• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global vegetation change analysis based on MODIS data in recent twelve years①

    2016-12-22 05:45:26MaoKebiao毛克彪LiZhaoliangChenJingmingMaYingLiuGuangTanXuelanYangKaixian
    High Technology Letters 2016年4期

    Mao Kebiao (毛克彪), Li Zhaoliang, Chen Jingming, Ma Ying,Liu Guang, Tan Xuelan, Yang Kaixian

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Institute for Earth System Science, Nanjing University, Nanjing 210093, P.R.China)(***State Key Laboratory of Remote Sensing Science, Institute of remote sensing and Digital Earth ResearchInstitute and Beijing Normal University, Beijing 100875, P.R.China)(****College of Resources and Environments, Hunan Agricultural University, Changsha 410128, P.R.China)(*****Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA)

    ?

    Global vegetation change analysis based on MODIS data in recent twelve years①

    Mao Kebiao (毛克彪)②*, Li Zhaoliang*, Chen Jingming**, Ma Ying*,Liu Guang***, Tan Xuelan****, Yang Kaixian*****

    (*National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China)(**International Institute for Earth System Science, Nanjing University, Nanjing 210093, P.R.China)(***State Key Laboratory of Remote Sensing Science, Institute of remote sensing and Digital Earth ResearchInstitute and Beijing Normal University, Beijing 100875, P.R.China)(****College of Resources and Environments, Hunan Agricultural University, Changsha 410128, P.R.China)(*****Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA)

    Vegetation cover change is critical for understanding impacts and responses of vegetation to climate change. A study found that vegetation in the regions between 45°N-70°N was increasing using normalized difference vegetation index (NDVI) from 1981 to 1991 ten years ago. The global vegetation growth has changed because of climate change in recent twelve years (2001-2012). After thorough analysis based on satellite data, it is found that it is evident that the global vegetation changed (NDVI) little, and it is increasing slightly in Northern hemisphere while it is decreasing slightly in Southern Hemisphere. For different latitudes, vegetation is increasing 0.17% every year from 60°N to 70 °N (R2=0.47, P>0.013), while the vegetation is decreasing 0.11% every year from 10°N to 10°S (R2=0.54, P>0.004). For different continents, the vegetation in South America is decreasing 0.16% every year (R2=0.78, P>0.0001) and it is increasing 0.05% every year in Asia (R2=0.28, P>0.072) and 0.25% every year in Oceania (R2=0.24, P>0.1). The analysis of global vegetation in different seasons indicates that spatial distribution of global temperature and water vapor will affect the spatial distribution of vegetation, in turn, the spatial distribution of vegetation will also regulate the global temperature and water vapor spatial distribution at large scale. The growth and distribution of vegetation are mainly caused by the orbit of the celestial bodies, and a big data model based on gravitational-magmatic change with the solar or the galactic system as its center is proposed to be built for analyzing how the earth’s orbit position in the solar and galaxy system affects spatial-temporal variations of global vegetation and temperature at large scale. These findings promise a holistic understanding of the global climate change and potential underlying mechanisms.

    vegetation, global, climate change, remote sensing

    0 Introduction

    Vegetation is the main part of terrestrial ecosystem, which is a bridge among the atmosphere, biosphere and soil. Solar radiation is the source of energy for plant photosynthesis, and vegetation is also the main source of heat storage, which affects the growth rate of vegetation directly. The heat capacity transferred from solar radiation is determined largely by the vegetation types. NASA has two polar-orbiting Earth Observing System (EOS) satellites (Terra and Aqua) in orbit at all time. One of the primary purposes of the EOS program is to study the role of terrestrial vegetation in large-scale global processes with the goal of understanding how the Earth functions as a system. The NDVI of MODIS data is robust, empirical measures of vegetation activity at the land surface. It is designed to enhance the vegetation reflected signal from measured spectral responses by combining two wavebands, in the red (wavelengths 0.62~0.67μm) and NIR wavelengths (0.84~0.87μm) regions. NDVI is strong with the fraction of photosynthetically active radiation (wavelength 0.4~0.7μm) absorbed by vegetation[1-3]. Numerous studies have shown that there is a linear relationship between green vegetation fraction and NDVI[4-12]. Thus the change of NDVI can also be used to present the change of vegetation cover and growth.

