• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global vegetation change analysis based on MODIS data in recent twelve years①

    2016-12-22 05:45:26MaoKebiao毛克彪LiZhaoliangChenJingmingMaYingLiuGuangTanXuelanYangKaixian
    High Technology Letters 2016年4期

    Mao Kebiao (毛克彪), Li Zhaoliang, Chen Jingming, Ma Ying,Liu Guang, Tan Xuelan, Yang Kaixian

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Institute for Earth System Science, Nanjing University, Nanjing 210093, P.R.China)(***State Key Laboratory of Remote Sensing Science, Institute of remote sensing and Digital Earth ResearchInstitute and Beijing Normal University, Beijing 100875, P.R.China)(****College of Resources and Environments, Hunan Agricultural University, Changsha 410128, P.R.China)(*****Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA)

    ?

    Global vegetation change analysis based on MODIS data in recent twelve years①

    Mao Kebiao (毛克彪)②*, Li Zhaoliang*, Chen Jingming**, Ma Ying*,Liu Guang***, Tan Xuelan****, Yang Kaixian*****

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Institute for Earth System Science, Nanjing University, Nanjing 210093, P.R.China)(***State Key Laboratory of Remote Sensing Science, Institute of remote sensing and Digital Earth ResearchInstitute and Beijing Normal University, Beijing 100875, P.R.China)(****College of Resources and Environments, Hunan Agricultural University, Changsha 410128, P.R.China)(*****Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA)

    Vegetation cover change is critical for understanding impacts and responses of vegetation to climate change. A study found that vegetation in the regions between 45°N-70°N was increasing using normalized difference vegetation index (NDVI) from 1981 to 1991 ten years ago. The global vegetation growth has changed because of climate change in recent twelve years (2001-2012). After thorough analysis based on satellite data, it is found that it is evident that the global vegetation changed (NDVI) little, and it is increasing slightly in Northern hemisphere while it is decreasing slightly in Southern Hemisphere. For different latitudes, vegetation is increasing 0.17% every year from 60°N to 70 °N (R2=0.47, P>0.013), while the vegetation is decreasing 0.11% every year from 10°N to 10°S (R2=0.54, P>0.004). For different continents, the vegetation in South America is decreasing 0.16% every year (R2=0.78, P>0.0001) and it is increasing 0.05% every year in Asia (R2=0.28, P>0.072) and 0.25% every year in Oceania (R2=0.24, P>0.1). The analysis of global vegetation in different seasons indicates that spatial distribution of global temperature and water vapor will affect the spatial distribution of vegetation, in turn, the spatial distribution of vegetation will also regulate the global temperature and water vapor spatial distribution at large scale. The growth and distribution of vegetation are mainly caused by the orbit of the celestial bodies, and a big data model based on gravitational-magmatic change with the solar or the galactic system as its center is proposed to be built for analyzing how the earth’s orbit position in the solar and galaxy system affects spatial-temporal variations of global vegetation and temperature at large scale. These findings promise a holistic understanding of the global climate change and potential underlying mechanisms.

    vegetation, global, climate change, remote sensing

    0 Introduction

    Vegetation is the main part of terrestrial ecosystem, which is a bridge among the atmosphere, biosphere and soil. Solar radiation is the source of energy for plant photosynthesis, and vegetation is also the main source of heat storage, which affects the growth rate of vegetation directly. The heat capacity transferred from solar radiation is determined largely by the vegetation types. NASA has two polar-orbiting Earth Observing System (EOS) satellites (Terra and Aqua) in orbit at all time. One of the primary purposes of the EOS program is to study the role of terrestrial vegetation in large-scale global processes with the goal of understanding how the Earth functions as a system. The NDVI of MODIS data is robust, empirical measures of vegetation activity at the land surface. It is designed to enhance the vegetation reflected signal from measured spectral responses by combining two wavebands, in the red (wavelengths 0.62~0.67μm) and NIR wavelengths (0.84~0.87μm) regions. NDVI is strong with the fraction of photosynthetically active radiation (wavelength 0.4~0.7μm) absorbed by vegetation[1-3]. Numerous studies have shown that there is a linear relationship between green vegetation fraction and NDVI[4-12]. Thus the change of NDVI can also be used to present the change of vegetation cover and growth.

