放| 男人添女人高潮全过程视频| 啦啦啦在线观看免费高清www| 青春草视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 91精品伊人久久大香线蕉| 国产一区二区激情短视频 | 色视频在线一区二区三区| 捣出白浆h1v1| 午夜日韩欧美国产| 免费女性裸体啪啪无遮挡网站| 在现免费观看毛片| 老鸭窝网址在线观看| 精品少妇一区二区三区视频日本电影 | 亚洲国产欧美在线一区| 精品人妻在线不人妻| www.精华液| kizo精华| 啦啦啦在线免费观看视频4| av有码第一页| 婷婷色综合www| 国产福利在线免费观看视频| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 国产成人系列免费观看| 男女高潮啪啪啪动态图| 欧美黑人欧美精品刺激| 精品少妇内射三级| 男女免费视频国产| 久久人人爽人人片av| 黄片无遮挡物在线观看| 狠狠精品人妻久久久久久综合| 视频区图区小说| 国产野战对白在线观看| 国产激情久久老熟女| kizo精华| 91精品国产国语对白视频| 色网站视频免费| 国产精品熟女久久久久浪| av网站免费在线观看视频| 99热全是精品| 日本一区二区免费在线视频| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | videos熟女内射| 777米奇影视久久| avwww免费| 制服人妻中文乱码| 大香蕉久久网| 无限看片的www在线观看| 中文天堂在线官网| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 美女午夜性视频免费| 午夜久久久在线观看| 亚洲国产精品999| 日日摸夜夜添夜夜爱| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲成色77777| 老司机深夜福利视频在线观看 | 中文字幕人妻丝袜制服| 少妇 在线观看| av免费观看日本| 97在线人人人人妻| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区 | 母亲3免费完整高清在线观看| 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 国产男人的电影天堂91| 午夜福利,免费看| 热re99久久国产66热| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网| 久久久久精品久久久久真实原创| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 久久久久精品人妻al黑| 久久精品国产综合久久久| 人成视频在线观看免费观看| 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 久热这里只有精品99| 日本av手机在线免费观看| 色94色欧美一区二区| 在线 av 中文字幕| 午夜av观看不卡| 乱人伦中国视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一青青草原| 99九九在线精品视频| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 日本vs欧美在线观看视频| 亚洲国产看品久久| 日本爱情动作片www.在线观看| 久久国产精品大桥未久av| 黄色视频在线播放观看不卡| 国产 一区精品| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 黄色一级大片看看| av女优亚洲男人天堂| 日本色播在线视频| 亚洲欧美色中文字幕在线| 久久影院123| 亚洲av日韩精品久久久久久密 | 欧美亚洲日本最大视频资源| 色吧在线观看| 欧美激情 高清一区二区三区| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91 | a级毛片在线看网站| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 少妇精品久久久久久久| 十分钟在线观看高清视频www| 一个人免费看片子| 精品午夜福利在线看| 美女中出高潮动态图| 一级片'在线观看视频| 国产免费又黄又爽又色| 成人三级做爰电影| 欧美97在线视频| 久久久国产一区二区| 欧美变态另类bdsm刘玥| 欧美少妇被猛烈插入视频| 亚洲精品久久成人aⅴ小说| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 欧美中文综合在线视频| 国产av一区二区精品久久| 国产视频首页在线观看| 亚洲第一青青草原| 精品一区二区三区av网在线观看 | www.av在线官网国产| 国产av国产精品国产| 成人免费观看视频高清| 亚洲国产最新在线播放| 黄频高清免费视频| av不卡在线播放| 美女大奶头黄色视频| 最近的中文字幕免费完整| av在线观看视频网站免费| 亚洲三区欧美一区| 久久精品亚洲av国产电影网| 麻豆精品久久久久久蜜桃| 两性夫妻黄色片| 国产精品蜜桃在线观看| 成人国产麻豆网| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 美女午夜性视频免费| 国产精品欧美亚洲77777| 蜜桃在线观看..| 观看美女的网站| 精品酒店卫生间| 久久精品国产综合久久久| 欧美激情高清一区二区三区 | 久久99一区二区三区| 亚洲欧美一区二区三区国产| 日韩大码丰满熟妇| 妹子高潮喷水视频| 亚洲天堂av无毛| 男人舔女人的私密视频| av片东京热男人的天堂| 国产色婷婷99| 久久ye,这里只有精品| 亚洲成av片中文字幕在线观看| 国产免费视频播放在线视频| 欧美激情高清一区二区三区 | 男女边摸边吃奶| 妹子高潮喷水视频| 亚洲美女视频黄频| 无遮挡黄片免费观看| 黄色视频不卡| 日本爱情动作片www.在线观看| 嫩草影视91久久| e午夜精品久久久久久久| 一级爰片在线观看| 在线观看国产h片| 十八禁网站网址无遮挡| 91精品国产国语对白视频| 欧美最新免费一区二区三区| 在现免费观看毛片| 日本av免费视频播放| 亚洲少妇的诱惑av| 熟女少妇亚洲综合色aaa.| 午夜福利一区二区在线看| 最近中文字幕高清免费大全6| 精品人妻熟女毛片av久久网站| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩视频精品一区| 久久久久久久国产电影| 久久久久国产一级毛片高清牌| 赤兔流量卡办理| 亚洲情色 制服丝袜| 日韩熟女老妇一区二区性免费视频| 女人爽到高潮嗷嗷叫在线视频| 午夜福利网站1000一区二区三区| 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| 国产免费现黄频在线看| 韩国av在线不卡| 中文字幕色久视频| 国产一区二区激情短视频 | 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 丁香六月天网| 亚洲色图综合在线观看| 日韩av在线免费看完整版不卡| 一个人免费看片子| 国产1区2区3区精品| av在线观看视频网站免费| 美女午夜性视频免费| 好男人视频免费观看在线| 午夜av观看不卡| 考比视频在线观看| 老司机深夜福利视频在线观看 | 婷婷色麻豆天堂久久| av在线老鸭窝|