• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Herbicidal Activity of Toxin from Fusariumavenaceum GD-2 against Wild Oats (Avenafatua L.)

    2016-12-21 07:49:05CHENGLiangGUOQingyun
    微生物學(xué)雜志 2016年2期
    關(guān)鍵詞:粗提物正丁醇西寧

    CHENG Liang, GUO Qing-yun*

    (1. Key Lab. of Agric. Integrated Pest Management in Qinghai Prov., Inst. of Plant Protect., Qinghai Acad. of Agric. &Forest. Sci.;2. Sci. Observ. & Exper. Stat’n of Crop Pest in Xining, Ministry of Agric., Xining, Qinghai 810016)

    ?

    Herbicidal Activity of Toxin fromFusariumavenaceumGD-2 against Wild Oats (AvenafatuaL.)

    CHENG Liang1, 2, GUO Qing-yun1, 2*

    (1.KeyLab.ofAgric.IntegratedPestManagementinQinghaiProv.,Inst.ofPlantProtect.,QinghaiAcad.ofAgric. &Forest.Sci.;2.Sci.Observ. &Exper.Stat’nofCropPestinXining,MinistryofAgric.,Xining,Qinghai810016)

    The herbicidal activity potential of toxin fromFusariumavenaceum GD-2 was evaluated against wild oats (AvenafatuaL.) in this study. The toxin was assayedinvitroto evaluate its inhibition against seed germination ofA.fatua. The toxin ofF.avenaceumGD-2 was shown to have an inhibitory effect of around 77.54% at 5 mg/mL against germination ofA.fatuaseeds. The inhibitory effect shown by the toxins against radicle had higher activity than plumule under the same concentration. The toxin ofF.avenaceumGD-2 significantly diminished the plant length the part on the ground with various treatments when treated with the toxin under greenhouse conditions. However, there were no significantly different reductions in plant length and the weed fresh weight with different treatments. In detached leaf injection bioassay, the toxic metabolite was characterized after the culture filtrates crude extraction with petroleum ether, chloroform, ethyl acetate andn-butanol. The residues left after solvent evaporation were evaluated separately for their toxicity against the target weed. Residue (5 mg/mL) obtained from n-butanol fraction showed the highest toxic activity when compared with others. Moreover, a host range experiments on the sensitivity of 10 plant species revealed that barnyard grasses and goosefeet were more sensitive to the toxin of the culture filtrate. Three herbicidal active compounds were isolated and purified from cultural filtrate with the same UV absorption peak. The recent results showed potential for the development of the toxins produced byF.avenaceumGD-2 as a bio-herbicidal source to control and eliminateA.fatuaweed.

    herbicidal activity; phytotoxin;Fusariumavenaceum; wild oat (AvenafatuaL.) ; host-range

    In cultivated wheat fields of the NW area of China, wild oats (AvenafatuaL.) is an aggressive weed, which competes with the wheat for soil nutrients, water and light. In the mean time, they can be suitable host for numerous pests (aphids, wheat stalks sawfly) and pathogens (wheat head blight, leaf spot and smut diseases). The hazard degree of wild oats might include up to 15.6% and 25.3% in winter and spring wheat fields, respectively[1]. The serious damage area of about 1.6 million per ha. and yield losses of 1.75 billion kg per year have been reported due to wild oats interference[2].

    Many measures such as chemical control, crop rotation, manual control and no-tillage have been established for controlling wild oats in wheat fields[3]. The adverse effects of constant use of these chemical compounds have led to the emergence of different resistant weed varieties[4]. Biological control may offer a promising solution. Many pathogenic organisms, especially fungi of the genusFusarium, as biological control agents have received greater attention in recent years.

    Fungi are among important microorganisms that produce a variety of bioactive extracellular toxic compounds. Herbicidal properties of such toxic metabolites of fungi have been exploited in weed integrated management[5-9]. SomeFusariumtoxins, such as enniatine and fumonisin, have been evaluated for their herbicidal properties[10-11]. In one of the studies,Fusariumnygamaiwas used for controllingStrigahermonthicawhich is the most common parasitic weeds in sub-Saharan Africa. The results revealed that four toxins produced byFusariumnygamai[12]isolated fromStrigahermonthicawere able to strongly inhibitS.hermonthicaseed germination[13]. Another showed that certain of such products have been patented and a few such as phosphinothricin, bialaphos, hydantocidin, have been commercialized[14-16].

    FusariumavenaceumGD-2 was isolated from diseased wild oats plants, which showed high potential for biological control of wild oats[17]. However, little information exists on the wild oat and host range of the toxic metabolites produced by pathogenic fungusF.avenaceumGD-2. In this paper, the first objective of this study was to isolate toxic metabolites produced byF.avenaceumand investigate the effects of fungal toxins on wild oat and other plants. The second objective was to purify the toxins in order to determine their chemical properties.

    1 Materials and methods

    1.1 Materials

    1.1.1 Selection of frequently occurring weed of wheat field Mature seeds ofAvenafatuaL. were collected from wheat fields located in the Xining, Institute of plant protection, Qinghai Academy of Agriculture and Forestry Sciences, P. R. China. The seeds specimens were dried under room temperature, packed in paper bags and stored at 4 ℃ until use.

    1.1.2 Preparation of cultural filtrate of test fungus Pure culture ofF.avenaceumGD-2 was obtained from Key Laboratory of Agricultural Integrated Pest Management in Qinghai Province, China. Potato dextrose broth (PDB) (2%) was autoclaved at 121 ℃ in 500 mL Erlenmeyer flasks, with 100 mL medium in each flask. Flasks were inoculated with three fungal mycelial disks (5 mm) cut from margins of actively growing fungal colonies. Inoculated flasks were incubated under shaking conditions at 220 r/min for 7 days at 25 ℃ in 12 hours alternation of light and darkness. After 7 days, the cultures were filtered using four layers of cheesecloth and filtrates were preserved at 4 ℃ in a refrigerator. The cultural filtrates were used within 1 week to avoid any contamination or component degradation.

    1.1.3 Toxin extraction A volume of 200 mL of original culture filtrate ofF.avenaceumwas extracted three times with 200 mL petroleum. The upper petroleum ether layer was separated off and vacuum dried in a rotary evaporator at 40 ℃ to remove any traces of solvents and to obtain the final residues. The remaining filtrate was extracted similarly in succession with chloroform, ethyl acetate andn-butanol. The final residues obtained from culture filtrate ofF.avenaceumwere stirred in vials for further experiments.