    1 Materials and methods

    The National Aeronautics and Space Administration (NASA) provides global NDVI product MOD13C2 data, which are cloud-free spatial composites of the gridded 16-day 1-kilometer MOD13A2, and are provided monthly as a level-3 product. Cloud-free global coverage is achieved by replacing clouds with the historical MODIS data. Version-5 MODIS/Terra Vegetation Indices products are validated, meaning that accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts. Mean monthly NDVI is used to analyze the distribution of the vegetation. There is a linear relationship between green vegetation fraction and NDVI[4-12]. So it can be speculated the change of vegetation cover through the change of NDVI. Eq.(1) is used to estimate statistical average of NDVI in global and regional scale.

    (1)

    where NDVImis the mean of NDVI, i is the number of day every year, j is the number of pixel, S(j) is the area weighting function of the pixel j which is obtained from the model of earth, NDVIijis NDVI in ith day for the same location. Statistical average (NDVIm) can be used to characterize the vegetation coverage in global and region scale. Eq.(2) is used to estimate the rate of vegetation (NDVI) from 2001 to 2012[13].

    (2)

    Slope_Rate is change rate, k is the number of year, NDVImkis the mean NDVI of kth year, and n is 12.

    2 Results

    Statistical analysis is condusted for global (except Antarctica) in different regional scale from 2001 to 2012. Fig.1(a) is the global mean land NDVI. Which is 0.384, and change trend of global vegetation is weak and insignificant in recent twelve years. Fig.1(b) is the mean NDVI of northern hemisphere, and the mean NDVI is 0.342. The vegetation is increasing slightly in northern hemisphere. Fig.1(c) is the mean NDVI of southern hemisphere, and the mean NDVI is 0.506. The vegetation is decreasing slightly in southern hemisphere.

    Fig.1 (a) The mean NDVI of Globe, (b)Northern Hemisphere, (c)Southern Hemisphere from 2001 to 2012

    Mynenl, et al. found that the vegetation in the regions between 45°N-70°N was increasing using NDVI from 1981 to 1991[2]. Now the vegetation growth has been changed because the climate changes. Shown from Fig.2, the change of mean NDVI in different latitudes is different. The vegetation is increasing 0.17% ever year from 60°N and 70°N (R2=0.47, P>0.013), while the vegetation is decreasing 0.11% from 10°N to 10°S (R2=0.54, P>0.004). The vegetation is increasing slightly in 10°N~40°N and 20°S-30°S, while the vegetation is decreasing slightly in 40°N~50°N, 10°S~20°S, 30°S~60°S.

    For different continents, the vegetation change is also different (see Fig.3). The vegetation in South America is decreasing 0.16% every year (R2=0.78, P>0.0001) and it is increasing 0.05% every year in Asia (R2=0.28, P>0.072) and 0.25% every year in Oceania (R2=0.24, P>0.1). The vegetation in North America, Africa, and Europe are decreasing slightly.

    Fig.2 The mean NDVI of different latitude from 2001 to 2012

    Fig.3 The mean NDVI of six continents from 2001 to 2012

    The spatial variations of global average of the vegetation (NDVI) from 2001 to 2012 are shown in Fig.4(a). The high concentration of vegetation is mainly in South America and the central regions of Africa. In order to get the global change rate of vegetation in detail, a linear regression has been made for every pixel from 2001 to 2012, and the slope rate Eq.(2) is used to represent the change rate of vegetation (Fig.4(b)). The vegetation in high latitude regions (especially in Russia), the eastern region of China, the western regions of Indian peninsula, eastern regions of Australia, North-eastern regions of North America, and the southern tip of Africa are increasing. The vegetation in central regions of Africa, South America, western regions of Australia, south-east regions of America, western regions of Asia are decreasing.

    Fig.4 (a) The distribution of mean NDVI from 2001 to 2012, (b) Rate of NDVI change from 2001 to 2012, shown as the slope of a linear regression

    The seasonal variations of the NDVI from 2001 to 2012 are further analyzed, and the results are given in Fig.5. It is interesting to find that the vegetation changes are very obvious from spring (March to May) to winter (December to January) in northern hemisphere. On the contrary, the vegetation changes with the seasons change are not obvious in the southern hemisphere. Most of vegetation is distributed in North and South Americas, North Asia, central Africa and Southeast Asia, while vegetation is relatively less in the northern part of North Africa, Western Australia and West Asia. In spring, vegetation is relatively very large in Europe, South America and central Africa. In summer, the vegetation grows very fast in North America and North Asia. In autumn, the vegetation began to decrease in north hemisphere, while vegetation began to increase in south hemisphere. In winter, vegetation is at the minimum in the northern hemisphere, while vegetation is at maximum in the southern hemisphere.

