• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    2016-12-20 02:21:44張永坡楊佳佳呂佳苑高春艷趙晉忠
    關(guān)鍵詞:單核喹啉農(nóng)業(yè)大學(xué)

    張永坡 楊佳佳 呂佳苑 高春艷 趙晉忠

    喹啉類單核錳(Ⅱ)和鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、DNA/BSA鍵合及DNA切割活性

    張永坡楊佳佳呂佳苑高春艷*趙晉忠*

    (山西農(nóng)業(yè)大學(xué)文理學(xué)院,太谷030801)

    合成了2個(gè)結(jié)構(gòu)類似的喹啉類單核錳和鈷配合物[ML(H2O)3]·H2O,其中M為Mn(1)、Co(2),Na2L為8-(羧基鈉甲氧基)喹啉-2-甲酸鈉。運(yùn)用紅外光譜、元素分析和X射線單晶衍射表征了其結(jié)構(gòu)。利用電子吸收和發(fā)射光譜法研究了配合物與CT-DNA及BSA的鍵合作用及配合物對(duì)DNA的切割作用。晶體解析結(jié)果表明2個(gè)配合物為同構(gòu)結(jié)構(gòu),配合物中心均為七配位的畸變五角雙錐結(jié)構(gòu)。鈷配合物2與CT-DNA的鍵合能力強(qiáng)于錳配合物1,兩者與BSA的作用機(jī)理為靜態(tài)淬滅機(jī)理,而鍵合常數(shù)值大小為1>2。在以H2O2作為誘導(dǎo)劑時(shí),在同等條件下,2切割DNA的能力明顯增強(qiáng)。通過加入自由基捕獲劑證明了配合物對(duì)DNA的切割機(jī)理為氧化切割機(jī)理,其中活性氧為OH·。

    配合物;喹啉類配體;DNA/BSA鍵合;DNA切割

    0 Introduction

    Metal complexes are a significant class of compounds with biological activities that can be potentially used in gene regulation,probing of DNA specific structures and interactions,and design of therapeutic agents[1-3].Since the discovery of antitumor activity of cisplatin in the 1960s[4-5],the research field of metal-based therapeutics has received considerable attention and broad interest[6-7].Metal complexes have natural propensity to interact with DNA due to their cationic characteristic,and based on theirwide spectrum of ligands and broad range of structural geometries[8]as well as kinetic properties and mechanisms of drug action[9].

    It has been widely accepted that DNA is the primary biological targets of metal-based therapeutics in vivo[10].Interactions of metal complexes with DNA range from electrostatic interaction to strong covalent bonding,DNA intercalation,groove binding,hydrogen -bonding with ligands,and cleavage of DNA[11-14].Transition metal complexes as synthetic metallonucleases have been studied extensively due to their supporting a multitude of coordination numbers and geometries. Among them,application of cobalt and manganese are important because of their biologically relevant and lessertoxicity[15-16].Mn and Co are widely distributed in naturalnucleases.Severalmetalloenzymes in biosystem require Mn or Co as cofactor for their catalytic activities.This prompted us to study the DNA interaction as well as nuclease activity of Mn and Co complexes.

    Apart from the choice of metal ion centers, purposeful design of these metal-based pharmaceuticals mainly depends on the various ligand frameworks.Structures and functionalities of ligands can significantly alter the biological properties by modifying the physical and chemical properties of the ion (s),including limiting the adverse effects of metal ion overload,inhibiting selected metalloenzymes,and facilitating metal ion redistribution[8].Due to coplanar aromatic rings,quinoline is regarded as an efficient DNA intercalating group.8-Hydroxylquinoline is a monoprotic bidentate chelating agent able to form a bis-substituted metal complex that inhibited proteasome activity,resulting in proliferation suppression and apoptosis induction in cultured breast and prostate cancer cells,showing potential anticancer activity[17-18].

    Herein,we selected a typical 2-carboxyl and 8-oxo-ethyl acetate derived quinoline as ligand(Scheme 1).Similar hepta-coordinated Mn(Ⅱ)and Co(Ⅱ)compounds have been synthesized and characterized.In this paper an attempt has been made to investigate the effect of two different metal ions in the same ligand environment on the DNA/BSA binding ability ofthe complexes.

    Scheme 1 Synthesis of Na2L(sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)

    1 Experimental

    1.1Materials and methods

    All reagents and solvents were purchased from commercial sources and used without further purification.Plasmid pBR322 DNA,calf thymus(CTDNA),bovine serum albumin(BSA)and ethidium bromide(EB)were purchased from Sigma-Aldrich. Stock solutions of Mn(Ⅱ)(1.0 mmol·L-1in 32%DMF/ H2O)and Co(Ⅱ)(1.0 mmol·L-1in 6%DMF/H2O) complexes were stored at 4℃and prepared to series concentrations for all experiments.Phosphate buffer and Tris-HCl solution were prepared using tripledistilled deionized sonicated water.Elemental analyses for C,H and N were performed on a Perkin-Elmer analyzer.IR spectra were obtained on a Perkin-Elmer FTIR spectrometer in the range of 4 000~400 cm-1.Electronic spectra were measured on a JASCO V-570 spectrophotometer.Fluorescence spectral data were collected on a MPF-4 fluorescence spectrophotometer at room temperature.Gel Imaging and documentation DigiDoc-It System were assessed using Labworks Imaging and UVI(England)Analysis Software.

