徐略勤,喬萬芝,何路平,向中富,劉津成
(重慶交通大學 土木工程學院;山區(qū)橋梁與隧道工程國家重點實驗室培育基地,重慶 400074)
?
徐略勤,喬萬芝,何路平,向中富,劉津成
(重慶交通大學 土木工程學院;山區(qū)橋梁與隧道工程國家重點實驗室培育基地,重慶 400074)
圖1 橋臺背填土相互作用分析模型Fig.1 Analytical models of abutment-
2cHabutKcp
(1)
(2)
圖2 彈簧模型的力學關系Fig.
(3)
式中:λ為臺后路基的坡度;Esoil為背土的彈性模量;Lww表示橋臺翼墻的有效長度。
2.1 橋梁概況
某高墩連續(xù)剛構橋跨徑組合為(85+148+85)m,如圖3。上部結構為C55預應力混凝土變截面箱梁,箱頂寬12.0 m,底寬6.0 m,梁高3.3~9.2 m。1#和2#主墩均為高98 m的雙肢薄壁柔性墩,每肢截面為2.0 m×8.0 m,雙肢中心距6.0 m;兩肢墩每隔25 m設置一道斷面為8.0 m×1.0 m的橫系梁,橋墩與系梁均采用C50混凝土。主墩承臺平面尺寸為12.0 m×14.0 m,厚4.0 m,設置9根φ2.0 m鉆孔灌注樁,承臺與樁基為C30混凝土。0#和3#橋臺為采用明挖擴大基礎的重力式U型臺,0#臺位處陡崖上部平緩地帶,3#臺位處斜坡頂部平臺,地基均由粘土和灰?guī)r組成。兩側橋臺分別采用GPZ(II)7DX和GPZ(II)7SX支座,最大容許位移為250 mm。橋址為II類場地,設計基本地震動峰值加速度為0.15g。
圖3 連續(xù)剛構橋布置圖Fig.
2.2 分析模型
采用OpenSEES建立全橋有限元模型,主梁采用線彈性梁單元模擬;雙薄壁高墩采用三維彈塑性纖維單元模擬。主墩樁基礎采用6×6集中土彈簧模擬。盆式支座采用解耦彈簧單元分別模擬其縱、橫、豎三向的剛度。豎向為線性彈簧;水平固定方向考慮支座的屈服,活動方向考慮摩擦效應,分別采用簡化雙線性滯回彈簧進行模擬。支座的力學模型如圖4所示,其計算式為
(4)
圖4 盆式支座解耦彈簧模型Fig.
2.3 分析工況
表1 橋臺分析模型及參數(shù)取值
Table 1 Abutment models and parametrical values
分析模型kla/(105kN·m-1)Pla/105kNkta/(105kN·m-1)Pta/105kNkva/(106kN·m-1)參與質量/t滾軸模型支座模型彈簧模型17.861.994.721.193.81彈簧模型23.931.992.361.193.81彈簧模型313.61.998.161.193.81精細模型17.861.994.721.193.810精細模型27.861.994.721.193.812353精細模型37.861.994.721.193.813667精細模型47.861.994.721.193.815203
2.4 地震動輸入
橋址場地類型為II類,設計基本地震動峰值加速度PGA為0.15g。按照細則[1],罕遇地震E2的設計加速度峰值為0.15g×1.7=0.255g。根據(jù)設計反應譜特征,從PEER Ground Motion Database中選取了7條基本匹配的實際地震動記錄,如表2所示。將7條波的水平分量調整至0.255g,豎向分量相應調整,圖5為調整后時程波與反應譜的匹配情況。地震輸入方式包括縱橋向+豎向、橫橋向+豎向2種,以7條波的平均值進行討論。
表2 地震動時程波
Table 2 Ground motion records
序號地震事件記錄站PGA/g(PGA/PGV)/s-1卓越周期/s水平分量豎向分量調幅系數(shù)No.1SanFernandoHollywoodStorLot0.21010.870.24090UP1.214No.2ImperialValleyCalexicoFire0.27512.660.36225UP0.927No.3ImperialValleyCalipatriaFire0.1288.200.28225UP1.992No.4SuperstitionHillsWildlifeLiquefactionArray0.13210.200.14090UP1.932No.5ErzikanErzikanEast?WestComp0.4967.580.30EWUP0.514No.6LandersDesertHotSprings0.1718.330.36000UP1.491No.7DuzceBolu0.72812.660.32000UP0.350