    1 Materials and methods

    The National Aeronautics and Space Administration (NASA) provides global NDVI product MOD13C2 data, which are cloud-free spatial composites of the gridded 16-day 1-kilometer MOD13A2, and are provided monthly as a level-3 product. Cloud-free global coverage is achieved by replacing clouds with the historical MODIS data. Version-5 MODIS/Terra Vegetation Indices products are validated, meaning that accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts. Mean monthly NDVI is used to analyze the distribution of the vegetation. There is a linear relationship between green vegetation fraction and NDVI[4-12]. So it can be speculated the change of vegetation cover through the change of NDVI. Eq.(1) is used to estimate statistical average of NDVI in global and regional scale.

    (1)

    where NDVImis the mean of NDVI, i is the number of day every year, j is the number of pixel, S(j) is the area weighting function of the pixel j which is obtained from the model of earth, NDVIijis NDVI in ith day for the same location. Statistical average (NDVIm) can be used to characterize the vegetation coverage in global and region scale. Eq.(2) is used to estimate the rate of vegetation (NDVI) from 2001 to 2012[13].

    (2)

    Slope_Rate is change rate, k is the number of year, NDVImkis the mean NDVI of kth year, and n is 12.

    2 Results

    Statistical analysis is condusted for global (except Antarctica) in different regional scale from 2001 to 2012. Fig.1(a) is the global mean land NDVI. Which is 0.384, and change trend of global vegetation is weak and insignificant in recent twelve years. Fig.1(b) is the mean NDVI of northern hemisphere, and the mean NDVI is 0.342. The vegetation is increasing slightly in northern hemisphere. Fig.1(c) is the mean NDVI of southern hemisphere, and the mean NDVI is 0.506. The vegetation is decreasing slightly in southern hemisphere.

    Fig.1 (a) The mean NDVI of Globe, (b)Northern Hemisphere, (c)Southern Hemisphere from 2001 to 2012

    Mynenl, et al. found that the vegetation in the regions between 45°N-70°N was increasing using NDVI from 1981 to 1991[2]. Now the vegetation growth has been changed because the climate changes. Shown from Fig.2, the change of mean NDVI in different latitudes is different. The vegetation is increasing 0.17% ever year from 60°N and 70°N (R2=0.47, P>0.013), while the vegetation is decreasing 0.11% from 10°N to 10°S (R2=0.54, P>0.004). The vegetation is increasing slightly in 10°N~40°N and 20°S-30°S, while the vegetation is decreasing slightly in 40°N~50°N, 10°S~20°S, 30°S~60°S.

    For different continents, the vegetation change is also different (see Fig.3). The vegetation in South America is decreasing 0.16% every year (R2=0.78, P>0.0001) and it is increasing 0.05% every year in Asia (R2=0.28, P>0.072) and 0.25% every year in Oceania (R2=0.24, P>0.1). The vegetation in North America, Africa, and Europe are decreasing slightly.

    Fig.2 The mean NDVI of different latitude from 2001 to 2012

    Fig.3 The mean NDVI of six continents from 2001 to 2012

    The spatial variations of global average of the vegetation (NDVI) from 2001 to 2012 are shown in Fig.4(a). The high concentration of vegetation is mainly in South America and the central regions of Africa. In order to get the global change rate of vegetation in detail, a linear regression has been made for every pixel from 2001 to 2012, and the slope rate Eq.(2) is used to represent the change rate of vegetation (Fig.4(b)). The vegetation in high latitude regions (especially in Russia), the eastern region of China, the western regions of Indian peninsula, eastern regions of Australia, North-eastern regions of North America, and the southern tip of Africa are increasing. The vegetation in central regions of Africa, South America, western regions of Australia, south-east regions of America, western regions of Asia are decreasing.

    Fig.4 (a) The distribution of mean NDVI from 2001 to 2012, (b) Rate of NDVI change from 2001 to 2012, shown as the slope of a linear regression

    The seasonal variations of the NDVI from 2001 to 2012 are further analyzed, and the results are given in Fig.5. It is interesting to find that the vegetation changes are very obvious from spring (March to May) to winter (December to January) in northern hemisphere. On the contrary, the vegetation changes with the seasons change are not obvious in the southern hemisphere. Most of vegetation is distributed in North and South Americas, North Asia, central Africa and Southeast Asia, while vegetation is relatively less in the northern part of North Africa, Western Australia and West Asia. In spring, vegetation is relatively very large in Europe, South America and central Africa. In summer, the vegetation grows very fast in North America and North Asia. In autumn, the vegetation began to decrease in north hemisphere, while vegetation began to increase in south hemisphere. In winter, vegetation is at the minimum in the northern hemisphere, while vegetation is at maximum in the southern hemisphere.