    1.2 Methods

    1.2.1 Characterization of herbicidal activity of culture filtrate extracts The following biological assays were conducted to characterize the herbicidal activity of the extracts.①Seed germination bioassay:TheA.fatuaseed-germination bioassay was conducted in 90-mm diameter Petri dishes. For surface sterilization,A.fatuaseeds were immersed in 1% sodium hypochlorite (NaOCl) solution for 3 min and thoroughly washed three times with sterile water, and air dried under room temperature. Disinfected seeds ofA.fatuawere distributed on the discs at a density of 30 seeds per dishes. A 200 μL aliquot of 2% methanol solution containing 200 μg of the extract was applied gently to each paper dishes, and two control treatments were performed with sterilized distilled water and only methanol under the same conditions as above. Four replicates were conducted for each treatment. The Petri dishes were arranged in a completely randomized design in a growth room maintained at 25 ℃ with 12 h light period daily. Plants ofA.fatuawere harvested 5 days after the start of germination (radicle emerged through seed coat). Data were expressed as percentage germination and radicle/plumule length. Seed germination was determined by counting the number of germinated seeds. Each measurement was repeated three times.②Greenhouse experiments:A.fatuaseeds were surface-sterilized in 1% NaOCl for 5 min, rinsed three times with sterile distilled water, and germinated on moistened filter paper in Petri dishes. After the seeds germinated (~72 h), they were planted in a commercial potting mix contained in peat strips. Each pot contained 10 plants. The potting mix was supplemented with a controlled-release(14∶14∶14, N∶ P∶K) fertilizer. The plants were placed in subirrigated trays that were mounted on greenhouse benches. Plants were grown at a temperature regime of (25/15±5)℃ (day/night) with supplemental light provided by 400 W Philips lamps 12 h per day.All the pots were arranged in a completely randomized design in greenhouse conditions. The extracts of culture filtrates of fungus were sprayed on 10 days weed seedlings. Treatment in a similar manner with distilled water and methanol only spray served as two control treatments. Each treatment was replicated four times. Plant height and biomass reductions were determined after 14 days. The experiment was repeated three times.③Detached leaf bioassay:Aqueous solutions of petroleum ether, chloroform, ethyl acetate andn-butanol residues were prepared in sterilized distilled water to obtain a final concentration of 5 mg/mL. Surface sterilized (2% NaOCl) leaves detached from 15 to 20 days old seedlings of the weed were treated with different organic extracts solutions and then were incubated for 24 h in moist chambers at room temperature. They were incubated at (28±2)℃ under constant fluorescent illumination (2×104erg/cm2/s).F.avenaceumwas further evaluated regarding its potential biological activity towards important plants. All organic solvent extracts obtained after cultural filtrate were combined, the combined extract was tested by the puncture and wilt bioassays. The following plants were tested: wheat (Triticumaestivum), rapeseed (Brassicanapus), barley (Hordeumvelgare), broadbean (Viciafaba), pea (Pisumsativum), carrot (Daucuscarota), mung bean (Vignaradiate), barnyardgrass (Echinochloacrus-galli), goosefoot (Chenopodiumalbum) and cabbage (Brassicaoleracea). Herbicidal activity was assessed after 24 h of incubation following the procedures outline above.In all the bioassays, sterilized methanol was used for control and sterilized distilled water served as control over control. All the treatments were carried out in quadruplicate and all the bioassays were repeated at least thrice.

    1.2.2 Isolation of toxic compounds from cultural filtrate Thirty hundred milliliters of cultural filtrate was fractionated with an equivalent volume ofn-butanol to obtain aliquot layer. This material wad applied to a silica gel column (800 mm×40 mm internal diameter) and eluted with dichloromethane, dichloromethane/methanol mixtures, and methanol. Each active fraction eluted wad subsequently applied to HPLC analysis using an Athena 120A C18 column (250 mm×4.6 mm i.d.×5 μm) in a equal participation mode using 5∶95 methanol/water as eluent (v/v) and a flow rate 1 m/min with an injection volume ("loop") of 10 μL to yield five separate compounds (compounds A to C). Yield of each isolated compound was appropriately 0.1 mg. 0.1 mg of compound A-C were dissolved by in 0.1 mL methanol and diluted with sterilized distilled water to obtain a final concentration of 100 μg/mL. Seed germination bioassay was conducted as described above.

    1.2.3 Statistical analysis All the data were subjected to standard analysis of variance procedures for a randomized complete design using the SPSS for windows (SPSS 2006). Treatment means were compared using the least significant difference (LSD) multiple range tests atP≤0.05.

    2 Results

    2.1 Herbicidal activity of culture filtrate extracts

    2.1.1A.fatuaseed-germination bioassay Data depicted in table 1 clearly indicate that the toxic compound(s) produced byF.avenaceumGD-2 had significant influence on germination and early seedling growth ofA.fatua.Seed-germination bioassay demonstrated that germination ofA.fatuaseeds was reduced by 6.74% due to methanol treatment. The effect of methanol treatment was not significant as compared to sterilized water treatment. All the organic extracts treatments significantly reduced germination by 58.55%~77.54%, as compared to the negative control. All the fungal cultural filtrate extracts significantly reduced shoot length as compared to sterilized water and methanol treatments. The highest adverse effect was recorded for then-butanol extracts, where a 91.37% reduction in plumule length was recorded over the sterilized water treatment. Similarly, 5 mg/mL concentration ofn-butanol extracts significantly reduced the length of radicle. All the organic extracts treatments significantly suppressed the length of radicle as compared to sterilized water treatment.