圖5 實際加速度與設計反應譜的匹配Fig.5 Compatibility of recorded accelerations and design spectrum
3.1 橋梁動力特性對比
由表3可見,由不同橋臺模型計算得到的第1階模態(tài)周期和振型很接近。原因在于,第1階模態(tài)為兩墩同步縱振,彈簧模型和精細模型均考慮了梁端與背墻的間隙,該間隙屬于非線性單元,在彈性模態(tài)分析中不被激活。因此,彈簧模型的第1階周期與滾軸模型完全一致。支座模型和精細模型都考慮了支座的摩擦剛度,他們的第1階周期略低。在高階模態(tài)中,不同建模方法影響很大,如滾軸模型和支座模型第3階模態(tài)均為兩墩同步2階縱振,而彈簧模型與精細模型為兩墩反向1階橫振。此外,在前3階模態(tài)中,橋臺的有效參與質量影響很小。
表3 前3階彈性模態(tài)
Table 3 The first three elastic modes of the bridge
模型類別第1階模態(tài)周期/s振型第2階模態(tài)周期/s振型第3階模態(tài)周期/s振型滾軸模型9.128支座模型9.077彈簧模型19.128彈簧模型29.128彈簧模型39.128精細模型19.078精細模型29.078精細模型39.078精細模型49.078兩墩同步1階縱振2.5712.6253.9273.9483.9193.8523.8523.8523.853兩墩同步1階橫振1.553兩墩同步2階縱振1.554兩墩同步2階縱振1.859兩墩反向1階橫振1.887兩墩反向1階橫振1.847兩墩反向1階橫振1.855兩墩反向1階橫振1.856兩墩反向1階橫振1.858兩墩反向1階橫振1.859兩墩反向1階橫振
3.2 高墩地震響應對比分析
由于結構的對稱性,1#和2#墩的地震響應基本一致,為便于闡述,下文以1#墩為例進行分析。
如圖6所示,在縱橋向,精細模型的剪力最大,彈簧模型介于精細模型與滾軸模型之間。若以精細模型為基準,滾軸模型、支座模型和彈簧模型外肢剪力的最大誤差都出現(xiàn)在墩頂,分別為28.76%、30.87%、17.12%;內肢剪力最大誤差出現(xiàn)在墩底附近(滾軸模型、支座模型)和墩頂(彈簧模型),分別為29.94%、33.40%、25.02%。在橫橋向,精細模型的剪力最小,支座模型介于滾軸模型和彈簧模型之間。其原因可能在于滾軸模型橫向固結,剛度最大;而精細模型則是多彈簧串聯(lián),剛度相對最小。以精細模型為基準,滾軸模型、支座模型和彈簧模型外肢剪力的最大誤差分別為47.73%、29.56%、39.39%,其中墩底誤差分別為33.06%、16.15%、31.15%;內肢剪力最大誤差分別為61.27%、25.70%、62.01%,其中墩底誤差分別為40.81%、16.32%、35.64%。
圖6 1#墩剪力響應對比Fig.6 Comparison of shear responses of 1#
如圖7所示,在縱橋向,除局部范圍外,精細模型和彈簧模型的彎矩比滾軸模型和支座模型大,彈簧模型與精細模型的相對大小沿墩高交替變化。以精細模型為基準,滾軸模型、支座模型和彈簧模型外肢彎矩最大誤差分別為20.69%、23.74%、56.47%,其中墩底誤差分別為12.15%、17.00%、1.49%;內肢彎矩最大誤差分別為23.89%、28.17%、39.30%,其中墩底誤差分別為19.29%、22.97%、9.22%,彈簧模型在關鍵的墩底和墩頂內力方面誤差最小。在橫橋向,支座模型與精細模型的彎矩較接近,兩者都小于滾軸模型和彈簧模型。以精細模型為基準,滾軸模型、支座模型和彈簧模型外肢墩底彎矩誤差分別為24.84%、8.61%、28.72%;內肢墩底彎矩誤差分別為32.49%、6.70%、38.91%。