    Fig.5 (a) The mean NDVI during March to May; (b) The mean NDVI during June to August; (c) The mean NDVI during September to November; (d) The mean NDVI during December to February in the last ten years

    The change trends of the global NDVI (Vegetation) by seasons in the last decades are given in Fig.6. A year- round increasing trend would be found in the north-east part of North America and Eastern Australia. It is increasing obviously in North Asia in spring and autumn. There is a clear increasing trend in the west of Indian peninsula and north China from summer to winter, while there is an obviously decreasing trend in the south of south America and near the equator regions in the whole year. Humans have little impact on the change of the spatial distribution of vegetation at global scale, which is mainly affected by temperature changes, and water vapor content. Shown from Fig.5 and Fig.6, the seasonal variations of vegetation are determined by the earth’s revolution. The vegetation growth and distribution are mainly affected by temperature changes and water cycle. Mao et al.[14,15]made an analysis for global surface temperature and global water vapor content, and they found that the surface temperature and water vapor content in North high latitudes are increasing which is the main reason for the increasing of vegetation in North Asia. The vegetation is decreasing 0.11% in the equatorial regions from 10°N to 10°S and the water vapor content is also decreasing in this region. Shown from Fig.7, the global vegetation change is the bridge among the temperature and water vapor content and CO2, and global vegetation through the water vapor and carbon dioxide to regulate the global temperature change. In fact, the change of global temperature and water vapor content is also influenced by the earth’s rotation and revolution which affects the growth and development of vegetation through the effects of respiration and photosynthesis. Therefore, a theory is put forward that the growth, temporal and spatial variation, appear and disappear of vegetation (including other species) are mainly determined by the variation of orbit of celestial body (like Fig.8), because magnetic field and gravitational field changes of celestial body influence the atoms and molecules of each species. The study of ecological systems (especially for temporal and spatial variation of vegetation) should be divided into three levels.The first level is that the respiration and photosynthesis of vegetation is mainly influenced by the earth’s rotation, and the second level is that the temporal and spatial variation of growth of vegetation are mainly determined by the revolution of the earth, and the third level is that the appear and extinction of vegetation (including other species) are determined by the revolution of sun and other planets. These three levels interact with each other, but the latter level determines the previous level. It is proposed to build a big data model based on gravitational-magmatic change with the solar or the galactic system as its center, and the thought of this model is that the climate and ecosystem change such as temperature and water cycle are mainly determined by the earth’s orbit position in the solar and galaxy system which indirectly affects the temporal and spatial variation of vegetation at large scale. Part of ideas and discourses has been described in the paper[16]. Because of the long running cycle of stars, Deople have not enough observation data, and extreme climate change cycle can be used to reverse the motion of the celestial bodies and discover new objects. Building the complex climate change model and the ecological species evolution model based on the orbit of the celestial body with big data method is the trend in the future. The theory for studying spatio-temporal change of climate and ecological system provides a new research direction, which is very important to study climate change, disaster prediction and ecological species evolution.

    Fig.6 The overall change rate of the NDVI by seasons from 2001 to 2012: (a) March to May; (b) June to August; (c) September to November; (d) December to February

    Fig.7 (a) The Global surface temperature; (b) Global water vapor content; (c) Global CO2 from 2003 to 2012

    Fig.8 Solar system simulator provided by Moose O’Malley

    3 Conclusions

    Many reports suggest that extreme floods, heat waves, droughts, and wildfires that occurred on a global scale over the past decade might be exacerbated by climate change[17]. The vegetation cover change is critical for understanding the impacts and responses of vegetation to climate change. After thorough analysis based on satellite data, this study finds evident that the global vegetation change little, and it is increasing slightly in northern hemisphere while it is decreasing slightly in southern hemisphere. For different latitudes, the vegetation is increasing every year from 60°N to 70 °N, while the vegetation is decreasing from 10°N to 10°S. For different continents, the vegetation in South America is decreasing and it is increasing in Asia and Oceania. This comprehensive examination of vegetation changes promises a holistic understanding of the global climate change and potential underlying mechanisms. The main reason of vegetation change at small scale is determined by climate change, such as drought, and the second reason is human destruction. The distribution and grows of vegetation at large scale are different for different regions, and the main reasons are the change of global surface temperature and water cycle which are mainly determined by the earth’s orbit position in the solar and galaxy system. Finally, a theory is put forward that the growth, temporal and spatial variation, appear and disappear of vegetation (including other species), and global temperature are mainly determined by the variation of orbit of celestial body, and three levels study of big data model based on gravitational-magmatic change should be made in the future research. More research should be done which will be reported in the future.