    1.2Preparation of compounds

    1.2.1Synthesis ofthe ligand Na2L

    Ligand Na2L was prepared using a similar method of the literature[19].A mixture of 8-hydroxy-2-methylquinoline(2.4 g,15 mmol),ethyl bromoacetate (2.5 g,15 mmol)and powdered K2CO3(8 g,58 mmol) in acetone(30 mL)was refluxed for 24h.After cooled to room temperature,the mixture was centrifuged and filtered.The filtrate was evaporated to generate crude oilresidue,which was redissolved in 25 mL ofdioxane. 1.8 g SeO2(16 mmol)was added and the mixture was refluxed under an open air for 10 h.After cooled,the solvent was removed under vacuum.50 mL 0.5 mol· L-1HCl was added and the mixture was extracted by ethyl acetate.The organic phase was combined and concentrated to generate crude oil residue.The residue was redissolved in 25 mL of ethanol,and a solution of NaOH(1.8 g,45 mmol)in water(10 mL) was slowly added.The mixture was refluxed for 2 h. 25 mL of ethanol was added and the mixture was cooled to temperature slowly and dark yellow solid precipitated.The product was isolated by filtration and washed with cold ethanol,with a yield of 47%. Elemental analysis calcd.for C12H7NNa2O5(%):C, 49.50;H,2.42;N,4.81.Found(%):C,49.41;H,2.67; N,4.79.FTIR(KBr,cm-1):3 348,1 615,1 507,1 480, 1 421,1 385,1 315,1 265,1 107,948,824.

    1.2.2Synthesis of[MnL(H2O)3]·H2O(1)

    To an aqueous solution(5 mL)of MnCl2·4H2O (0.2 mmol,39.6 mg)was added a methanol solution (15 mL)of Na2L(0.2 mmol,58.2 mg).The resulting mixture was stirred for 3 h at room temperature.After filtration,yellow prism crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate after ten days,which were collected by filtration,washed with diethyl ether and dried in air (Yield:28%).Elemental analysis calcd.for C12H7MnNO9(%):C,39.58;H,1.94;N,3.85.Found (%):C,39.49;H,2.01;N,3.78.FTIR(KBr,cm-1): 3 333,1 634,1 506,1 480,1 420,1 380,1 318,1 262, 1 108,946,924,821,614.

    1.2.3Synthesis of[CoL(H2O)3]·H2O(2)

    Complex 2 was prepared using a similar procedure with the case of 1,using Co(NO3)2·6H2O instead of adding MnCl2·4H2O to the reaction mixture.Red prism crystals suitable for X-ray diffraction were precipitated by slow evaporation of the filtrate after seven days,which were collected by filtration,washed with cold diethyl ether and dried in vacuum(Yield: 37%).Elemental analysis calcd.for C12H7CoNO9(%): C,39.15;H,1.92;N,3.80.Found(%):C,39.08;H, 1.99;N,3.62.FTIR(KBr,cm-1):3 381,1 624,1 509, 1 480,1 423,1 383,1 316,1 266,1 110,948,884, 822,697.

    1.3X-ray crystallography

    Single crystals of the complexes with suitable size(0.20 mm×0.10 mm×0.05 mm for 1 and 0.25 mm×0.20 mm×0.10 mm for 2)were selected.X-ray diffraction data were collected on a Bruker Smart 1000 CCD diffractometer using Mo Kαradiation(λ= 0.071 073 nm)with theω-2θscan technique.Diffraction data were collected at 113(2)and 293(2)K for 1 and 2,respectively.All the crystal structures were solved using direct methods(SHELXS-97)[20]and refined with full-matrix least-squares technique on F2using the SHELXL-97[21].The hydrogen atoms were added theoretically,and riding on the concerned atoms and refined with fixed thermal factors. Crystallographic data details and structure refinement parameters are presented in Table 1.Selected bond lengths and angles are listed in Table S1.

    CCDC:1040326,1;1040325,2.

    1.4DNA-binding and cleavage experiments

    DNA-binding and cleavage experiments were conducted using the similar methods described previously[22-24].Electronic absorption spectroscopy was an effective method in examining the binding mode of DNA with the metal complex[25].Specifically,concentration of CT-DNA was measured from the UV absorption intensity at 260 nm with a molar extinction coefficient of 6 600 L·mol-1·cm-1[26].The DNA was demonstrated sufficiently free of protein as a ratio of 1.8~1.9 was obtained for the absorbance at 260 nm and 280 nm ofthe CT-DNA solution,which was carried out in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer (pH=7.2)[25].The absorption spectra of the complexes binding to DNA were performed by increasing addition of CT-DNA to the complexes in Tris-HCl buffer(pH=7.2).

    Table 1 Crystallographic data for complexes 1 and 2

    The fluorescence spectra were recorded at room temperature with excitation at 510 nm and emission at about 602 nm.The relative binding of complexes to CT-DNA were carried out with an EB-bound CT-DNA solution in 5 mmol·L-1Tris-HCl and 50 mmol·L-1NaClbuffer(pH=7.2).Absorption titration experiments were performed by titrating complexes into EB-DNA solution,which contains 2.4×10-6mol·L-1EB and 4.8×10-5mol·L-1CT-DNA.

    To explore the DNA cleavage abilities of complexes,the supercoiled(SC)pBR322 plasmid DNA as a substrate was incubated with complexes.The DNA cleavage experiments were performed by agarose gel electrophoresis,Details of the measurement was carried out as follows:A solution of pBR322 DNA (0.1μg·μL-1)in Tris-HCl(50 mmol·L-1)and NaCl (18 mmol·L-1)buffer(pH=7.2)was treated with 1 and 2.After incubation at 37℃for 3 h,the buffer of bromophenol blue(0.25%),glycerol(45%)and EDTA (2 mmol·L-1))was added.The samples were electrophoresed at 120 V on 0.9%agarose gel for 2 h,using Tris-boric acid-EDTA buffer.The extent of cleavage ofthe super coiled DNA(SC DNA)was determined by measuring the intensities of the bands,which were visualized by UV light and photographed using the Gel Documentation System[27].

    Cleavage mechanistic of pBR322 DNA was investigated in the presence of reaction inhibitors and standard radical scavengers.KI,NaN3,methyl green,SYBR green,EDTA and SOD were used as standard radical scavengers,which were added to pBR322 DNA prior to complex loading.After the addition of complex,cleavage experiment was initiated,and it was quenched with addition of 2μL buffer.Further analysis was carried out using the above standard method.