    Fig.5 (a) The mean NDVI during March to May; (b) The mean NDVI during June to August; (c) The mean NDVI during September to November; (d) The mean NDVI during December to February in the last ten years

    The change trends of the global NDVI (Vegetation) by seasons in the last decades are given in Fig.6. A year- round increasing trend would be found in the north-east part of North America and Eastern Australia. It is increasing obviously in North Asia in spring and autumn. There is a clear increasing trend in the west of Indian peninsula and north China from summer to winter, while there is an obviously decreasing trend in the south of south America and near the equator regions in the whole year. Humans have little impact on the change of the spatial distribution of vegetation at global scale, which is mainly affected by temperature changes, and water vapor content. Shown from Fig.5 and Fig.6, the seasonal variations of vegetation are determined by the earth’s revolution. The vegetation growth and distribution are mainly affected by temperature changes and water cycle. Mao et al.[14,15]made an analysis for global surface temperature and global water vapor content, and they found that the surface temperature and water vapor content in North high latitudes are increasing which is the main reason for the increasing of vegetation in North Asia. The vegetation is decreasing 0.11% in the equatorial regions from 10°N to 10°S and the water vapor content is also decreasing in this region. Shown from Fig.7, the global vegetation change is the bridge among the temperature and water vapor content and CO2, and global vegetation through the water vapor and carbon dioxide to regulate the global temperature change. In fact, the change of global temperature and water vapor content is also influenced by the earth’s rotation and revolution which affects the growth and development of vegetation through the effects of respiration and photosynthesis. Therefore, a theory is put forward that the growth, temporal and spatial variation, appear and disappear of vegetation (including other species) are mainly determined by the variation of orbit of celestial body (like Fig.8), because magnetic field and gravitational field changes of celestial body influence the atoms and molecules of each species. The study of ecological systems (especially for temporal and spatial variation of vegetation) should be divided into three levels.The first level is that the respiration and photosynthesis of vegetation is mainly influenced by the earth’s rotation, and the second level is that the temporal and spatial variation of growth of vegetation are mainly determined by the revolution of the earth, and the third level is that the appear and extinction of vegetation (including other species) are determined by the revolution of sun and other planets. These three levels interact with each other, but the latter level determines the previous level. It is proposed to build a big data model based on gravitational-magmatic change with the solar or the galactic system as its center, and the thought of this model is that the climate and ecosystem change such as temperature and water cycle are mainly determined by the earth’s orbit position in the solar and galaxy system which indirectly affects the temporal and spatial variation of vegetation at large scale. Part of ideas and discourses has been described in the paper[16]. Because of the long running cycle of stars, Deople have not enough observation data, and extreme climate change cycle can be used to reverse the motion of the celestial bodies and discover new objects. Building the complex climate change model and the ecological species evolution model based on the orbit of the celestial body with big data method is the trend in the future. The theory for studying spatio-temporal change of climate and ecological system provides a new research direction, which is very important to study climate change, disaster prediction and ecological species evolution.

    Fig.6 The overall change rate of the NDVI by seasons from 2001 to 2012: (a) March to May; (b) June to August; (c) September to November; (d) December to February

    Fig.7 (a) The Global surface temperature; (b) Global water vapor content; (c) Global CO2 from 2003 to 2012

    Fig.8 Solar system simulator provided by Moose O’Malley

    3 Conclusions

    Many reports suggest that extreme floods, heat waves, droughts, and wildfires that occurred on a global scale over the past decade might be exacerbated by climate change[17]. The vegetation cover change is critical for understanding the impacts and responses of vegetation to climate change. After thorough analysis based on satellite data, this study finds evident that the global vegetation change little, and it is increasing slightly in northern hemisphere while it is decreasing slightly in southern hemisphere. For different latitudes, the vegetation is increasing every year from 60°N to 70 °N, while the vegetation is decreasing from 10°N to 10°S. For different continents, the vegetation in South America is decreasing and it is increasing in Asia and Oceania. This comprehensive examination of vegetation changes promises a holistic understanding of the global climate change and potential underlying mechanisms. The main reason of vegetation change at small scale is determined by climate change, such as drought, and the second reason is human destruction. The distribution and grows of vegetation at large scale are different for different regions, and the main reasons are the change of global surface temperature and water cycle which are mainly determined by the earth’s orbit position in the solar and galaxy system. Finally, a theory is put forward that the growth, temporal and spatial variation, appear and disappear of vegetation (including other species), and global temperature are mainly determined by the variation of orbit of celestial body, and three levels study of big data model based on gravitational-magmatic change should be made in the future research. More research should be done which will be reported in the future.