圖7 1#墩彎矩響應對比Fig.7 Comparison of moment responses of 1#
如圖8所示,在縱橋向,滾軸模型由于沒有縱向約束,高墩位移最大。以精細模型為基準,彈簧模型內外肢墩頂位移誤差均超過60%,滾軸模型則超過200%。在橫橋向,支座模型的位移最小,彈簧模型最大。以精細模型為基準,滾軸模型、支座模型和彈簧模型外肢墩頂位移誤差分別為4.98%、28.11%、47.53%;內肢墩頂位移誤差分別為3.85%、27.81%、56.40%。
圖8 1#墩位移響應對比Fig.8 Comparison of displacement responses of 1#
總體來看,在縱橋向,彈簧模型在剪力和彎矩方面最接近精細模型,位移誤差僅比支座模型略大;在橫橋向,支座模型在剪力和彎矩方面最接近精細模型,位移誤差也僅比滾軸模型略大,而彈簧模型在橫橋向的位移值偏大,在抗震設計中屬于偏保守的計算結果。
如表1所示,彈簧模型1~3在縱、橫向彈簧的剛度取值上有差別,其余均一致;精細模型1~4僅橋臺有效參與質量有差別。由圖9可知,彈簧剛度對橋墩最大剪力和彎矩的影響非常小。當橋臺縱向剛度從3.93×105kN/m變化到1.36×106kN/m(橫向剛度也相應變化)時,內外兩肢墩底縱、橫向剪力的變化幅度在4.20%以內;彎矩變化幅度在6.00%以內。橋臺有效參與質量的影響稍大,當參與質量從0變化到5 203 t時,內外兩肢墩底縱、橫向剪力的最大變化幅度為12.50%;彎矩最大變化幅度為13.64%,該結論與文獻[11]的研究結果一致。出于為背景工程提供抗震設計參考的需要,沒有將參數(shù)的取值范圍進一步擴大。因此,上述的結論能否在更大的參數(shù)取值范圍內成立,有待于進一步研究。
圖9 模型參數(shù)對1#墩地震響應的影響Fig.9 Effect of model parameters on seismic responses of 1# pier
由此可見,采用彈簧模型可以有效反映橋梁真實的模態(tài)特征和自振周期;可以較精確地求得高墩縱向地震剪力和彎矩響應,對橫向地震剪力和彎矩的求解精度略低,但結果偏保守;對墩頂位移(與支座的變形需求密切相關)的預測誤差較大,尤其在縱橋向,但也偏保守。鑒于精細模型較復雜,在非線性時程分析上計算成本較高,彈簧模型在初步抗震設計中是更好的選擇。
1)各簡化模型都能較準確地求得橋梁的第1階彈性模態(tài),但滾軸模型和支座模型求解第2階及以上彈性模態(tài)的誤差較大,彈簧模型可以得到與精細模型基本一致的高階彈性模態(tài)。
2)在縱橋向,以精細模型為參照,滾軸模型和支座模型的內力偏小,最大誤差接近35%。彈簧模型的精度最高,尤其在關鍵的墩底和墩頂內力方面,最大誤差不超過20%。
3)在橫橋向,支座模型的內力最接近精細模型,位移計算誤差比滾軸模型略大。彈簧模型和滾軸模型的內力均比精細模型大,在關鍵墩底和墩頂內力方面,彈簧模型最大誤差接近40%。
4)橋臺剛度對高墩關鍵地震響應的影響很小,影響幅度低于10%;有效參與質量的影響略大,但影響幅度也不超過15%。
5)綜合考慮分析精度、設計的保守性和計算成本,彈簧模型在抗震設計中更值得推薦。
[1] 中華人民共和國交通運輸部.公路橋梁抗震設計細則:JTG/T B02-01—2008 [S]. 北京:人民交通出版社,2008. Ministry of Transport of the People’s Republic of China. Guidelines for seismic design of highway bridges: JTG/T B02-01—2008 [S]. Beijing: China Communications Press, 2008. (in Chinese)
[2] KIRUPAKARAN K. Soil-structure interaction studies for understanding the behavior of integral abutment bridges [D]. Oklahoma: University of Oklahoma, 2013.