    1.5Protein binding studies

    The protein binding study was conducted with tryptophan fluorescence quenching experiments using BSA stock solution(1.5 mmol·L-1)in 10 mmol·L-1phosphate buffer(pH=7.0)[23].Briefly,a similar stock solution was prepared as the DNA binding experiments,except that phosphate buffer was used instead of Tris-HClbuffer.Fluorescence spectra were recorded at room temperature with excitation wavelength of BSA at 280 nm and emission at 342 nm.The concentration of BSA was kept constant(36.6μmol·L-1) while the complex concentration varying from 0 to 6.39μmol·L-1.Absorption titration experiments with BSA(15μmol·L-1)were carried out in the absence and presence of complex(2μmol·L-1)(pH=7.0).

    2 Results and discussion

    2.1Description of the crystal structures

    Mononuclear complexes 1 and 2 have been structurally characterized by X-ray crystallography. Since the two complexes are isostructural,the molecular structure of 1 was shown representatively in Fig.1(A similar structure of 2 was shown as Fig.S1). Parameters of refinement process and selected bond lengths and angles are listed in Table 1 and S1, respectively.

    Fig.1 ORTEP view of the molecular structure and atomlabeling scheme of complex 1 with 30% probability ellipsoid

    The complexes are isostructural and crystallize in a triclinic cell with P1 space group.Both metal centers are hepta-coordinated with O6Ndonor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.It is worth mentioning that weak M-O(1)coordinated interactions(Mn(1)-O(1)0.249 7(10)nm,Co(1)-O(1) 0.251 4(7)nm)exist in the[ML(H2O)3]units,which are supposed to be caused by the rigid structure of 8-hydroxy-2-methylquinoline[19].The nitrogen atom(N(1)), three oxygen atoms(O(1),O(2)and O(4))of the ligand and an oxygen atom(O(7))ofcoordinate water molecule form the basal plane.Another two oxygen atoms(O(6) and O(8))ofwater molecule occupy the axial positions with normal M-O bond distances,and the trans-axial angles(O6-M-O8)are 176.8(4)°for 1 and 174.9(3)°for 2,respectively.The angles(Table S1)around the metal ion within the pentagonal basal plane vary from 64.3(4)°to 81.4(4)°for complex 1(64.0(2)°~80.7(3)° for complex 2),and the sum of angles spanning these five bonds is 360°for complex 1(360.2°for complex 2),underscoring the flat nature of this equatorial plane.

    2.2DNA-binding and cleavage activities

    2.2.1DNA-binding studies

    The interaction of complexes with CT-DNA was monitored by absorption spectral titrations.The typical titration curve as wellas a plot of(εa-εf)/(εbεf)versus cDNAfor the titration of DNA to complex 2 is shown in Fig.2(similar spectrum of 1 is provided as Fig.S2).The observed intense absorption peaks at 217~221 nm for the two complexes are assigned to theπ-π*transition of intraligand.Addition of increasing amounts of CT-DNA results in an appreciable hypochromism of complexes and slight red shifts(3 nm)in band position,which indicates partial intercalation between complexes and DNA[28].Due to the strong stacking interaction between an aromatic chromophore and the base pairs of DNA,the intercalation between complexes and DNA would lead to hypochromism or bathochromism in UV absorptionspectra.In order to determine the binding strength of the complexes with CT-DNA,the intrinsic binding constants Kbfor complexes 1 and 2 were determined from the spectral titration according to the following equation[29]:cDNA/(εa-εf)=cDNA/(εb-εf)+1/[Kb(εb-εf)],where cDNAis the DNA concentration in nucleotides.The apparentabsorption coefficientεa,εbandεfcorrespond to the extinction coefficient observed for the charge transfer absorption band at a given DNA concentration,the complex free in solution,the complex when fully bound to DNA,respectively.The binding constant Kbvalues(Table 2)follow the order:2 (7.45×105L·mol-1)>1(4.09×105L·mol-1),which suggest that complex 2 has stronger binding affinity than 1.

    Fig.2 Absorption spectra of complex 2(2.5μmol·L-1, 0.015%DMF/H2O)in the absence(dashed line) and presence(solid line)of increasing amounts of CT-DNA in 5 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer(pH=7.2)

    Table 2 DNA and BSA binding data for complexes 1 and 2

    Fig.3(a)Fluorescence emission spectra of the EB(2.4μmol·L-1)bound to CT-DNA(48μmol·L-1)system in the absence (dashed line)and presence(solid lines)of complex 2;(b)Plots of I0/I versus the concentrations of complexes 1 and 2

    As a means for better understanding of the interaction of the compound with DNA,fluorescence spectral measurements were performed on CT-DNA by varying the concentration of the complexes.Since no luminescence is observed for both complexes at room temperature,ethidium bromide(EB)was employed as fluorescence probe and the binding propensity of the complexes to CT-DNA is evaluated by fluorescence emission intensity of EB bound to DNA.Due to the strong intercalation to the adjacent DNA base pairs, EB could emit intense fluorescent light in the presence of DNA[30]and could be quenched by addition of another molecule.Fig.3(a)shows the relativebinding propensity of the complex 2 to EB bound CTDNA and similar spectrum of 1 is presented as Fig. S3.Plots of I0/I versus ccomplexfor the quenched intensity of 1~2 to EB-DNA is shown in Fig.3(b).The reduction extent of the emission intensity at 602 nm (510 nm excitation)provides an evaluation of the binding propensity of the complex to DNA.On the basis of the Stern-Volmer equation[31],I0/I=1+KcQ,in which I0and I represent the fluorescence intensities in the absence and presence of quencher,K is the Stern-Volmer quenching constant,and cQis the concentration of the quencher,the quenching plots showed that the quenching of EB bound to CT-DNA by complex 1 or 2 is in agreement with the linear Stern-Volmer equation,which also indicates that the complexes performed good bind ability to DNA. According to equation KEBcEB=Kappccomplex,where the ccomplexwas the concentration value at half reduction of the fluorescence intensity of EB,and KEBwas a constant of 1.0×107mol·L-1(cEB=2.4μmol·L-1).The calculated apparent binding constant values(Kapp) (Table 2)follow the order:2(6.76×105L·mol-1)>1 (4.16×105L·mol-1),which is consistent with the results of Kbvalues by UV spectroscopy.The two complexes show better binding propensity than the previous reported Co(Ⅱ)and Mn(Ⅱ)complexes[32-34].On the whole,the binding constants are less than that of the classical intercalators and metallointercalators(107L·mol-1)[35],indicating medium binding strength of the complexes with CT-DNA.