    Table 1 Effect of cultural filtrate extracts fromF.avenaceumGD-2 on germination and growth ofAvenafatuaL. in seed germination bioassay

    TreatmentConcentration/(mg·mL-1)Germination/%Inhibition/%Plumulelength/mmInhibition/%Radiclelength/mmInhibition/%Petroleumether530.00±1.41cd68.913.27±2.99c91.373.38±2.50c92.14Chloroform540.00±1.26c58.553.77±2.15c90.047.05±3.70c83.60Ethylacetate528.33±2.77d70.644.05±1.46c89.313.12±1.37c92.74Butanol521.67±3.33e77.543.42±1.06c90.973.77±0.84c91.23CK(Methanol)090.00±2.41ab6.7432.82±3.95ab13.3435.90±3.16ab16.51CK(H2O)096.50±0.17a-37.87±9.97a-43.00±9.82a-

    Notes: In the columns, values with different letters show significant difference (P≤0.05) as determined by Duncan’s multiple range tests,the same as in Table 2

    2.1.2 Foliar spray bioassay Weed growth inhibitory activity of all the organic extracts treatments was determined at 5 mg/mL againstA.fatuaplants. Among the all extracts examined, the inhibitory effect of these extracts was not significantly difference for length and biomass ofA.fatuaplumule. Similarly, the extracts of culture filtrates ofF.avenaceumGD-2 significantly reduced plumule length and biomass by 44.57%~50.33% and 72.34%~74.49% in 25-day-oldA.fatuaplants, respectively (Table 2). The plumule length was significantly reduced inA.fatuaplants by foliar spray of cultural filtrate extracts ofF.avenaceum. The adverse effect of foliar spraying on plumule length was recorded for then-butanol extract, where a 50.33% reduction in plumule length was recorded over the negative control. All the foliar spray treatment significantly reduced plumule fresh biomass in 25-day-oldA.fatuaplants. Similarly, foliar spraying of n-butanol extracts significantly reduced the fresh biomass of plumule by 74.49% in 25-day-oldA.fatuaplants.

    Table 2 Effect of cultural filtrate extracts fromF.avenaceumGD-2 on the growth ofAvenafatuaL. in greenhouse bioassay

    TreatmentConcentration/(mg·mL-1)Shootlength/cmInhibition/%Plumulefreshbiomass/gReductioninfreshbiomass/%Petroleumether513.64±0.46b50.3310.49±0.08c73.40Chloroform514.47±0.13b47.3110.78±0.06c72.67Ethylacetate515.22±0.02b44.5710.91±0.09c72.34Butanol514.13±0.08b48.5410.16±0.06c74.49CK(Methanol)023.33±0.01b15.0435.51±0.47b9.96CK(H2O)027.46±1.04a-39.44±0.16a-

    2.1.3 Detached leaf bioassay The metabolites extracts ofF.avenaceumGD-2 was found to induce necrotic spots of varying sizes on the detached leaves as shown in table 3. Among the four organic solvent fractions tested, the highest toxic activity of then-butanol extract was obtained. The necrotic reaction covered the whole leaf area and the leaf was completely destroyed. The leaves ofA.fatuaexhibited some reduced sensitivity to the ethyl acetate extract and showed intermediate reactions to the chloroform and petroleum ether extracts of the culture filtrate and no toxic activity was found in methanol and water treatment.

    A range of plants was tested for their susceptibility toF.avenaceum, the possible active ingredient in a biological control agent for use against the weedA.fatua. The tested plant response to crude extract showed that 50% of the tested plants were slightly susceptible (Table 4).

    ChenopodiumalbumandEchinochloacrus-galliwere highly susceptible to the crude extract resulting in necrosis and heavy leaf necrosis with more than

    Table 3 Necrotic area resulting fromFusariumavenaceumGD-2 extract in the detached leaf bioassay

    TreatmentsConcentration/(mg·mL-1)Necroticarea/(mm2)aPetroleumether517.15cChloroform523.25cEthylacetate531.75bn?Butanol545.25aControl(Methanol)00dControl(Water)00d

    Note:aNecrotic area in the detached leaf bioassay was calculated according to the formula S=Π*d2/4, where d is the diameter of the necrotic area;Means with the same letter for each column are not significantly different after the Tukey’s LSD test atP≤0.05,the same below

    Table 4 Reaction of various plant species toFusariumavenaceumGD-2 crude extract in the detached leaf bioassay 70% of leaf area coalescing with a resultant death. The dicotyledonPisumsativumandViciafabawere slightly susceptible to the crude extract resulting in leaf spotting.Daucuscarotaexhibited some reduced sensitivity and the monocotyledonTriticumaestivumandHordeumvelgareshowed intermediate reactions to the crude extract, indicating selectivity of the toxic metabolites towards some plant species.

    PlantfamilyBotanicalnameCommonnameNecroticarea/(mm2)aPoaceaeTriticumaestivumwheat22.15bPoaceaeHordeumvegarebarley19.05bPoaceaeEchinochloacrus?gallibarnyardgrass36.05aFabaceaePisumsativumpea4.10cFabaceaeViciafababroadbean4.08cFabaceaeVignaradiatemungbean5.88cBrassicaceaeBrassicaoleraceacabbage9.51cBrassicaceaeBrassicanapusrapeseed6.79cApiaceaeDaucuscarotacarrot11.31cAmaranthaceaeChenopodiumalbumgoosefoot31.68a

    2.2 Isolation of toxic compounds from cultural filtrate

    Among the 3 compounds tested at 100 μg/mL concentration on the inhibition ofA.fatuaseed seedling growth, compound B proved to be much more toxic than compound A and C, being able to reduce plumule and radicle length by 81.76% and 91.37%, respectively, compare with 81.18% and 85.49% with compound A and 80.58% and 83.53% with compound C. The inhibitory effects of compound A-C on radicle length were greater than those on radicle length. This showed that there were strong destructive effects on the germination growth ofA.fatua.

    Table 5 Effect of compound A-C on seed seedling growth of A .fatua L.

    UV absorption spectra of compounds A to C detected with the photodiode array detector on HPLC separation revealed that each compound showed three similar peaks (approximately 220, and 260 nm) of absorption (Fig.1), suggesting that the chemical structure of the compounds is similar.

    Wave length/nm

    3 Discussion

    In this study, it was observed thatF.avenaceumGD-2 produced phytotoxin in irregular lesions on weed leaves.Fusariumavenaceumis able to produce a wide range of chemical different bioactive secondary metabolites on artificial laboratory media, including deoxynivalenol (DON), zearalenone (ZEA), nivalenol (NIV), T-2 toxin, HT-2 toxins, moniliformin (MON), beauvericin (BEA) and enniatins (ENNs)[5,7,18-19]. The toxicity severalF.avenaceummetabolites has been thoroughly investigated. The earlier studies regarding the herbicidal activity ofFusariumspp. were restricted to the use ofF.oxysporum,F.proliferatum,F.semitectum,F.nygama,F.sambucinum,F.nivale,F.compactumandF.solani. These results are in agreement with reports of[20]for toxic metabolites ofF.avenaceumonRubusspecies weeds. However, this study reveals that the metabolites ofF.avenaceumspecies also exhibit herbicidal activity at low concentration.