    Acknowledgements:

    The Authors would like to thank the Goddard Space Flight Center for providing the MODIS data.

    [ 1] Asrar G, Fuchs M, Kanemasu E T, et al. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, 1984,76:300-306

    [ 2] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981~1991. Nature, 1997,386:698-702

    [ 3] Myneni R B, Tucker C J, Asrar G, et al. Increased vegetation greenness amplitude and growing season duration in northern high latitudes inferred from satellite-sensed vegetation index data from 1981-91. NASA Tech. Memo. 1996, 104638 (NASA Goddard Space Flight Center, Greenbelt, MD)

    [ 4] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998,19:1533-1543

    [ 5] Gan T Y, Burges S J. Assessment of soil-based and calibrated parameters of the sacramento model and parameter transferability. Journal of Hydrology, 2006,320:117-131

    [ 6] Gebremichael M, Barros A P. Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sensing of Environment, 2006,100:150-166

    [ 7] Matsui T, Lakshmi V, Small E E. The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS. Journal of Climate, 2005,18:21-40

    [ 8] Ek M B, Mitchell K E, Lin Y, et al. Implementation of NOAH land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. Journal of Geophysical Research, 2003,108:1211-1216

    [ 9] Gallo K, Tarpley D, Mitchell K, et al. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA. Geophysical Research Letters, 2001,28:2089-2092

    [10] Oleson K W, Emery W J, Maslanik J A. Evaluating land surface parameters in the biosphere-atmosphere transfer scheme using remotely sensed data sets. Journal of Geophysical Research, 2000,105:7275-7293

    [11] Zeng X, Dickinson R E, Walker A, et al. Derivation and evaluation of global 1km fractional vegetation cover data for land modeling. Journal of Applied Meteorology, 2000,39:826-839

    [12] Montandon L M, Small E E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 2008,112:1835-1845

    [13] Stow D, Daeschner S, Hope A, et al. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing, 2003,24(5):1111-1117

    [14] Mao K B, Ma Y, Zuo Z Y, et al. Global water vapor content and vegetation change analysis based on remote sensing data. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Beijing, China, 2016,16: 5205-5208

    [15] Mao K B, Ma Y, Zuo Z Y, et al. Which year is the hottest or coldest from 2001-2012 based on remote sensing data. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Beijing, China, 2016,16: 5213-5216

    [16] Mao K, Ma Y, Xu T R, et al. A new perspective about climate change. Scientific Journal of Earth Science, 2015,5(1):12-17

    [17] Rahmstorf S, Coumou D. Increase of extreme events in a warming world. PNAS, 2011,108:17905-17909

    Mao Kebiao, born in 1977. He received the Ph.D. degree in geographic information systems from the Chinese Academy of Sciences in 2007, the M.S. degree from Nanjing University in 2004, and the B.S. degree from Northeast University in 2001. He is currently with the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing. His research interests include global climate change, agricultural big data, geophysical parameters retrieval (like land surface temperature and emissivity, soil moisture and water vapor content).

    10.3772/j.issn.1006-6748.2016.04.001

    ① Supported by the National Key Project (No. 2016YFC0500203), the National Natural Science Foundation of China (No. 41571427) and the National Non-Profit Institute Research Grant of CAAS (IARRP-2015-26).