    2.2.2DNA cleavage studies

    The concentration-dependent DNA cleavage activity by complex 2 was observed without any external agents,as shown in Fig.4(a)(similar study of 1 is presented as Fig.S4(a)).2 could notinduce obvious DNA cleavage with the increase of concentration(50~650μmol·L-1),while the percentages of FormⅠ(SC DNA)and FormⅡ(NC DNA)of complex 1 both gradually reduce with the increase of concentration, which suggests thatthe complex partially degraded SC DNA into undetectable minor fragments[36].

    The concentration-dependent DNA cleavage activities by complex 1 and 2 were also performed in the presence of reductive reagent H2O2.The results showed that DNA cleavage efficiency of complex 2 exhibited remarkable increases at the same conditions (Fig.4(b)).It has been observed that complex 2 is an efficient cleaver of SC DNA and produces~93%of NC DNA at 20μmol·L-1concentration,which implies that H2O2plays a vital role as a revulsant or an activator.While 1 shows relatively weak chemical nuclease activity which implies little impact on the reductive reagent.As shown in the Fig.S4(b)and Fig. 4(b),at 50μmol·L-1concentration,the DNA cleavage efficiencies(FormⅠinto FormⅡand FormⅢ) follow the order of 2(90.3%FormⅡand 9.7%FormⅢ)>1(47.5%FormⅡ).

    Fig.4 Gel electrophoresis diagram showing the cleavage of p BR322 DNA(0.1μg·μL-1)at different complex concentrations in Tris-HCl/NaCl buffer(pH=7.2)and 37℃

    In order to get further information about the reactive oxygen species(ROS)which was responsible for the DNA damage,the potential DNA cleavage mechanism of the complexes in the presence of H2O2were investigated.Series of DNA cleavage experiments (Fig.5 and Fig.S5)were performed using additional reagents like KIas hydroxylradical(OH·)scavengers, NaN3as singlet oxygen(1O2)quencher,methyl green as DNA major groove-binder,SYBR green as DNA minor groove-binder,EDTA as the chelator of complexes and superoxide dismutase(SOD)as O2-·radical scavenger.As Fig.5 shows,the complexes showed complete or partial inhibition in the DNA-cleavageactivity in the presence of the hydroxyl radial scavenger KI,no obvious inhibitions were observed for other radical scavengers(Fig.6),which suggested the involvementofhydroxyl radicals(OH·)as reactive oxygen species.The EDTA,a metal chelating agent that strongly binds to Mmetal chelating agent that strongly binds toforming a stable complex, can efficiently inhibit DNA cleavage,indicating the metal ion play the key role in the cleavage.Moreover, the additions of DNA major groove-binder methyl green and minor groove-binder SYBR Green showed no inhibition DNA cleavage by complexes 1 and 2, which suggested that the complexes didn′t bind at the grooves of DNA[37].

    Fig.5 Cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of 35μmol·L-1complex 2 (0.1%DMF/H2O)and different inhibitors after 3 h incubation at 37℃

    Fig.6 Histogram of relative amounts according to Fig.S5 and Fig.5 shows the cleavage of plasmid pBR322 DNA(0.1μg·μL-1)in presence of complex and different inhibitors after 3 h incubation at 37℃

    2.3Protein binding studies

    The interactions between drugs with blood plasma proteins have attracted increasing research interest in recent years,particularly regarding serum albumin.Since serum albumin constitutes more than half of the total protein in blood plasma and it plays an important role in drug transport and drug metabolism[37-38],and may lead to enhancement of the biological properties of the original drug[39].Bovine serum albumin(BSA)is extensively studied for its structuralhomology with human serum albumin(HSA). The fluorescence property of BSA is due to the presence of tryptophan,tyrosine and phenylalanine residues,and tryptophan is the most primary contributor[38].Fig.7(a)shows the fluorescence emission spectrum of BSA with increasing concentration of complex 1(similar spectrum of2 is presented as Fig. S6).When complexes concentration was increased,the intensity of the characteristic broad emission band at 348 nm decreased regularly,which demonstrate that the interactions between complexes and BSA have indeed occurred.The fluorescence quenching can be described according to Stern-Volmer equation,F0/F= 1+Kqτ0cQ=1+KSVcQ.F0and F respectively represent the fluorescence intensities in the absence and presence ofquencher,Kqrepresents the quenching rate constant, τ0is the average life-time of biomolecule without quencher(about 10-8s)[31],KSVis the Stern-Volmer quenching constant and cQrepresents the quencher concentration.Fig.7(b)shows the Stern-Volmer plots of F0/F vs cQof the complexes,and KSVcan be obtained by the slope from the plot.Table 2 listed the values of KSVand Kqfor the interaction of the complexes with BSA and the KSVvalues follow the order:1(2.46×104mol·L-1)>2(1.58×104mol·L-1).

    In general,quenching mechanisms can be classified as dynamic and static quenching.Dynamic quenching takes a process of interaction between the fluorophore and the quencher during the transientexistence of the exited state while static quenching tends to the formation offluorophore-quenchercomplex. The Kqvalues(~1012L·mol-1·s-1)of 1 and 2 are higher than the maximum scatter collision-quenching constantof diverse kinds of quenchers for biopolymers fluorescence(2×1010L·mol-1·s-1,the maximum possible value for dynamic quenching),suggesting the presence ofstatic quenching mechanism[40].

    Fig.7(a)Fluorescence emission spectra of the BSA(36.6μmol·L-1)system in the absence(dashed line)and presence(solid lines)of complex 1;(b)Plot of F0/F versus the concentration of complexes 1 and 2

    Fig.8 Plot of lg[(F0-F)/F]vs lgcQfor BSA in the presence of complexes 1 and 2

    On the basis of the Scatchard equation[41]:lg[(F0-F)/F]=lg K+n lg cQ,for the static quenching interaction, the binding constant(K)and the number of binding sites(n)can be respectively calculated from the slope and the intercept of the double logarithm regression plots of lg[(F0-F)/F]versus lgcQ(Fig.8).Table 2 shows the K and n values following the order:1(3.67×103L·mol-1,0.84)>2(48.2 L·mol-1,0.52),indicating that 1 exhibits higher binding constants for BSA than 2, which is inconsistent with the results of DNA interaction.As expected,the values of n are associated with binding constants K,which verify the conclusion[42]that a direct relation between the binding constant and number ofbinding sites.