    InA.fatuaseed-germination bioassay, the radicle growth had a greater response to the fungal crude extracts with respect to plumule growth at the same concentration level. There are similar reports of effective inhibition of weed seeds germination by fungal species toxins, such asDrechslerarostrata,Drechsleraaustraliensis,Alternariaalternata,FusariumsolaniandFusariumoxysporumagainst the radicle growth ofPartheniumhysterophorusandMyrotheciumverrucaria,Fusariumcompactumagainst seed germination ofOrobancheramoseseeds have also been reported[21-23]. This could be due to the direct contact with toxic compounds and may be may be ascribed to the high rate of absorption of the toxic metabolites[24].

    The occurrence of several different types of mycotoxins produced byF.avenaceumis also a risk factor due to possible synergistic effects. As data on the cytotoxicity and mode of action of many of the mycotoxins produced byF.avenaceumare almost completely lacking, more effort in this area is needed for proper risk assessment[25]. Enniatins are cyclic hexadepsipeptides, which are able to form cation selective channels in cellular membranes[26]. They are cytotoxic and toxic to insects, bacteria, and fungi. The toxic mode of action of moniliformin is suggested to be linked with inhibition of enzyme system and DNA synthesis, and also induce apoptosis in eukaryotic cells.

    Despite high toxic activity was found in then-butanol extract of theF.avenaceumculture filtrate in the greenhouse experiment, the inhibitory activity of all foliar spray treatments was not significant on plumule length and biomass inA.fatuaplants. This may be because of the presence and variations in concentration of toxic principles in particular fractions.

    The nonspecific toxins produced byF.avenaceumwere confirmed in this study by the ability to cause different degree disease symptoms in tested plants. Many toxins are produced byF.avenaceumare not selective, as they are able to cause the same toxic effects both on host and on non-host plants. For this reason, the toxicity to crop plants has to be ascertained. The isolate was able to weakly infect on pea, broad bean and mung bean. However, this fungus highly infected a large number of crop species in the Poaceae. These results suggest that toxins are host nonspecific, as in case of toxins produced by several otherFusariumspecies[27].

    The toxins produced in cultural filtrate consisted of three active compounds. Yield of each compound was less than 0.1 mg per 5 L fermentation liquor, indicating that toxicity of the compounds toA.fatuaseed germination and detached leaves is very potent. Due to the low yields, the structure of these compounds could not be identified in this study. However, the characteristic information about their UV spectra, each showing the same two absorption peaks, may facilitate the identification of these compounds in further studies. Therefore, further research will expand ongoing chemical properties identification of these bioactive compounds.

    Reference

    [1] Tu H.L., Qiu X. L., Xin C.Y., et al. Study on key techniques of integrated control over wild oat on farmland[J]. Sci. Agric. Sin, 1993, 26 (4):49-56.

    [2] Wei S.H., Zhang C.X., Zhu W.D., et al. Influence ofAvenafatuaon the yield characters of different wheat cultivars and its economic threshold[J]. J Triticeae Crops, 2008, 28(5):893-899.

    [3] Jordan D.L., Lancaster S.H., Lanier J.E., et al. Weed management in peanut with herbicide combinations containing imazapic and other pesticides[J]. Weed Technol, 2009, 23(1):6-10.

    [4] Travlos I.S., Giannopolitis C.N., Economou G. Diclofop resistance in sterile wild oat (AvenasterilisL.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Prot, 2011, 30 (11): 1449-1454.

    [5] Amalfitano C., Pengue R., Andolfi A., et al. HPLC analysis of FA, 9, 10-dehydrofusaric acid, their methyl esters, toxic metabolites from weed pathogenicFusariumspecies[J]. Phytochem. Analysis, 2002, 13(5):277-282.

    [6] Dor E., Evidente A., Amalfitano C., et al. The influence of growth conditions on biomass, toxins and pathogenicity ofFusariumoxysporumf. sp.orthoceras, a potential agent for broomrape biocontrol[J]. Weed Res, 2007, 47(4):345-352.

    [7] Idris A.E., Abouzeid M.A., Boari A., et al. Identification of phytotoxic metabolites of a newFusariumsp. inhibiting germination ofStrigahermonthicaseeds[J]. Phytopathol. Mediterr, 2003, 42(1):65-70.

    [8] Souza A.P.S., Duarte M.L.R. Allelopathic activity of culture filtrate produced byFusariumsolani[J]. Planta daninha, 2007, 25(1):227-230.

    [9] Kroschel J., Elzein A. Bioherbicidal effect of Fumonisin B1, a phytotoxic metabolite naturally produced byFusariumnygamai, on parasitic weeds of the Genus Striga[J]. Biocontrol Sci. Technol, 2004, 14(2):117-128.

    [10]Abbas H.K., Boyette C. D., Hoagland R.E., et al. Bioherbicidal potential ofFusariummoniliformeand its phytotoxin, fumonisin[J]. Weed Sci, 1991,39(4): 673-677.

    [11]Hershenhorn J., Park S.H., Stierle A., et al.Fusariumavenaceumas a novel pathogen of spotted knap-weed and its phytotoxins, acetamido-butenolide and enniatin B[J]. Plant Sci, 1992, 86(2): 155-160.

    [12]Capasso R., Evidente A., Cutignano, A., et al. Fusaric and 9,10-dehydrofusaric acids and their methyl esters fromFusariumnygamai[J]. Phytochemistry, 1996, 41(4):1035-1039.

    [13]Zonno M.C., Vurro M., Evidente A., et al. Phytotoxic metabolites produced byFusariumnygamaifromStrigahermonthica[A]. In: Proceedings 1996 IX International Symposium on Biological Control of Weeds. Stellenbosch, South Africa, 1996, 223-226.

    [14]Saxena S., Pandey A.K. Microbial metabolites as ecofriendly agrochemicals for the next millenium[J]. Appl. Microbiol. Biotechnol, 2001, 55(4):395-403.

    [15]Pandey A.K., Singh J., Shrivastava G.M., et al. Fungi as herbicides: Current status and future prospects[M]. In: Trivedi PC (ed), Plant Protection: A Biological Approach, Jaipur, India, Avishkar Publishers and Distributors, 2003:305-339.