    Acknowledgements:

    The Authors would like to thank the Goddard Space Flight Center for providing the MODIS data.

    [ 1] Asrar G, Fuchs M, Kanemasu E T, et al. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, 1984,76:300-306

    [ 2] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981~1991. Nature, 1997,386:698-702

    [ 3] Myneni R B, Tucker C J, Asrar G, et al. Increased vegetation greenness amplitude and growing season duration in northern high latitudes inferred from satellite-sensed vegetation index data from 1981-91. NASA Tech. Memo. 1996, 104638 (NASA Goddard Space Flight Center, Greenbelt, MD)

    [ 4] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998,19:1533-1543

    [ 5] Gan T Y, Burges S J. Assessment of soil-based and calibrated parameters of the sacramento model and parameter transferability. Journal of Hydrology, 2006,320:117-131

    [ 6] Gebremichael M, Barros A P. Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sensing of Environment, 2006,100:150-166

    [ 7] Matsui T, Lakshmi V, Small E E. The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS. Journal of Climate, 2005,18:21-40

    [ 8] Ek M B, Mitchell K E, Lin Y, et al. Implementation of NOAH land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. Journal of Geophysical Research, 2003,108:1211-1216

    [ 9] Gallo K, Tarpley D, Mitchell K, et al. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA. Geophysical Research Letters, 2001,28:2089-2092

    [10] Oleson K W, Emery W J, Maslanik J A. Evaluating land surface parameters in the biosphere-atmosphere transfer scheme using remotely sensed data sets. Journal of Geophysical Research, 2000,105:7275-7293

    [11] Zeng X, Dickinson R E, Walker A, et al. Derivation and evaluation of global 1km fractional vegetation cover data for land modeling. Journal of Applied Meteorology, 2000,39:826-839

    [12] Montandon L M, Small E E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 2008,112:1835-1845

    [13] Stow D, Daeschner S, Hope A, et al. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing, 2003,24(5):1111-1117

    [14] Mao K B, Ma Y, Zuo Z Y, et al. Global water vapor content and vegetation change analysis based on remote sensing data. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Beijing, China, 2016,16: 5205-5208

    [15] Mao K B, Ma Y, Zuo Z Y, et al. Which year is the hottest or coldest from 2001-2012 based on remote sensing data. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Beijing, China, 2016,16: 5213-5216

    [16] Mao K, Ma Y, Xu T R, et al. A new perspective about climate change. Scientific Journal of Earth Science, 2015,5(1):12-17

    [17] Rahmstorf S, Coumou D. Increase of extreme events in a warming world. PNAS, 2011,108:17905-17909

    Mao Kebiao, born in 1977. He received the Ph.D. degree in geographic information systems from the Chinese Academy of Sciences in 2007, the M.S. degree from Nanjing University in 2004, and the B.S. degree from Northeast University in 2001. He is currently with the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing. His research interests include global climate change, agricultural big data, geophysical parameters retrieval (like land surface temperature and emissivity, soil moisture and water vapor content).

    10.3772/j.issn.1006-6748.2016.04.001

    ① Supported by the National Key Project (No. 2016YFC0500203), the National Natural Science Foundation of China (No. 41571427) and the National Non-Profit Institute Research Grant of CAAS (IARRP-2015-26).

    ② To whom correspondence should be addressed. E-mail: maokebiao@126.com Received on May 7, 2016