    UV-Vis absorption spectroscopy,which is a simple but effective method for detecting complex formation,was employed to detect changes of the intensity and wavelength of complex with BSA.The absorption band obtained in the spectra of 15μmol· L-1BSA at 279 nm in the absence of complex,and the intensity showed an increase without any shift after the addition of 2μmol·L-1Mn(Ⅱ)and Co(Ⅱ)complexes,respectively(Fig.9),which can be attributed to the formation of a ground state complex between metal complex and BSA[43].Mn(Ⅱ)complex showed a larger hyperchromism of 3.6%than that of Co(Ⅱ)complexes(0.9%),indicating that Mn(Ⅱ)behaved stronger ability of BSA binding,which was consistentwith the results offluorescence tests.

    Fig.9 Absorption spectra of BSA(15μmol·L-1)in the absence(dot line)and presence(solid line)of complexes 1(a)and 2(b)(2μmol·L-1)in phosphate buffer(pH=7.0)

    3 Conclusions

    Two new mononuclear Mn(Ⅱ)and Co(Ⅱ)complexes have been synthesized and characterized by using various physico-chemicaltechniques.Crystalstructures of the complexes are isostructural and both metal centers are hepta-coordinated and the geometry can be described as distorted pentagonal bipyramidal.The complexes display binding propensity to the CT-DNA giving a relative order:2(Co(Ⅱ)complex)>1(Mn(Ⅱ)complex).Compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same condition in the presence of H2O2.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species (ROS)responsible for the DNA cleavage is likely hydroxyl radicals(OH·).While binding abilities of the complexes to BSA are inconsistentwith the results of DNA interaction which follow the order:1>2,and the quenching mechanisms of BSA by the complexes are static procedures.

    Acknowledgements:This work was supported by the PhD Research Startup Foundation of Shanxi Agricultural University(Grants No.2013YJ40 and 2013YJ41),Science and Technology Innovation Fund of Shanxi Agricultural University (Grants No.2014005 and 2014013),College students Innovation and Entreprenecuship Training Project of Shanxi province (Grants No.2015085 and 2015/06)and the Key Scientific Research Projects of Coal Fund in Shanxi(Grant No.FT201402-01).

    Supporting information is available athttp://www.wjhxxb.cn

    References:

    [1]Barone G,Terenzi A,Lauria A,et al.Coord.Chem.Rev., 2013,257(19):2848-2862

    [2]Jiang Q,Xiao N,Shi P,et al.Coord.Chem.Rev.,2007,251 (15):1951-1972

    [3]Pages B J,Ang D L,Wright E P,et al.Dalton Trans.,2015, 44(8):3505-3526

    [4]Rosenberg B,Van Camp L,Krigas T.Nature,1965,205:698-699

    [5]Rosenberg B,Van camp L.Nature,1969,222:385-386

    [6]Mjos K D,Orvig C.Chem.Rev.,2014,114(8):4540-4563

    [7]Wilson J J,Lippard S J.Chem.Rev.,2013,114(8):4470-4495

    [8]Storr T,Thompson K H,Orvig C.Chem.Soc.Rev.,2006,35 (6):534-544

    [9]Reedijk J.Proc.Natl.Acad.Sci.U.S.A.,2003,100(7):3611-3616

    [10]Komor A C,Barton J K.Chem.Commun.,2013,49(35):3617 -3630

    [11]Leung C H,He H Z,Liu L J,et al.Coord.Chem.Rev., 2013,257(21):3139-3151

    [12]Liu H K,Sadler P J.Acc.Chem.Res.,2011,44(5):349-359

    [13]Aiba Y,Sumaoka J,Komiyama M.Chem.Soc.Rev.,2011, 40(12):5657-5668

    [14]Munteanu C R,Suntharalingam K.Dalton Trans.,2015,44 (31):13796-13808

    [15]Ghosh K,Tyagi N,Kumar P.Inorg.Chem.Commun.,2010, 13(3):380-383

    [16]Ghosh K,Mohan V,Kumar P,et al.Polyhedron,2013,49(1): 167-176

    [17]Daniel K G,Chen D,Orlu S,et al.Breast Cancer Res.,2005,7(6):R897-R908

    [18]Chen D,Peng F,Cui Q C,et al.Front.Biosci.,2005,10(2): 2932-2939

    [19]Zheng Q,Wang S,Liu W.Tetrahedron,2014,70(42):7686-7690

    [20]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structure,University of G?ttingen,Germany,1997.

    [21]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [22]Gao C Y,Ma Z Y,Zhang Y P,et al.RSC Adv.,2015,5(39): 30768-30779

    [23]Gao C Y,Qiao X,Ma Z Y,et al.Dalton Trans.,2012,41 (39):12220-12232

    [24]Zhang Y P,Ma Z Y,Gao C Y,et al.New J.Chem.,2016,40 (9):7513-7521

    [25]Marmur J.J.Mol.Biol.,1961,3(2):208-218

    [26]Gultneh Y,Khan A R,Blaise D,et al.J.Inorg.Biochem., 1999,75(1):7-18

    [27]Bernadou J,Pratviel G,Bennis F,et al.Biochemistry,1989, 28(18):7268-7275

    [28]Baldini M,Belicchi-Ferrari M,Bisceglie F,et al.Inorg. Chem.,2004,43(22):7170-7179