    ② To whom correspondence should be addressed. E-mail: maokebiao@126.com Received on May 7, 2016

    少妇 在线观看| 国产av一区二区精品久久| 少妇的丰满在线观看| 成人亚洲精品一区在线观看| 精品国产一区二区三区四区第35| 夜夜骑夜夜射夜夜干| 美女扒开内裤让男人捅视频| 男女下面插进去视频免费观看| 亚洲国产精品999| 12—13女人毛片做爰片一| 亚洲欧美一区二区三区久久| 十分钟在线观看高清视频www| 国产成人精品久久二区二区91| 日本精品一区二区三区蜜桃| 久久精品国产a三级三级三级| 又黄又粗又硬又大视频| 亚洲国产中文字幕在线视频| a在线观看视频网站| 女性生殖器流出的白浆| 午夜影院在线不卡| 日韩中文字幕欧美一区二区| 日本av手机在线免费观看| 日本wwww免费看| 成年美女黄网站色视频大全免费| 午夜免费观看性视频| 亚洲熟女毛片儿| 免费一级毛片在线播放高清视频 | 久久综合国产亚洲精品| 香蕉国产在线看| 狠狠狠狠99中文字幕| 久久中文字幕一级| 免费在线观看完整版高清| 国产精品久久久人人做人人爽| 精品亚洲成国产av| 欧美 日韩 精品 国产| 亚洲av成人一区二区三| √禁漫天堂资源中文www| 中文字幕人妻熟女乱码| 免费观看人在逋| www.999成人在线观看| 少妇粗大呻吟视频| 狂野欧美激情性bbbbbb| 久久久久久久国产电影| 夫妻午夜视频| 一进一出抽搐动态| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| www.精华液| 一区在线观看完整版| 性色av乱码一区二区三区2| 啦啦啦 在线观看视频| 亚洲成人免费av在线播放| 精品少妇一区二区三区视频日本电影| 少妇猛男粗大的猛烈进出视频| 久久午夜综合久久蜜桃| 操美女的视频在线观看| 男人操女人黄网站| 免费女性裸体啪啪无遮挡网站| 久久久久精品人妻al黑| 久久亚洲国产成人精品v| 久久久欧美国产精品| 天天影视国产精品| 老汉色∧v一级毛片| 亚洲一区中文字幕在线| 黄色毛片三级朝国网站| 精品国内亚洲2022精品成人 | av片东京热男人的天堂| 亚洲精华国产精华精| 交换朋友夫妻互换小说| 国产精品av久久久久免费| 精品人妻熟女毛片av久久网站| 久久天堂一区二区三区四区| 久久精品熟女亚洲av麻豆精品| 国产日韩欧美亚洲二区| 飞空精品影院首页| 欧美日韩精品网址| 国产精品久久久久成人av| 男人爽女人下面视频在线观看| 欧美乱码精品一区二区三区| 在线观看舔阴道视频| 我的亚洲天堂| 日日爽夜夜爽网站| 黄色怎么调成土黄色| 精品国内亚洲2022精品成人 | 又黄又粗又硬又大视频| 一级毛片女人18水好多| 搡老乐熟女国产| 一级毛片电影观看| 多毛熟女@视频| 伦理电影免费视频| 亚洲精品久久午夜乱码| svipshipincom国产片| 人妻久久中文字幕网| 精品国内亚洲2022精品成人 | tube8黄色片| 国产野战对白在线观看| 91麻豆精品激情在线观看国产 | 日韩中文字幕欧美一区二区| 超碰成人久久| 欧美日韩国产mv在线观看视频| 一区二区三区四区激情视频| 久久午夜综合久久蜜桃| 欧美少妇被猛烈插入视频| 老司机午夜福利在线观看视频 | a级片在线免费高清观看视频| 久久精品熟女亚洲av麻豆精品| 免费黄频网站在线观看国产| 三上悠亚av全集在线观看| 亚洲精品中文字幕在线视频| 日韩中文字幕欧美一区二区| 欧美日韩精品网址| 亚洲自偷自拍图片 自拍| 日日摸夜夜添夜夜添小说| 91老司机精品| 精品国产乱子伦一区二区三区 | 国产亚洲av片在线观看秒播厂| 老司机靠b影院| 欧美日韩黄片免| 亚洲精品第二区| 国产精品久久久久久精品电影小说| 国产在视频线精品| 亚洲国产欧美网| 久久 成人 亚洲| 中文字幕最新亚洲高清| 丰满人妻熟妇乱又伦精品不卡| 免费久久久久久久精品成人欧美视频| 国产区一区二久久| 亚洲第一欧美日韩一区二区三区 | 久久中文看片网| 午夜福利乱码中文字幕| 国产精品久久久av美女十八| 高清在线国产一区| 大码成人一级视频| 亚洲免费av在线视频| 久久久久久亚洲精品国产蜜桃av| 国产精品秋霞免费鲁丝片| 日本vs欧美在线观看视频| 美女主播在线视频| 亚洲美女黄色视频免费看| tocl精华| 99热国产这里只有精品6| 99香蕉大伊视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区av在线| 成人黄色视频免费在线看| 成人手机av| 欧美日韩成人在线一区二区| 久久久久国内视频| 香蕉国产在线看| 午夜精品久久久久久毛片777| 成人黄色视频免费在线看| 99精品久久久久人妻精品| 国产精品成人在线| 久久这里只有精品19| 久久久久精品国产欧美久久久 | 久久ye,这里只有精品| 