    [16]Mutsuo N, Kazuko I, Yasuyuki T, et al. Hydantocidin: a new compound with herbicidal activity fromStreptomyceshygroscopicus[J]. J Antibiot, 1991, 44(3):293-300.

    [17]Zhu H. X., Cheng L., Guo Q. Y. Identification and virulence of threeFusariumstrain againstAvenafatuaand safety on 5 crops[J]. China Journal of Biological Control, 2010, 26(S):84-89.

    [18]Evidente A., Amalfitano C., Agrelli D., et al. The influence of growth conditions on biomass, toxins and pathogenicity ofFusariumoxysporumf. sp.orthoceras, a potential agent for broomrape biocontrol[J]. Weed Res, 2007, 47(4):345-352.

    [19]Lindblad M, Gidlund A., Sulyok M., et al. Deoxynivalenol and other selectedFusariumtoxins in Swedish oats-occurrence and correlation to specificFusariumspecies[J]. Int J Food Microbial, 2013, 167(2):284-291.

    [20]Oleskevich C., Shamoun S.F., Vesonder R.F., et al. Evaluation ofFusariumavenaceumand other fungi for potential as biological control agents of invasiveRubusspecies in British Columbia[J]. Can. J Plant Pathol, 1998, 20(1):12-18.

    [21]Adrees H., Javaid A. Screening of some pathogenic fungi for their herbicidal potential against parthenium weed[J]. Pak. J. Phytopathol,2008, 20(1): 150-155.

    [22]Andolfi A., Boari A., Evidente A., et al. Metabolites inhibiting germination ofOrobancheramoseseeds produced byMyrotheciumverrucariaandFusariumcompactum[J]. J Agric. Food Chem, 2005, 53(5):1598-1603.

    [23]Javaid A., Adrees H. Parthenium management by cultural filtrates of phytopathogenic fungi[J]. Nat. Prod. Res, 2009, 23(16):1541-1551.

    [24]Javaid A., Shah M.B. Phytotoxic effects of aqueous leaf extracts of twoEucalyptusspp. againstPartheniumhysterophorusL[J]. Science International (Lahore), 2007, 19(4):303-306.

    [25]Gutleb A. C., Morrison E., Murk A. J. Cytotoxicity assays for mycotoxins produced byFusariumstrains: a review[J]. Environ. Toxicol. Pharmacol, 2002, 11(3-4):309-320.

    [26]Uhlig S., Jestoi M., Knutsen A. K., et al. Multiple regression analysis as a tool for the identification of relations between semi-quantitative LC-MS data and cytotoxicity of extracts of the fungusFusariumavenaceum(syn.F.arthrosporioides)[J].Toxicon, 2006,48(5):567-579.

    [27]Bottalico A., Perrone G. ToxigenicFusariumspecies and mycotoxins associated with head blight in small-grain cereals in Europe[J].Eur. J. Plant Pathol, 2002, 108(7): 611-624.

    國(guó)家自然科學(xué)基金項(xiàng)目(31160371,30860165);國(guó)家“十二五”科技支撐項(xiàng)目(2012BAD19B02);

    程亮 男,博士研究生。研究領(lǐng)域?yàn)樘烊划a(chǎn)物。Tel:0971-5313283,E-mail:liangcheng1979@163.com

    燕麥鐮刀菌GD-2毒素對(duì)野燕麥的除草活性研究

    程 亮1,2, 郭青云1,2*

    (1.青海省農(nóng)林科學(xué)院植物保護(hù)研究所 青海省農(nóng)業(yè)有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室,青海 西寧 810016;2.農(nóng)業(yè)部西寧作物有害生物科學(xué)觀測(cè)實(shí)驗(yàn)站,青海 西寧 810016)

    評(píng)價(jià)了燕麥鐮刀菌GD-2毒素對(duì)野燕麥的除草活性潛力。毒素對(duì)野燕麥種子萌發(fā)抑制試驗(yàn)表明,當(dāng)毒素濃度達(dá)到5 mg/mL時(shí),對(duì)野燕麥種子的萌發(fā)抑制效果達(dá)77.54%,在相同濃度下,對(duì)野燕麥種子胚根的抑制效果高于對(duì)胚芽的抑制效果。在溫室條件下,毒素處理野燕麥植株后,各個(gè)不同處理野燕麥株高和地上部鮮重明顯減少,然而,各處理間沒(méi)有明顯差異。用石油醚、氯仿、乙酸乙酯和正丁醇依次萃取燕麥鐮刀菌發(fā)酵濾液并獲得粗提物,其中正丁醇浸提物(5 mg/mL)在離體葉片實(shí)驗(yàn)中效果優(yōu)于其他有機(jī)溶劑粗提物。此外,在毒素對(duì)10種植物的敏感性實(shí)驗(yàn)中,其中稗草和藜表現(xiàn)對(duì)燕麥鐮刀菌毒素敏感。從燕麥鐮刀菌中分離出3個(gè)除草活性化合物,且具有相同的紫外吸收峰。當(dāng)前結(jié)果表明燕麥鐮刀菌產(chǎn)生的毒素具有開發(fā)成為防除野燕麥生物源除草劑的潛力。

    除草活性;植物毒素;燕麥鐮刀菌;野燕麥;寄主范圍

    Q939.97

    A

    1005-7021(2016)02-0067-07

    10.3969/j.issn.1005-7021.2016.02.012

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃(國(guó)家“863”計(jì)劃)(2011AA10A206)