    久久久精品大字幕| svipshipincom国产片| 夜夜爽天天搞| 99精品欧美一区二区三区四区| 嫩草影视91久久| 欧美激情久久久久久爽电影| 国产成人福利小说| 欧美日韩一级在线毛片| 香蕉丝袜av| 亚洲国产精品久久男人天堂| 欧美性感艳星| 久久精品国产清高在天天线| 神马国产精品三级电影在线观看| 国产精品国产高清国产av| 啦啦啦观看免费观看视频高清| 少妇的丰满在线观看| 日韩欧美精品免费久久 | 久久精品国产亚洲av涩爱 | 欧美性猛交黑人性爽| 搡老岳熟女国产| 国产高清视频在线播放一区| 听说在线观看完整版免费高清| 麻豆久久精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久久久免 | 村上凉子中文字幕在线| 亚洲人成网站在线播放欧美日韩| 少妇的逼水好多| 天堂影院成人在线观看| av片东京热男人的天堂| 高清毛片免费观看视频网站| 亚洲av成人av| 日本与韩国留学比较| 一个人看的www免费观看视频| 少妇的逼水好多| 午夜久久久久精精品| e午夜精品久久久久久久| 在线观看美女被高潮喷水网站 | 欧美成人免费av一区二区三区| 偷拍熟女少妇极品色| 两个人看的免费小视频| 日本黄色片子视频| 青草久久国产| 免费观看人在逋| 亚洲精品国产精品久久久不卡| 欧美午夜高清在线| 国产真实伦视频高清在线观看 | 啪啪无遮挡十八禁网站| 亚洲狠狠婷婷综合久久图片| 亚洲,欧美精品.| 丁香欧美五月| 亚洲精品亚洲一区二区| 亚洲国产高清在线一区二区三| 亚洲最大成人中文| 色综合婷婷激情| 精品一区二区三区av网在线观看| 亚洲av中文字字幕乱码综合| 人人妻人人看人人澡| 在线观看66精品国产| av国产免费在线观看| 听说在线观看完整版免费高清| 欧美色视频一区免费| 在线观看日韩欧美| 午夜免费观看网址| 97碰自拍视频| 波野结衣二区三区在线 | 国产三级在线视频| 1000部很黄的大片| av天堂中文字幕网| www日本在线高清视频| 天堂av国产一区二区熟女人妻| 亚洲午夜理论影院| 男女那种视频在线观看| 国产麻豆成人av免费视频| 色吧在线观看| 男人舔奶头视频| 又紧又爽又黄一区二区| 久久人妻av系列| 亚洲国产欧美网| 国产高清有码在线观看视频| 精华霜和精华液先用哪个| 亚洲人成网站在线播放欧美日韩| 99久久99久久久精品蜜桃| 成年女人毛片免费观看观看9| 色精品久久人妻99蜜桃| 国产精品三级大全| eeuss影院久久| 成人特级黄色片久久久久久久| 脱女人内裤的视频| 少妇人妻精品综合一区二区 | 免费看光身美女| 天堂av国产一区二区熟女人妻| 国产精品久久电影中文字幕| 51国产日韩欧美| 嫁个100分男人电影在线观看| 18禁在线播放成人免费| 国产真人三级小视频在线观看| 国产精品98久久久久久宅男小说| 久久久久久久亚洲中文字幕 | 性色avwww在线观看| 亚洲内射少妇av| 久久这里只有精品中国| 亚洲色图av天堂| 最近最新中文字幕大全电影3| a在线观看视频网站| 久久久国产精品麻豆| 成人三级黄色视频| 欧美区成人在线视频| 人妻丰满熟妇av一区二区三区| 国产成人欧美在线观看| 18禁裸乳无遮挡免费网站照片| 一个人免费在线观看电影| 色综合亚洲欧美另类图片| 国产三级中文精品| 国产淫片久久久久久久久 | 国产日本99.免费观看| 黄片大片在线免费观看| 天天添夜夜摸| 日日夜夜操网爽| 最近最新中文字幕大全电影3| 国产精品久久电影中文字幕| 日本黄色片子视频| 国内精品久久久久久久电影| 亚洲国产色片| 男人和女人高潮做爰伦理| 嫁个100分男人电影在线观看| 亚洲精品久久国产高清桃花| 亚洲精品影视一区二区三区av| 母亲3免费完整高清在线观看| 99精品久久久久人妻精品| 成人性生交大片免费视频hd| 欧美极品一区二区三区四区| 一本综合久久免费| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 伊人久久精品亚洲午夜| 天天一区二区日本电影三级| 成人高潮视频无遮挡免费网站| 在线十欧美十亚洲十日本专区| 在线十欧美十亚洲十日本专区| 国产精品一区二区三区四区免费观看 | 精品国产美女av久久久久小说| 少妇人妻一区二区三区视频| 91av网一区二区| 精品国产三级普通话版| 草草在线视频免费看| 搡老岳熟女国产| 精品国产三级普通话版| 日韩欧美一区二区三区在线观看| 亚洲激情在线av| 免费在线观看成人毛片| 欧美色欧美亚洲另类二区| 亚洲一区高清亚洲精品| 中出人妻视频一区二区| 99热这里只有精品一区| 在线播放国产精品三级| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老司机在亚洲福利影院| 午夜日韩欧美国产| 特级一级黄色大片| 欧美激情久久久久久爽电影| 一级黄色大片毛片| 亚洲色图av天堂| 亚洲电影在线观看av| 老熟妇仑乱视频hdxx| 神马国产精品三级电影在线观看| 日韩欧美精品v在线| 