一本色道久久久久久精品综合| 男女国产视频网站| 王馨瑶露胸无遮挡在线观看| 国产精品1区2区在线观看. | videos熟女内射| 国产精品麻豆人妻色哟哟久久| 一区福利在线观看| 久久久精品免费免费高清| 亚洲av美国av| 国产一区二区激情短视频 | 成人三级做爰电影| 久久午夜综合久久蜜桃| 啦啦啦视频在线资源免费观看| 午夜91福利影院| 中文字幕高清在线视频| 丝袜脚勾引网站| 狂野欧美激情性bbbbbb| 亚洲精品中文字幕在线视频| 搡老岳熟女国产| 国产一卡二卡三卡精品| 美女高潮喷水抽搐中文字幕| 老汉色av国产亚洲站长工具| 久久人妻熟女aⅴ| 亚洲美女黄色视频免费看| 桃花免费在线播放| 美女扒开内裤让男人捅视频| av一本久久久久| xxxhd国产人妻xxx| 亚洲国产精品成人久久小说| 999久久久精品免费观看国产| 亚洲精品一区蜜桃| 亚洲精品久久成人aⅴ小说| 深夜精品福利| 天堂中文最新版在线下载| 国产av又大| 亚洲av男天堂| 高清在线国产一区| 亚洲成人手机| 水蜜桃什么品种好| 中文字幕制服av| 巨乳人妻的诱惑在线观看| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 欧美在线一区亚洲| 欧美黄色淫秽网站| 黑人欧美特级aaaaaa片| 天天躁日日躁夜夜躁夜夜| 国产精品免费视频内射| 在线观看人妻少妇| a级片在线免费高清观看视频| 国产亚洲欧美在线一区二区| 一个人免费在线观看的高清视频 | 日韩制服骚丝袜av| 亚洲成国产人片在线观看| 法律面前人人平等表现在哪些方面 | 欧美日韩视频精品一区| e午夜精品久久久久久久| 青春草亚洲视频在线观看| 欧美精品亚洲一区二区| 国产视频一区二区在线看| 飞空精品影院首页| 少妇精品久久久久久久| 十八禁网站免费在线| 欧美日韩亚洲综合一区二区三区_| 亚洲精品自拍成人| 日韩制服骚丝袜av| 久久综合国产亚洲精品| 丰满少妇做爰视频| 在线观看www视频免费| 乱人伦中国视频| 两个人免费观看高清视频| 香蕉丝袜av| 国产av又大| av在线app专区| 夫妻午夜视频| 啦啦啦中文免费视频观看日本| 天天躁日日躁夜夜躁夜夜| 免费在线观看视频国产中文字幕亚洲 | 一个人免费看片子| 99精国产麻豆久久婷婷| 操出白浆在线播放| 亚洲成人手机| 国产精品麻豆人妻色哟哟久久| 亚洲七黄色美女视频| 国产男人的电影天堂91| 成年人午夜在线观看视频| 老熟妇仑乱视频hdxx| 国产又色又爽无遮挡免| 最近最新中文字幕大全免费视频| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 成人国产一区最新在线观看| h视频一区二区三区| 日韩欧美免费精品| 操美女的视频在线观看| 亚洲 欧美一区二区三区| 欧美日韩精品网址| 亚洲伊人色综图| 午夜福利免费观看在线| 69精品国产乱码久久久| 成人影院久久| 国产亚洲av高清不卡| av视频免费观看在线观看| 91成年电影在线观看| 亚洲精品久久久久久婷婷小说| 久久久久久亚洲精品国产蜜桃av| 91老司机精品| 手机成人av网站| 亚洲av成人不卡在线观看播放网 | 男女下面插进去视频免费观看| 欧美日韩视频精品一区| 久久久国产一区二区| 一本综合久久免费| 无遮挡黄片免费观看| 大陆偷拍与自拍| 99热国产这里只有精品6| 精品一区二区三区av网在线观看 | 男人操女人黄网站| 国产成人啪精品午夜网站| 亚洲精品中文字幕在线视频| 久久精品亚洲熟妇少妇任你| 亚洲精品一二三| 国产精品九九99| 亚洲av欧美aⅴ国产| 亚洲avbb在线观看| 亚洲av国产av综合av卡| 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| 午夜福利视频精品| 国产精品国产三级国产专区5o| 伊人久久大香线蕉亚洲五| 成年人免费黄色播放视频| 欧美在线一区亚洲| svipshipincom国产片| 亚洲精品国产av成人精品| 999久久久精品免费观看国产| h视频一区二区三区| 男女下面插进去视频免费观看| 中文字幕色久视频| 国产成人a∨麻豆精品| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区综合在线观看| 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 一本大道久久a久久精品| av线在线观看网站| 大陆偷拍与自拍| 777米奇影视久久| 热re99久久国产66热| 久久人人爽人人片av| 久久亚洲精品不卡| 大陆偷拍与自拍| 日韩有码中文字幕| 欧美久久黑人一区二区| 五月天丁香电影| 国产日韩欧美亚洲二区| 国产三级黄色录像| 久久精品亚洲av国产电影网| 亚洲精品国产一区二区精华液| 99久久99久久久精品蜜桃| 久久人人97超碰香蕉20202| 