    [29]Wolfe A,Shimer Jr G H,Meehan T.Biochemistry,1987,26 (20):6392-6396

    [30]Meyer-Almes F J,Porschke D.Biochemistry,1993,32(16): 4246-4253

    [31]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4171-4179

    [32]Ramachandran E,Thomas S P,Poornima P,et al.Eur.J. Med.Chem.,2012,50:405-415

    [33]Kellett A,O′Connor M,McCann M,et al.MedChemComm, 2011,2(7):579-584

    [34]Wu H,Shi F,Wang X,et al.Transition Met.Chem.,2014, 39(3):261-270

    [35]Cory M,McKee D D,Kagan J,et al.J.Am.Chem.Soc., 1985,107(8):2528-2536

    [36]Ramakrishnan S,Shakthipriya D,Suresh E,et al.Inorg. Chem.,2011,50(14):6458-6471

    [37]Gibellini D,Vitone F,Schiavone P,et al.J.Clin.Virol., 2004,29(4):282-289

    [38]Lakowicz J R.Principles of Fluorescence Spectroscopy.3rd Ed.New York:Springer,2006:530-573

    [39]Villarreal W,Colina-Vegas L,Rodrigues de Oliveira C,et al. Inorg.Chem.,2015,54(24):11709-11720

    [40]Ware W R.J.Phys.Chem.,1962,66(3):455-458

    [41]Scatchard G.Ann.N.Y.Acad.Sci.,1949,51(4):660-672

    [42]Sathyadevi P,Krishnamoorthy P,Butorac R R,et al.Dalton Trans.,2011,40(38):9690-9702

    [43]Hu Y J,Ou-Yang Y,Dai C M,et al.Biomacromolecules, 2009,11(1):106-112

    Syntheses,Structures,DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ)and Cobalt(Ⅱ)Complexes with N,O-Chelating Quinoline Derivative Ligand

    ZHANG Yong-Po YANG Jia-Jia LüJia-Yuan GAO Chun-Yan*ZHAO Jin-Zhong*
    (College of Arts and Sciences,Shanxi Agricultural University,Taigu,Shanxi 030801,China)

    Two new mononuclear complexes[ML(H2O)3]·H2O(M=Mn(1)and Co(2))ofquinoline derivative ligand (Na2L=sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate)have been synthesized and characterized.The complexes are isostructural and both metal centers are heptacoordinated with O6N donor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal.Interactions of the complexes with CT-DNA and BSA have been explored by absorption and emission spectralmethods.Binding abilities of the complexes to CT-DNA display a relative order:2>1,while the quenching mechanisms of BSA by both complexes are static procedures and the binding constant values follow the order:1>2.In the presence of H2O2as a revulsant or an activator,compared with complex 1,the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same conditions.Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species(ROS)responsible for the DNA cleavage is likely hydroxyl radicals (OH·).CCDC:1040326,1;1040325,2.

    complexes;quinoline ligand;DNA/BSA binding;DNA cleavage

    O614.71+1;O614.81+2

    A

    1001-4861(2016)12-2172-11

    10.11862/CJIC.2016.265

    2016-06-15。收修改稿日期:2016-09-29。

    山西農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)金(No.2013YJ40,2013YJ41)、山西農(nóng)業(yè)大學(xué)科技創(chuàng)新基金(No.2014013,2014005)、山西農(nóng)業(yè)大學(xué)大學(xué)生科技創(chuàng)新項(xiàng)目(No.13-017,2015085)、山西省高等學(xué)校大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(No.2015085,2015106)和山西省煤基重點(diǎn)項(xiàng)目(No.FT201402-01)資助。

    *通信聯(lián)系人。E-mail:gaocynk@163.com,zhaojinzhongnd@126.com;會(huì)員登記號(hào):S06N2534M1605。