国内揄拍国产精品人妻在线| 久久久久久久久大av| 亚洲精品美女久久久久99蜜臀| 一区福利在线观看| 免费电影在线观看免费观看| 亚洲av成人av| 国产精品三级大全| 欧美性感艳星| 中亚洲国语对白在线视频| 亚洲最大成人手机在线| or卡值多少钱| 亚洲aⅴ乱码一区二区在线播放| 久久精品91无色码中文字幕| 亚洲最大成人手机在线| 日韩有码中文字幕| 99久久精品国产亚洲精品| 国产69精品久久久久777片| 亚洲久久久久久中文字幕| 色尼玛亚洲综合影院| 99精品久久久久人妻精品| 51午夜福利影视在线观看| 国产私拍福利视频在线观看| 大型黄色视频在线免费观看| 国产亚洲欧美在线一区二区| 中文字幕人成人乱码亚洲影| 久久久久亚洲av毛片大全| 村上凉子中文字幕在线| 久久久成人免费电影| 99在线人妻在线中文字幕| 国产伦人伦偷精品视频| 日韩高清综合在线| 操出白浆在线播放| 午夜福利成人在线免费观看| 国产成人a区在线观看| 久久久久免费精品人妻一区二区| 激情在线观看视频在线高清| 成年女人看的毛片在线观看| 女人高潮潮喷娇喘18禁视频| www.色视频.com| 亚洲国产欧美人成| 丝袜美腿在线中文| 午夜精品久久久久久毛片777| 亚洲精品456在线播放app | 精品久久久久久,| 97超视频在线观看视频| 九九热线精品视视频播放| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 欧美另类亚洲清纯唯美| 中文字幕久久专区| www日本在线高清视频| 两个人的视频大全免费| 国产一区二区在线观看日韩 | 午夜精品久久久久久毛片777| 亚洲欧美精品综合久久99| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 麻豆久久精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 亚洲内射少妇av| 啪啪无遮挡十八禁网站| 少妇人妻精品综合一区二区 | 久久亚洲精品不卡| 老汉色av国产亚洲站长工具| or卡值多少钱| 一二三四社区在线视频社区8| 草草在线视频免费看| 欧美av亚洲av综合av国产av| 国产爱豆传媒在线观看| 九九在线视频观看精品| 亚洲最大成人中文| 18+在线观看网站| 天堂网av新在线| 亚洲人成网站在线播| 99久久精品国产亚洲精品| 1024手机看黄色片| 亚洲精品影视一区二区三区av| 18禁在线播放成人免费| 老汉色av国产亚洲站长工具| 草草在线视频免费看| 午夜福利18| 欧美+亚洲+日韩+国产| 国产99白浆流出| 国产精品98久久久久久宅男小说| 91九色精品人成在线观看| 国产探花在线观看一区二区| 日本三级黄在线观看| 国产成人啪精品午夜网站| 在线国产一区二区在线| 一区二区三区激情视频| 少妇人妻一区二区三区视频| 少妇的逼好多水| 久久亚洲真实| aaaaa片日本免费| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 久久精品人妻少妇| 18禁国产床啪视频网站| 日本a在线网址| 欧美日韩一级在线毛片| 亚洲第一电影网av| 欧美日本视频| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 亚洲av一区综合| 亚洲国产色片| 精品人妻一区二区三区麻豆 | 国产在线精品亚洲第一网站| 免费看光身美女| 神马国产精品三级电影在线观看| 黄片小视频在线播放| 久久久久久久精品吃奶| 精品无人区乱码1区二区| 99热这里只有是精品50| 成人国产综合亚洲| 亚洲美女黄片视频| 黄片小视频在线播放| 又黄又粗又硬又大视频| 1000部很黄的大片| 精品国产美女av久久久久小说| 在线观看美女被高潮喷水网站 | 国产不卡一卡二| 精品久久久久久久毛片微露脸| 给我免费播放毛片高清在线观看| 精品久久久久久成人av| 一本综合久久免费| 亚洲专区中文字幕在线| 国产成年人精品一区二区| 亚洲精华国产精华精| 亚洲精品456在线播放app | 天美传媒精品一区二区| 国产精品美女特级片免费视频播放器| 级片在线观看| 国产乱人伦免费视频| 亚洲美女黄片视频| netflix在线观看网站| 成人永久免费在线观看视频| 成人av一区二区三区在线看| 久久中文看片网| 成人午夜高清在线视频| aaaaa片日本免费| 淫妇啪啪啪对白视频| 日韩大尺度精品在线看网址| 99热精品在线国产| 脱女人内裤的视频| 日日摸夜夜添夜夜添小说| 日日摸夜夜添夜夜添小说| 天堂av国产一区二区熟女人妻| 麻豆一二三区av精品| 久久久久久久久中文| 91在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 成人国产综合亚洲| 又紧又爽又黄一区二区| 国内精品美女久久久久久| 国产免费一级a男人的天堂| 97碰自拍视频| 成人三级黄色视频| 男女做爰动态图高潮gif福利片| 露出奶头的视频| 