    * 通訊作者。女,碩士。研究領(lǐng)域?yàn)檗r(nóng)田雜草綜合治理。Tel:0971-5313283

    猜你喜歡
    粗提物正丁醇西寧
    牛蒡根皮多酚、多糖粗提物對(duì)海蘭褐殼蛋雞產(chǎn)蛋性能及血液生化指標(biāo)的影響
    正丁醇和松節(jié)油混合物對(duì)組織脫水不良的補(bǔ)救應(yīng)用
    Dynamical signatures of the one-dimensional deconfined quantum critical point
    痛風(fēng)散粗提物鎮(zhèn)痛實(shí)驗(yàn)研究
    云南化工(2021年5期)2021-12-21 07:41:20
    植物粗提物可作為防治獼猴桃根結(jié)線蟲的綠色藥劑
    大風(fēng)子正丁醇部位化學(xué)成分的研究
    中成藥(2018年9期)2018-10-09 07:18:48
    輕輕松松聊漢語(yǔ)——“中國(guó)夏都”西寧
    金橋(2018年7期)2018-09-25 02:28:28
    三葉青藤正丁醇部位化學(xué)成分的研究
    中成藥(2018年7期)2018-08-04 06:04:08
    中華抱莖蓼正丁醇部位化學(xué)成分的研究
    中成藥(2018年3期)2018-05-07 13:34:25
    青海西寧蘭州格爾木往來(lái)更暢通
    石油瀝青(2018年5期)2018-03-23 04:49:19
    欧美另类亚洲清纯唯美| 电影成人av| 91麻豆精品激情在线观看国产| 又黄又粗又硬又大视频| 日韩一卡2卡3卡4卡2021年| 中文字幕人妻熟女乱码| 日本免费a在线| 在线观看免费视频网站a站| 亚洲精品国产区一区二| 9191精品国产免费久久| 九色国产91popny在线| 国产亚洲欧美98| 日本一区二区免费在线视频| 免费看美女性在线毛片视频| 久久精品人人爽人人爽视色| 日韩 欧美 亚洲 中文字幕| 亚洲av片天天在线观看| 国产aⅴ精品一区二区三区波| 久久久精品国产亚洲av高清涩受| 午夜福利视频1000在线观看 | 国产成人一区二区三区免费视频网站| 两个人视频免费观看高清| 国产精品,欧美在线| 男女午夜视频在线观看| av天堂在线播放| 国产高清视频在线播放一区| 曰老女人黄片| 男男h啪啪无遮挡| 亚洲欧美日韩高清在线视频| 99久久精品国产亚洲精品| 别揉我奶头~嗯~啊~动态视频| 免费女性裸体啪啪无遮挡网站| 亚洲av日韩精品久久久久久密| 午夜福利一区二区在线看| 波多野结衣av一区二区av| 国产一区二区三区视频了| 女性被躁到高潮视频| 国产成人精品久久二区二区免费| 欧美久久黑人一区二区| 久久伊人香网站| 可以免费在线观看a视频的电影网站| 两个人视频免费观看高清| 亚洲成av片中文字幕在线观看| 国产视频一区二区在线看| 9热在线视频观看99| 曰老女人黄片| 老熟妇乱子伦视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产真实伦视频高清在线观看 | 精品一区二区免费观看| 午夜福利18| 日日啪夜夜撸| 免费在线观看影片大全网站| 全区人妻精品视频| 国产精品乱码一区二三区的特点| 欧美激情国产日韩精品一区| 天堂影院成人在线观看| 亚洲自偷自拍三级| 精华霜和精华液先用哪个| 国产高潮美女av| 国语自产精品视频在线第100页| 久久精品国产鲁丝片午夜精品 | 成年女人毛片免费观看观看9| 丝袜美腿在线中文| 久久久久久国产a免费观看| 久久久久久伊人网av| 精品人妻1区二区| 国产爱豆传媒在线观看| .国产精品久久| 老司机深夜福利视频在线观看| 国产av麻豆久久久久久久| 成人美女网站在线观看视频| 黄色欧美视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产成人aa在线观看| а√天堂www在线а√下载| 国产精品女同一区二区软件 | 国产麻豆成人av免费视频| 日韩高清综合在线| 欧美成人性av电影在线观看| 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 嫩草影视91久久| 国产精品综合久久久久久久免费| 国产精品98久久久久久宅男小说| 老师上课跳d突然被开到最大视频| 精品日产1卡2卡| 最近在线观看免费完整版| 亚洲国产精品成人综合色| 国产高清视频在线观看网站| 日日啪夜夜撸| 国产高潮美女av| 国产成人一区二区在线| av在线老鸭窝| 国内久久婷婷六月综合欲色啪| 欧美成人免费av一区二区三区| 女的被弄到高潮叫床怎么办 | 大又大粗又爽又黄少妇毛片口| 中文在线观看免费www的网站| 国产精品伦人一区二区| 久久精品国产亚洲网站| 日韩亚洲欧美综合| 在现免费观看毛片| 春色校园在线视频观看| 少妇猛男粗大的猛烈进出视频 | 国产一区二区三区视频了| 免费无遮挡裸体视频| 免费在线观看日本一区| 亚洲av成人精品一区久久| 欧美高清性xxxxhd video| 亚洲不卡免费看| 国产69精品久久久久777片| 精品无人区乱码1区二区| 中文字幕精品亚洲无线码一区| 国产欧美日韩一区二区精品| 偷拍熟女少妇极品色| 嫩草影院精品99| 一进一出好大好爽视频| 精品久久久久久久久亚洲 | 99九九线精品视频在线观看视频| 国产精品日韩av在线免费观看| 久久久成人免费电影| 国产视频一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人看人人澡| 中文字幕av在线有码专区| 精品国内亚洲2022精品成人| 国产又黄又爽又无遮挡在线| 天堂网av新在线| 精品久久久久久成人av| 国产真实乱freesex| 午夜爱爱视频在线播放| 色视频www国产| 国产亚洲欧美98| 免费看日本二区| 少妇人妻精品综合一区二区 | 亚洲七黄色美女视频| 俄罗斯特黄特色一大片| 一夜夜www| 校园人妻丝袜中文字幕| 亚洲aⅴ乱码一区二区在线播放| 免费搜索国产男女视频| 啪啪无遮挡十八禁网站| 少妇猛男粗大的猛烈进出视频 | 美女高潮的动态| 国产日本99.