91成年电影在线观看| 久久香蕉激情| svipshipincom国产片| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 久久久久精品人妻al黑| 午夜精品久久久久久毛片777| 国产高清videossex| 一级黄色大片毛片| 在线观看免费视频网站a站| 91av网站免费观看| 99久久精品国产亚洲精品| 黄色a级毛片大全视频| 99热全是精品| 欧美黑人精品巨大| 高清黄色对白视频在线免费看| 老司机午夜福利在线观看视频 | 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 婷婷丁香在线五月| 少妇 在线观看| 男人添女人高潮全过程视频| 欧美xxⅹ黑人| 一本色道久久久久久精品综合| 又黄又粗又硬又大视频| 99国产极品粉嫩在线观看| 在线天堂中文资源库| 久9热在线精品视频| 亚洲精品久久午夜乱码| 亚洲三区欧美一区| kizo精华| 中文欧美无线码| 日本av手机在线免费观看| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 亚洲激情五月婷婷啪啪| 国产男女内射视频| 飞空精品影院首页| 国产精品自产拍在线观看55亚洲 | 亚洲成人免费av在线播放| 午夜福利在线免费观看网站| 成年女人毛片免费观看观看9 | 老熟女久久久| 日本黄色日本黄色录像| 久久精品久久久久久噜噜老黄| 亚洲国产欧美网| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 日日夜夜操网爽| 午夜福利一区二区在线看| 精品一区二区三区四区五区乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 成人黄色视频免费在线看| 在线观看舔阴道视频| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站| 婷婷色av中文字幕| 视频区欧美日本亚洲| 一级毛片电影观看| av在线app专区| 欧美精品一区二区免费开放| 丝袜美足系列| 国产91精品成人一区二区三区 | 国产区一区二久久| 激情视频va一区二区三区| 最近中文字幕2019免费版| 成人影院久久| 免费黄频网站在线观看国产| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| 欧美午夜高清在线| 日韩有码中文字幕| 国产精品1区2区在线观看. | 50天的宝宝边吃奶边哭怎么回事| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区av在线| av不卡在线播放| 啦啦啦 在线观看视频| 夫妻午夜视频| av又黄又爽大尺度在线免费看| 欧美国产精品va在线观看不卡| 久久亚洲国产成人精品v| 久久久久视频综合| 亚洲国产成人一精品久久久| 久久天躁狠狠躁夜夜2o2o| 99久久99久久久精品蜜桃| 亚洲国产精品999| 老司机福利观看| 午夜视频精品福利| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 亚洲av美国av| 国产精品 欧美亚洲| 午夜影院在线不卡| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| av在线播放精品| 18禁国产床啪视频网站| 少妇的丰满在线观看| www.自偷自拍.com| 91国产中文字幕| 美女国产高潮福利片在线看| 午夜福利在线免费观看网站| 高潮久久久久久久久久久不卡| 国产淫语在线视频| 最新在线观看一区二区三区| 欧美日韩黄片免| 亚洲精品自拍成人| 一本综合久久免费| 人人妻人人澡人人爽人人夜夜| 国产日韩一区二区三区精品不卡| 男女无遮挡免费网站观看| 亚洲精品乱久久久久久| 嫩草影视91久久| 久久精品国产亚洲av高清一级| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三 | 一本久久精品| 老汉色av国产亚洲站长工具| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| av超薄肉色丝袜交足视频| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂8中文在线网| 国产主播在线观看一区二区| 少妇的丰满在线观看| 久久精品亚洲av国产电影网| 亚洲免费av在线视频| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| a级毛片黄视频| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 深夜精品福利| 