黄色片一级片一级黄色片| 国产av麻豆久久久久久久| 国产精品综合久久久久久久免费| 一二三四社区在线视频社区8| 欧美成狂野欧美在线观看| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 国产私拍福利视频在线观看| 久久久久九九精品影院| 黄色丝袜av网址大全| 亚洲精品一卡2卡三卡4卡5卡| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 亚洲第一电影网av| 久久香蕉精品热| 欧美黑人欧美精品刺激| 男人和女人高潮做爰伦理| 一级毛片女人18水好多| 日韩欧美 国产精品| 黄片小视频在线播放| 亚洲最大成人手机在线| 怎么达到女性高潮| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 美女免费视频网站| 亚洲aⅴ乱码一区二区在线播放| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品影院| 久久久久久久亚洲中文字幕 | 亚洲avbb在线观看| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 天堂网av新在线| 3wmmmm亚洲av在线观看| tocl精华| 亚洲色图av天堂| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 在线观看66精品国产| 欧美黄色片欧美黄色片| 亚洲欧美激情综合另类| 九九在线视频观看精品| 嫩草影院精品99| 桃色一区二区三区在线观看| 老司机深夜福利视频在线观看| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月 | 99精品久久久久人妻精品| 久久香蕉国产精品| 麻豆成人午夜福利视频| 老司机在亚洲福利影院| 激情在线观看视频在线高清| 国产精品综合久久久久久久免费| 女同久久另类99精品国产91| 舔av片在线| 欧美极品一区二区三区四区| 日本熟妇午夜| 精品人妻1区二区| 日本 av在线| 丰满人妻一区二区三区视频av | 窝窝影院91人妻| 中文字幕av成人在线电影| 91麻豆精品激情在线观看国产| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 久久久久久人人人人人| 国产成人影院久久av| 又紧又爽又黄一区二区| 日本一二三区视频观看| 12—13女人毛片做爰片一| 欧美黑人巨大hd| 激情在线观看视频在线高清| 亚洲精华国产精华精| 国产老妇女一区| 男人的好看免费观看在线视频| 亚洲最大成人中文| 少妇丰满av| 操出白浆在线播放| 国产午夜精品论理片| 久久欧美精品欧美久久欧美| 九九久久精品国产亚洲av麻豆| 90打野战视频偷拍视频| 乱人视频在线观看| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 日本黄大片高清| 在线免费观看的www视频| 免费搜索国产男女视频| av天堂中文字幕网| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 亚洲av免费高清在线观看| 999久久久精品免费观看国产| 午夜精品在线福利| 嫩草影视91久久| 桃色一区二区三区在线观看| 亚洲精品成人久久久久久| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 亚洲av五月六月丁香网| 亚洲狠狠婷婷综合久久图片| 免费高清视频大片| 午夜免费成人在线视频| 丝袜美腿在线中文| 欧美高清成人免费视频www| 久久99热这里只有精品18| 1024手机看黄色片| 国产精品一区二区三区四区免费观看 | 亚洲精品亚洲一区二区| 性欧美人与动物交配| 欧美在线黄色| 制服人妻中文乱码| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 午夜福利18| 欧美成人a在线观看| 中文字幕人妻熟人妻熟丝袜美 | 超碰av人人做人人爽久久 | 国产探花在线观看一区二区| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 制服人妻中文乱码| 亚洲真实伦在线观看| 日韩欧美精品免费久久 | 亚洲一区二区三区色噜噜| 国产淫片久久久久久久久 | 国产免费av片在线观看野外av| 九色国产91popny在线| 有码 亚洲区| 欧美乱码精品一区二区三区| 91久久精品国产一区二区成人 | www.999成人在线观看| 特大巨黑吊av在线直播| 伊人久久大香线蕉亚洲五| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 亚洲色图av天堂| www日本黄色视频网| 夜夜爽天天搞| 国产色婷婷99| 久久人人精品亚洲av| 免费大片18禁| 国产成人av激情在线播放| 