免费观看| 麻豆成人午夜福利视频| 成人性生交大片免费视频hd| 亚洲国产色片| 三级毛片av免费| 欧美成人免费av一区二区三区| 国内精品久久久久久久电影| 亚洲人成伊人成综合网2020| 久久久色成人| 男女之事视频高清在线观看| 久久久久久久精品吃奶| 亚洲性夜色夜夜综合| av在线天堂中文字幕| 亚洲最大成人av| 欧美日韩乱码在线| 久久6这里有精品| 69人妻影院| 欧美一区二区亚洲| 听说在线观看完整版免费高清| 国产黄a三级三级三级人| 少妇丰满av| 村上凉子中文字幕在线| 成人三级黄色视频| 亚洲精品成人久久久久久| 五月伊人婷婷丁香| 欧美又色又爽又黄视频| 一进一出抽搐gif免费好疼| 99久久久亚洲精品蜜臀av| 此物有八面人人有两片| 精品人妻视频免费看| 少妇被粗大猛烈的视频| 久久精品国产亚洲av香蕉五月| 亚洲国产精品sss在线观看| 日韩中字成人| 一a级毛片在线观看| 午夜福利欧美成人| 五月伊人婷婷丁香| 亚洲熟妇中文字幕五十中出| 美女高潮喷水抽搐中文字幕| 精品午夜福利在线看| 长腿黑丝高跟| or卡值多少钱| 精品久久久久久久久av| 一区二区三区四区激情视频 | 午夜福利视频1000在线观看| 欧美成人一区二区免费高清观看| 亚洲精品影视一区二区三区av| 给我免费播放毛片高清在线观看| 三级毛片av免费| 国产单亲对白刺激| 欧美成人免费av一区二区三区| 直男gayav资源| 99精品在免费线老司机午夜| 欧美一级a爱片免费观看看| 淫妇啪啪啪对白视频| 免费观看精品视频网站| 波多野结衣巨乳人妻| 91在线观看av| 国产伦在线观看视频一区| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线观看免费| 日本黄大片高清| 人人妻,人人澡人人爽秒播| 精品久久久久久,| 高清日韩中文字幕在线| 久久久久久久午夜电影| 亚洲精品国产成人久久av| 一个人免费在线观看电影| 免费观看的影片在线观看| 日本欧美国产在线视频| 美女cb高潮喷水在线观看| 在线看三级毛片| 亚洲男人的天堂狠狠| 国产aⅴ精品一区二区三区波| 成人一区二区视频在线观看| 午夜免费男女啪啪视频观看 | 欧美xxxx性猛交bbbb| 啪啪无遮挡十八禁网站| 熟女人妻精品中文字幕| 99久久精品国产国产毛片| 麻豆成人午夜福利视频| 成年免费大片在线观看| 国产av一区在线观看免费| 亚洲av成人精品一区久久| 精品久久久久久久人妻蜜臀av| 黄色一级大片看看| 中文字幕av在线有码专区| 老司机深夜福利视频在线观看| 成人特级黄色片久久久久久久| 亚洲国产高清在线一区二区三| 欧美日韩黄片免| 人人妻人人澡欧美一区二区| 免费av毛片视频| 国产精品日韩av在线免费观看| 国产伦人伦偷精品视频| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 成人精品一区二区免费| 日日夜夜操网爽| 亚洲,欧美,日韩| 特级一级黄色大片| 中文亚洲av片在线观看爽| 永久网站在线| 午夜福利欧美成人| 国产高清视频在线播放一区| 少妇被粗大猛烈的视频| 变态另类丝袜制服| 国产一区二区亚洲精品在线观看| 国产黄a三级三级三级人| 99在线人妻在线中文字幕| 国产一级毛片七仙女欲春2| 亚洲一区二区三区色噜噜| 亚洲欧美日韩无卡精品| 国产免费av片在线观看野外av| 日本精品一区二区三区蜜桃| 国产精品一区二区三区四区久久| 国产一区二区三区在线臀色熟女| 女人十人毛片免费观看3o分钟| 欧美成人a在线观看| 日韩 亚洲 欧美在线| 无人区码免费观看不卡| 精品久久久久久成人av| 亚洲第一电影网av| 国产精品野战在线观看| 久久精品国产亚洲av涩爱 | 精品一区二区免费观看| a级毛片a级免费在线| 亚洲精品影视一区二区三区av| 成熟少妇高潮喷水视频| 美女被艹到高潮喷水动态| 久久久久免费精品人妻一区二区| 欧美高清成人免费视频www| 欧美激情国产日韩精品一区| 国产极品精品免费视频能看的| 深夜a级毛片| 久久久久久大精品| 久久久久国内视频| 久久99热6这里只有精品| 日韩欧美国产在线观看| 韩国av一区二区三区四区| 精品福利观看| av天堂在线播放| www.色视频.com| 琪琪午夜伦伦电影理论片6080| 日本 欧美在线| 国内精品久久久久久久电影| 如何舔出高潮| 欧美人与善性xxx| 国产高潮美女av| 草草在线视频免费看| www.www免费av| 国产人妻一区二区三区在| 婷婷丁香在线五月| 小蜜桃在线观看免费完整版高清| 在线观看免费视频日本深夜| eeuss影院久久| 国产精品三级大全| 日韩欧美精品免费久久| 韩国av在线不卡| 九色国产91popny在线| 国产亚洲精品av在线| 一区二区三区高清视频在线| 免费在线观看影片大全网站| 国产精品无大码| 亚洲精品在线观看二区| 国产主播在线观看一区二区| 18禁在线播放成人免费| 乱系列少妇在线播放| 亚洲在线自拍视频| 色5月婷婷丁香| 久久精品91蜜桃| 搡老岳熟女国产| 欧美一区二区国产精品久久精品| 最近视频中文字幕2019在线8| 夜夜爽天天搞| 久9热在线精品视频| 日本一本二区三区精品| 亚洲性久久影院| 亚洲性久久影院| 日韩人妻高清精品专区| www日本黄色视频网| 综合色av麻豆| 在现免费观看毛片| 尤物成人国产欧美一区二区三区| 麻豆一二三区av精品| 精品福利观看| 午夜福利18| 亚洲av成人av| 亚洲欧美日韩卡通动漫| 国产成人影院久久av| 欧美国产日韩亚洲一区| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 亚洲精品一区av在线观看| 国产精品日韩av在线免费观看| 岛国在线免费视频观看| 亚洲成a人片在线一区二区| 国产av麻豆久久久久久久| 国产黄片美女视频| 久久欧美精品欧美久久欧美| 亚洲熟妇熟女久久| 男插女下体视频免费在线播放| 中文字幕免费在线视频6| 色综合婷婷激情| 身体一侧抽搐| av国产免费在线观看| 久久人人爽人人爽人人片va| 一本久久中文字幕| 干丝袜人妻中文字幕| 成人欧美大片| 亚洲国产高清在线一区二区三| 美女大奶头视频| 校园人妻丝袜中文字幕| 乱系列少妇在线播放| 成人一区二区视频在线观看| 亚洲电影在线观看av| 亚洲精品成人久久久久久| 久久中文看片网| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 亚洲第一电影网av| 白带黄色成豆腐渣| 亚洲精品一区av在线观看| 91av网一区二区| 丰满的人妻完整版| 免费大片18禁| 免费看av在线观看网站| 国产精品一区二区免费欧美| 在线天堂最新版资源| 国产精品一及| 亚洲精华国产精华精| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 波野结衣二区三区在线| 黄片wwwwww| 丝袜美腿在线中文| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看| 日韩一本色道免费dvd| 男人舔女人下体高潮全视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品久久国产高清桃花| 老司机福利观看| 真人做人爱边吃奶动态| 免费观看在线日韩| www日本黄色视频网| 亚洲国产精品成人综合色| 中文字幕久久专区| 22中文网久久字幕| 舔av片在线| 