欧美大码av| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| av线在线观看网站| 久久香蕉激情| 在线观看www视频免费| 一级片免费观看大全| 热99国产精品久久久久久7| 国产精品自产拍在线观看55亚洲 | 大香蕉久久网| 淫妇啪啪啪对白视频 | 欧美精品一区二区大全| 免费在线观看视频国产中文字幕亚洲 | 大型av网站在线播放| 精品高清国产在线一区| 在线精品无人区一区二区三| 中文字幕最新亚洲高清| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 久久久久久久精品精品| 人妻一区二区av| 制服人妻中文乱码| 国产免费av片在线观看野外av| 99热网站在线观看| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频 | 中文字幕人妻丝袜制服| netflix在线观看网站| 91成年电影在线观看| 亚洲精品av麻豆狂野| 精品乱码久久久久久99久播| 多毛熟女@视频| 日韩视频在线欧美| 十分钟在线观看高清视频www| av线在线观看网站| 热99re8久久精品国产| 下体分泌物呈黄色| 天天操日日干夜夜撸| 一本大道久久a久久精品| 一个人免费在线观看的高清视频 | av天堂在线播放| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美| 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全免费视频| 欧美 亚洲 国产 日韩一| 91成年电影在线观看| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 国产不卡av网站在线观看| 亚洲精品国产色婷婷电影| 日韩欧美一区二区三区在线观看 | 黑人巨大精品欧美一区二区蜜桃| 久久精品久久久久久噜噜老黄| 亚洲全国av大片| 中文字幕人妻熟女乱码| 在线亚洲精品国产二区图片欧美| 日韩有码中文字幕| 三上悠亚av全集在线观看| 一进一出抽搐动态| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 一二三四在线观看免费中文在| 久久免费观看电影| 国产精品免费视频内射| 国产黄色免费在线视频| 午夜两性在线视频| 美女大奶头黄色视频| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 久久免费观看电影| 午夜两性在线视频| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 久久人人97超碰香蕉20202| 日韩有码中文字幕| av线在线观看网站| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 老司机午夜福利在线观看视频 | 一边摸一边抽搐一进一出视频| 国产福利在线免费观看视频| 欧美精品啪啪一区二区三区 | 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 免费在线观看黄色视频的| 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 久久人人爽人人片av| 如日韩欧美国产精品一区二区三区| 美国免费a级毛片| 亚洲伊人色综图| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 男人舔女人的私密视频| 电影成人av| 欧美人与性动交α欧美软件| 高清黄色对白视频在线免费看| 女性被躁到高潮视频| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产一区二区在线观看av| 自线自在国产av| 精品国产一区二区久久| 亚洲伊人色综图| 成人国语在线视频| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 欧美精品高潮呻吟av久久| 国产成人啪精品午夜网站| 午夜福利,免费看| 国产成人免费无遮挡视频| 91av网站免费观看| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 12—13女人毛片做爰片一| 国产成人免费观看mmmm| 成年动漫av网址| 青春草亚洲视频在线观看| 亚洲精品粉嫩美女一区| 无限看片的www在线观看| 亚洲黑人精品在线| 久久精品亚洲熟妇少妇任你| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频| 欧美精品一区二区大全| 国产成人欧美| 国产成人免费观看mmmm| 午夜影院在线不卡| 黑人欧美特级aaaaaa片| 日韩熟女老妇一区二区性免费视频| 人妻人人澡人人爽人人| 精品福利永久在线观看| 久久久久久久大尺度免费视频|