少妇丰满av| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 亚洲中文日韩欧美视频| 69av精品久久久久久| 亚洲成人免费电影在线观看| 黄色片一级片一级黄色片| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 高潮久久久久久久久久久不卡| 亚洲av电影在线进入| 欧美激情久久久久久爽电影| 欧美乱妇无乱码| 久久久久亚洲av毛片大全| 蜜桃亚洲精品一区二区三区| 国产私拍福利视频在线观看| 亚洲午夜理论影院| 欧美成人a在线观看| 国产高潮美女av| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 国产精品一区二区免费欧美| or卡值多少钱| 亚洲av二区三区四区| 桃红色精品国产亚洲av| 国产三级中文精品| 内地一区二区视频在线| 国产成人福利小说| 国产探花极品一区二区| 中亚洲国语对白在线视频| 老司机在亚洲福利影院| 欧美xxxx黑人xx丫x性爽| 麻豆成人av在线观看| 18美女黄网站色大片免费观看| 国产精品久久久久久久电影 | 动漫黄色视频在线观看| 99在线视频只有这里精品首页| 两个人的视频大全免费| bbb黄色大片| 精品久久久久久,| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 色综合欧美亚洲国产小说| www日本黄色视频网| 丝袜美腿在线中文| 最新美女视频免费是黄的| 18禁国产床啪视频网站| 蜜桃亚洲精品一区二区三区| 亚洲美女视频黄频| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 国产亚洲欧美在线一区二区| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 欧美黑人巨大hd| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久com| 1000部很黄的大片| 精品一区二区三区视频在线 | 天天躁日日操中文字幕| 国产亚洲精品一区二区www| 精品久久久久久,| 国产久久久一区二区三区| 精品乱码久久久久久99久播| 亚洲在线观看片| 色综合站精品国产| 欧美一级a爱片免费观看看| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 超碰av人人做人人爽久久 | 丁香六月欧美| 亚洲性夜色夜夜综合| 成人国产综合亚洲| 国产精品久久视频播放| 成年女人看的毛片在线观看| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 九九在线视频观看精品| 亚洲av熟女| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 在线播放无遮挡| 制服丝袜大香蕉在线| 岛国在线观看网站| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| av在线天堂中文字幕| 午夜免费男女啪啪视频观看 | 日韩欧美 国产精品| 超碰av人人做人人爽久久 | 热99在线观看视频| 国产久久久一区二区三区| 免费av毛片视频| 国产日本99.免费观看| 婷婷亚洲欧美| 欧美性猛交黑人性爽| 天堂av国产一区二区熟女人妻| 欧美日韩中文字幕国产精品一区二区三区| 日本黄色片子视频| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 内射极品少妇av片p| 日本 欧美在线| 亚洲一区二区三区色噜噜| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 天堂网av新在线| 舔av片在线| 757午夜福利合集在线观看| a在线观看视频网站| 日韩欧美 国产精品| 狂野欧美激情性xxxx| 草草在线视频免费看| 在线播放国产精品三级| 国语自产精品视频在线第100页| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 天堂√8在线中文| 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 香蕉久久夜色| 日本a在线网址| 欧美+日韩+精品| 最近最新中文字幕大全免费视频| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 黄色成人免费大全| 嫁个100分男人电影在线观看| 国内精品美女久久久久久| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看| 亚洲久久久久久中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 变态另类丝袜制服| 丁香欧美五月| 国产又黄又爽又无遮挡在线| 麻豆国产97在线/欧美|