欧洲精品卡2卡3卡4卡5卡区| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| 欧美激情在线99| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 久久久久国内视频| 中文字幕人妻熟人妻熟丝袜美| 小说图片视频综合网站| 最好的美女福利视频网| 国产精品自产拍在线观看55亚洲| 成人二区视频| 国内精品一区二区在线观看| 一级a爱片免费观看的视频| 精品久久国产蜜桃| 热99re8久久精品国产| 91在线观看av| 午夜影院日韩av| 国产精品女同一区二区软件 | 亚洲国产精品久久男人天堂| 一个人看的www免费观看视频| 2021天堂中文幕一二区在线观| 欧美性猛交黑人性爽| 久久精品国产亚洲网站| 欧美极品一区二区三区四区| 色综合婷婷激情| 免费看a级黄色片| 色综合亚洲欧美另类图片| 最近视频中文字幕2019在线8| 18禁黄网站禁片午夜丰满| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 深夜精品福利| 99久久精品国产国产毛片| 亚洲在线观看片| 国产精品1区2区在线观看.| 国产免费av片在线观看野外av| 免费搜索国产男女视频| av黄色大香蕉| 欧美三级亚洲精品| 日本精品一区二区三区蜜桃| 日韩强制内射视频| 不卡一级毛片| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 亚洲第一电影网av| av福利片在线观看| 国产精品,欧美在线| 97热精品久久久久久| 午夜久久久久精精品| 免费观看在线日韩| 长腿黑丝高跟| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| 国产老妇女一区| 一进一出好大好爽视频| 亚洲最大成人手机在线| 亚洲av免费高清在线观看| 99热这里只有是精品在线观看| 国产伦一二天堂av在线观看| 黄片wwwwww| 久久久久国内视频| 久久久久久久久久久丰满 | 一卡2卡三卡四卡精品乱码亚洲| 不卡视频在线观看欧美| 亚洲自拍偷在线| 久久6这里有精品| 欧美高清性xxxxhd video| 婷婷精品国产亚洲av| 黄色女人牲交| 97热精品久久久久久| 亚洲人成网站高清观看| 日韩欧美 国产精品| 色综合站精品国产| 真人一进一出gif抽搐免费| 91麻豆av在线| 国产精品1区2区在线观看.| 久久久久久久久大av| 日本一二三区视频观看| 麻豆一二三区av精品| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区三区| 如何舔出高潮| 欧美三级亚洲精品| 国产精品日韩av在线免费观看| 美女高潮的动态| 成人永久免费在线观看视频| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 在线国产一区二区在线| 日本色播在线视频| 两个人的视频大全免费| 美女黄网站色视频| 91精品国产九色| 亚洲精品一区av在线观看| 真人一进一出gif抽搐免费| 婷婷精品国产亚洲av| 欧美日韩乱码在线| 在线播放无遮挡| 日韩欧美三级三区| 亚洲美女搞黄在线观看 | 亚洲中文字幕一区二区三区有码在线看| 丝袜美腿在线中文| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 国国产精品蜜臀av免费| 国产在线精品亚洲第一网站| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 国产精品自产拍在线观看55亚洲| 中文字幕久久专区| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 97热精品久久久久久| 国产乱人伦免费视频| 一夜夜www| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 欧美黑人欧美精品刺激| av在线老鸭窝| 美女黄网站色视频| 欧美另类亚洲清纯唯美| 日韩中字成人| 欧美丝袜亚洲另类 | 日本 欧美在线| 久久精品国产亚洲av涩爱 | 久久久久久久久久成人| 亚洲最大成人av| 在线国产一区二区在线| 久久久久久大精品| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 成人国产麻豆网| 国产久久久一区二区三区| 热99在线观看视频| 日本三级黄在线观看| 午夜a级毛片| 中文字幕精品亚洲无线码一区| 成年女人看的毛片在线观看| 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 婷婷亚洲欧美| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 免费看光身美女| 极品教师在线免费播放| 韩国av一区二区三区四区| 舔av片在线| 色综合婷婷激情| or卡值多少钱| 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 免费观看精品视频网站| 久久精品影院6| 联通29元200g的流量卡| 波多野结衣高清作品| 久久久久久久亚洲中文字幕| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 联通29元200g的流量卡| 97超视频在线观看视频| 黄色欧美视频在线观看| 床上黄色一级片| 成人综合一区亚洲| 国产欧美日韩精品亚洲av| 成人欧美大片| 91久久精品国产一区二区三区| 看片在线看免费视频| 久久久久久久午夜电影| 色综合婷婷激情| 精品久久国产蜜桃| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 国产黄色小视频在线观看| 又黄又爽又免费观看的视频| 性插视频无遮挡在线免费观看| 变态另类成人亚洲欧美熟女| 久久久久九九精品影院| 成人特级黄色片久久久久久久| 真人一进一出gif抽搐免费| 22中文网久久字幕| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av在线| 在线免费观看不下载黄p国产 | 99在线视频只有这里精品首页| 波多野结衣高清无吗| 夜夜夜夜夜久久久久| 精品久久久久久,| 成熟少妇高潮喷水视频| 99久久精品热视频| 乱码一卡2卡4卡精品| 久久精品影院6| 天堂av国产一区二区熟女人妻| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| av天堂中文字幕网| 久久久久九九精品影院| 久久久久久九九精品二区国产| 一级黄片播放器| 久久国产乱子免费精品| 国产精品永久免费网站| 亚洲自偷自拍三级| 少妇的逼水好多| 一级毛片久久久久久久久女| 国产黄片美女视频| 免费观看的影片在线观看|