[3] CALTRANS S D C. Caltrans seismic design criteria version 1.7 [S]. California Department of Transportation, Sacramento, California, 2013.
[4] AASHTO. Guide specifications for LRFD seismic bridge design [S]. 2nd Edition, 2012 Interim revisions. American Association of State Highway and Transportation Officials, Washington, D C, 2012.
[5] WILSON J C, TAN B S. Bridge abutment: Formulation of simple model for earthquake response analysis [J]. Journal of Engineering Mechanics, 1990, 116(8): 1828-1837.
[6] MITOULIS S A. Seismic design of bridges with the participation of seat-type abutments [J]. Engineering Structures, 2012, 44(6): 222-233.
[7] PéTURSSON H, KEROKOSKI O. Monitoring and analysis of abutment-soil interaction of two integral bridges [J]. Journal of Bridge Engineering, 2013, 18(1): 54-64.
[8] DAVID T, FORTH J, YE J. Superstructure behavior of a stub-type integral abutment bridge [J]. Journal of Bridge Engineering, 2014, 19(6): 54-64.
[9] 李悅,宋波,川島一彥. 考慮土、上部結構和橋臺相互作用的橋臺抗震性能研究[J]. 巖石力學與工程學報,2009,28(6):1162-1168. LI Y, SONG B, KAWASHIMA K. Research on abutment aseismic performance considering interaction of soil, superstructure and abutment [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1162-1168. (in Chinese)
[10] AVIRAM A, MACKIE K R, STOJADINOVIC B. Effect of abutment modeling on the seismic response of bridge structures [J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 395-402.
[11] MACKIE K, STOJADINOVIC B. Bridge abutment model sensitivity for probabilistic seismic demand evaluation [C] // Proceedings of the 3rdNational Seismic Conference & Workshop on Bridges & Highways, Portland, Oregon, USA, 2002.
(編輯 胡英奎)
Comparison of analytical methods for the abutment-backfill interaction of a rigid frame bridge with high piers under seismic loading
XuLueqin,QiaoWanzhi,HeLuping,XiangZhongfu,LiuJincheng
(School of Civil Engineering; State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China)
Four analytical models are proposed for examining the effect of gravity abutment-backfill interaction based on current seismic design codes from home and abroad. The mechanical constitutive relationships as well as computing formulas are presented. Nonlinear time history method is applied to comparatively study the effect of abutment-backfill interaction on a rigid frame continuous bridge with double thin-walled piers, which is currently under construction. The results showed that only the spring model can obtain the closest higher-order elastic modes to those of the refined model. In the longitudinal direction, the results from the roller model and the bearing model are both much smaller than that of the refined model. The error of the spring model, compared with the refined model, is the smallest with the critical internal force errors not exceeding 20%. In the transverse direction, the bearing model is the closest to the refined model in calculating the internal forces, and both the spring model and the roller model predict conservative results with respect to that of the refined model. The influences of the abutment stiffness and effective participating mass on the critical seismic internal forces are smaller than 10% and 15%, respectively. Hence by comprehensively taking the prediction accuracy and computational cost into consideration, the spring model is the most suitable choice in seismic design of bridges.
bridge engineering; abutment-backfill interaction; continuous rigid frame bridge; seismic response; participating abutment mass
2016-05-10
交通運輸部應用基礎研究計劃(2014319814210);重慶市基礎與前沿研究計劃(cstc2015jcyjA30014);山區(qū)橋梁與隧道工程國家重點實驗室培育基地開放基金(CQSLBF-Y14-2);國家自然科學基金(51408089)
徐略勤(1983-),男,副教授,博士,主要從事橋梁抗震研究,(E-mail) xulueqin@163.com。
Foundation item:Project of Applied Basic Research Plan of Ministry of Transport of China(No.2014319814210);Project of Basic and Frontier Research Plan of Chongqing(No.cstc2015jcyjA30014);Open Fund Project of State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering(No.CQSLBF-Y14-2); National Natural Science Foundation of China (No.51408089)
10.11835/j.issn.1674-4764.2016.06.014
U442.5
A
1674-4764(2016)06-0105-08
Received:2016-05-10
Author brief:Xu Lueqin (1983- ), PhD, associate professor, main research interests: seismic analysis and design of bridges,(E-mail) xulueqin@163.com.