    猜你喜歡
    單核喹啉農(nóng)業(yè)大學(xué)
    湖南農(nóng)業(yè)大學(xué)通知教育中心
    《云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué))》征稿簡則
    HPLC-Q-TOF/MS法鑒定血水草中的異喹啉類生物堿
    中成藥(2017年7期)2017-11-22 07:33:25
    ??? ???? ??? ???????? ?? ?? ??―??? ????? ????
    喹啉和喹諾酮:優(yōu)秀的抗結(jié)核藥物骨架
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    一種簡單的分離、培養(yǎng)及鑒定小鼠外周血單核巨噬細(xì)胞方法的建立
    間歇精餾分離喹啉和異喹啉的模擬
    單核Ru(Ⅲ)-edta類配合物的合成﹑結(jié)構(gòu)及性質(zhì)研究
    苯并咪唑衍生的單核鈷(Ⅱ)和單核鎳(Ⅱ)配合物與DNA和蛋白質(zhì)的結(jié)合反應(yīng)性及細(xì)胞毒活性研究
    欧美精品亚洲一区二区| 中文字幕人妻熟女乱码| 亚洲在久久综合| 亚洲国产成人一精品久久久| 国产成人欧美| 一边摸一边做爽爽视频免费| 亚洲国产色片| 亚洲国产精品成人久久小说| 最近2019中文字幕mv第一页| 超碰97精品在线观看| 国产一级毛片在线| 欧美成人精品欧美一级黄| 女的被弄到高潮叫床怎么办| 日韩制服丝袜自拍偷拍| 久久久国产欧美日韩av| 精品一区二区三卡| 热99久久久久精品小说推荐| videosex国产| kizo精华| 美女中出高潮动态图| 成年女人在线观看亚洲视频| 18+在线观看网站| 亚洲国产精品999| 黄色配什么色好看| 久久国产精品大桥未久av| 波野结衣二区三区在线| 你懂的网址亚洲精品在线观看| 国产在线视频一区二区| 国产av精品麻豆| 欧美精品人与动牲交sv欧美| 中文欧美无线码| 免费人妻精品一区二区三区视频| 婷婷色综合大香蕉| 欧美精品一区二区免费开放| 欧美日韩一级在线毛片| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| 一本色道久久久久久精品综合| 中国三级夫妇交换| 又粗又硬又长又爽又黄的视频| 精品久久蜜臀av无| 欧美中文综合在线视频| 在线观看国产h片| 青春草亚洲视频在线观看| 国产片内射在线| av天堂久久9| 最近中文字幕高清免费大全6| 国产成人免费无遮挡视频| 毛片一级片免费看久久久久| av国产久精品久网站免费入址| 好男人视频免费观看在线| 国语对白做爰xxxⅹ性视频网站| 我要看黄色一级片免费的| 狂野欧美激情性bbbbbb| 麻豆精品久久久久久蜜桃| 久热久热在线精品观看| 乱人伦中国视频| 久久久久久久亚洲中文字幕| 日韩精品免费视频一区二区三区| 国产日韩欧美在线精品| 国产av一区二区精品久久| 人人妻人人爽人人添夜夜欢视频| 十八禁网站网址无遮挡| 国产成人一区二区在线| 女人久久www免费人成看片| 久久久久久人人人人人| 亚洲一区中文字幕在线| 国产精品免费视频内射| 免费黄色在线免费观看| 男人爽女人下面视频在线观看| 最近的中文字幕免费完整| 建设人人有责人人尽责人人享有的| 自线自在国产av| 亚洲三级黄色毛片| 国产午夜精品一二区理论片| 成人免费观看视频高清| 久久久久久久久久久久大奶| 麻豆av在线久日| 亚洲精品日韩在线中文字幕| 最新中文字幕久久久久| av免费在线看不卡| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 成年人午夜在线观看视频| 国产无遮挡羞羞视频在线观看| 亚洲av在线观看美女高潮| 亚洲欧美色中文字幕在线| 国产精品国产av在线观看| 国产男女超爽视频在线观看| 精品人妻偷拍中文字幕| 69精品国产乱码久久久| 精品久久蜜臀av无| 国产精品女同一区二区软件| 一区二区三区四区激情视频| 中文乱码字字幕精品一区二区三区| 激情视频va一区二区三区| 国产乱人偷精品视频| 亚洲第一青青草原| 国产av码专区亚洲av| 久久精品亚洲av国产电影网| 中国三级夫妇交换| 亚洲色图综合在线观看| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 国产精品麻豆人妻色哟哟久久| 成年动漫av网址| 99国产精品免费福利视频| 欧美激情高清一区二区三区 | 日日啪夜夜爽| 高清视频免费观看一区二区| 日本免费在线观看一区| 国产精品国产三级专区第一集| av又黄又爽大尺度在线免费看| 日韩成人av中文字幕在线观看| 波多野结衣av一区二区av| 免费少妇av软件| 亚洲,欧美,日韩| 日本-黄色视频高清免费观看| 青草久久国产| 国产成人免费观看mmmm| 午夜免费鲁丝| 美女国产高潮福利片在线看| 久久久久久人人人人人| 日韩一区二区视频免费看| 成人免费观看视频高清| 亚洲精品视频女| 成人国语在线视频| 欧美精品av麻豆av| 丝袜美足系列| 亚洲三区欧美一区| 国产av一区二区精品久久| 欧美精品一区二区大全| 亚洲av男天堂| 亚洲国产欧美网| 女性被躁到高潮视频| 亚洲伊人久久精品综合| 黄片播放在线免费| 三级国产精品片| 精品人妻在线不人妻| 久久久精品免费免费高清| 看十八女毛片水多多多| 18+在线观看网站| 叶爱在线成人免费视频播放| 超色免费av| 美女高潮到喷水免费观看| 制服诱惑二区| 中文字幕人妻丝袜一区二区 | 日韩欧美精品免费久久| 亚洲国产av新网站| 精品第一国产精品| 色婷婷久久久亚洲欧美| 韩国高清视频一区二区三区| 国产精品香港三级国产av潘金莲 | 好男人视频免费观看在线| 国产精品国产三级国产专区5o| 国产精品麻豆人妻色哟哟久久| 久久久久国产网址| 18在线观看网站| 熟女少妇亚洲综合色aaa.| 春色校园在线视频观看| 国产精品久久久久久精品古装| 午夜影院在线不卡| 亚洲国产日韩一区二区| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲av一区麻豆 | 天堂8中文在线网| 99久国产av精品国产电影| 三上悠亚av全集在线观看| kizo精华| 欧美精品一区二区大全| 成年女人毛片免费观看观看9 | 热99国产精品久久久久久7| 久久人人97超碰香蕉20202| 日韩,欧美,国产一区二区三区| 纵有疾风起免费观看全集完整版| 国产精品亚洲av一区麻豆 | 一区二区三区乱码不卡18| 婷婷色av中文字幕| 国产野战对白在线观看| 久久鲁丝午夜福利片| 波多野结衣一区麻豆| 亚洲av电影在线观看一区二区三区| 欧美bdsm另类| 免费高清在线观看日韩| 最黄视频免费看| 中国国产av一级| 国产精品久久久久成人av| 亚洲av综合色区一区| 久热这里只有精品99| 美女脱内裤让男人舔精品视频| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品古装| 精品一品国产午夜福利视频| 国产av码专区亚洲av| 亚洲美女视频黄频| 国产成人av激情在线播放| 建设人人有责人人尽责人人享有的| 亚洲精品久久成人aⅴ小说| 亚洲第一区二区三区不卡| 日韩不卡一区二区三区视频在线| 成人18禁高潮啪啪吃奶动态图| 国产片特级美女逼逼视频| 日韩精品免费视频一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲美女视频黄频| 久久精品久久精品一区二区三区| 日韩一区二区三区影片| 日韩欧美一区视频在线观看| 永久免费av网站大全| 在线观看三级黄色| av不卡在线播放| 黑人巨大精品欧美一区二区蜜桃| 成年人免费黄色播放视频| 亚洲精品,欧美精品| 成人漫画全彩无遮挡| 免费人妻精品一区二区三区视频| 只有这里有精品99| 精品第一国产精品| 国产亚洲一区二区精品| 亚洲精华国产精华液的使用体验| 精品福利永久在线观看| 亚洲av.av天堂| 日韩免费高清中文字幕av| 老熟女久久久| 看十八女毛片水多多多| 一级,二级,三级黄色视频| 大片电影免费在线观看免费| 欧美人与性动交α欧美软件| 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 国产伦理片在线播放av一区| 久久久亚洲精品成人影院| 超色免费av| 9色porny在线观看| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 麻豆av在线久日| 青春草亚洲视频在线观看| 亚洲成人一二三区av| 亚洲国产日韩一区二区| 制服诱惑二区| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区综合在线观看| 亚洲色图 男人天堂 中文字幕| 啦啦啦在线免费观看视频4| 免费黄网站久久成人精品| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 黄色毛片三级朝国网站| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 亚洲av综合色区一区| 国产毛片在线视频| 视频在线观看一区二区三区| 男女边吃奶边做爰视频| 久久久久精品性色| 国产乱人偷精品视频| 国产精品av久久久久免费| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 搡女人真爽免费视频火全软件| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av不卡免费在线播放| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 国产免费现黄频在线看| 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 日本91视频免费播放| 蜜桃在线观看..| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 久久午夜综合久久蜜桃| 日本91视频免费播放| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 亚洲国产欧美网| 九九爱精品视频在线观看| 国产av精品麻豆| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 青草久久国产| 婷婷色综合www| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| 黄网站色视频无遮挡免费观看| 成人亚洲欧美一区二区av| 成人18禁高潮啪啪吃奶动态图| 中文字幕亚洲精品专区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色婷婷久久久亚洲欧美| 国产精品久久久久久精品古装| 久久精品国产亚洲av涩爱| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 永久免费av网站大全| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区 | 亚洲中文av在线| 日韩一卡2卡3卡4卡2021年| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 国产成人精品福利久久| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| h视频一区二区三区| 最新的欧美精品一区二区| 久久99热这里只频精品6学生| 亚洲av在线观看美女高潮| 永久网站在线| 夫妻午夜视频| 欧美日韩精品网址| 久久亚洲国产成人精品v| 欧美精品一区二区免费开放| 美女福利国产在线| 午夜影院在线不卡| 麻豆av在线久日| 国产1区2区3区精品| av在线app专区| av网站免费在线观看视频| 精品第一国产精品| 飞空精品影院首页| 中文字幕人妻丝袜制服| 国产亚洲午夜精品一区二区久久| 国产精品一二三区在线看| 亚洲中文av在线| 在线观看三级黄色| 亚洲精品在线美女| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 日本wwww免费看| 美女国产高潮福利片在线看| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 香蕉国产在线看| av电影中文网址| 欧美变态另类bdsm刘玥| 只有这里有精品99| 啦啦啦在线免费观看视频4| 丁香六月天网| 中文天堂在线官网| 久久人人爽av亚洲精品天堂| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 亚洲婷婷狠狠爱综合网| 国产精品香港三级国产av潘金莲 | 欧美成人精品欧美一级黄| 免费观看在线日韩| 国产综合精华液| 一级爰片在线观看| 欧美人与性动交α欧美精品济南到 | 日本av手机在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩成人在线一区二区| av国产久精品久网站免费入址| 蜜桃在线观看..| 国产一区二区在线观看av| 9191精品国产免费久久| 热99久久久久精品小说推荐| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 国产片内射在线| 亚洲国产精品国产精品| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| 男女无遮挡免费网站观看| 免费播放大片免费观看视频在线观看| 老司机影院成人| 蜜桃在线观看..| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久久久免| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区激情| 两性夫妻黄色片| 亚洲国产色片| 色网站视频免费| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 国产精品免费大片| av线在线观看网站| 国产 一区精品| 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频| 激情五月婷婷亚洲| 久久精品国产亚洲av天美| 亚洲精品视频女| 又黄又粗又硬又大视频| 国产精品.久久久| 欧美少妇被猛烈插入视频| 国产日韩欧美亚洲二区| 如日韩欧美国产精品一区二区三区| 超碰成人久久| 色94色欧美一区二区| 久久人人爽av亚洲精品天堂| 亚洲三级黄色毛片| 色婷婷av一区二区三区视频| 亚洲av综合色区一区| 制服丝袜香蕉在线| 91精品国产国语对白视频| 久热这里只有精品99| 丝袜人妻中文字幕| 国产 一区精品| 久久亚洲国产成人精品v| 精品久久蜜臀av无| 丝袜脚勾引网站| 亚洲精品美女久久av网站| 国产精品免费大片| 亚洲av在线观看美女高潮| 国产精品 国内视频| 好男人视频免费观看在线| 日韩精品免费视频一区二区三区| 搡女人真爽免费视频火全软件| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 欧美激情 高清一区二区三区| 久久这里只有精品19| 日韩 亚洲 欧美在线| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 激情五月婷婷亚洲| 老熟女久久久| 制服丝袜香蕉在线| 久久久久国产一级毛片高清牌| 高清欧美精品videossex| 亚洲精品一区蜜桃| 亚洲精华国产精华液的使用体验| 伦理电影大哥的女人| 久久99一区二区三区| 日本色播在线视频| 欧美中文综合在线视频| 9191精品国产免费久久| 日本欧美视频一区| 久久99精品国语久久久| 亚洲国产最新在线播放| 精品人妻在线不人妻| 一本—道久久a久久精品蜜桃钙片| 秋霞在线观看毛片| 午夜福利在线免费观看网站| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 国产片内射在线| 欧美97在线视频| 日韩不卡一区二区三区视频在线| 国产精品久久久久久精品电影小说| 国产高清不卡午夜福利| 黄片播放在线免费| 少妇精品久久久久久久| 少妇被粗大猛烈的视频| 久久精品夜色国产| 中文字幕人妻丝袜制服| 91精品伊人久久大香线蕉| 人人妻人人爽人人添夜夜欢视频| 自拍欧美九色日韩亚洲蝌蚪91| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 嫩草影院入口| 亚洲,欧美,日韩| 欧美精品av麻豆av| 欧美在线黄色| 国产成人免费观看mmmm| 三上悠亚av全集在线观看| 丝袜人妻中文字幕| a级毛片黄视频| 人体艺术视频欧美日本| 久久97久久精品| 成人午夜精彩视频在线观看| 精品久久久久久电影网| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 美女高潮到喷水免费观看| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 国产男人的电影天堂91| 在线观看人妻少妇| 国产97色在线日韩免费| 性色av一级| 成人毛片60女人毛片免费| 热99国产精品久久久久久7| 丝袜美腿诱惑在线| 99九九在线精品视频| 久久久久国产网址| 国产成人av激情在线播放| 久久精品aⅴ一区二区三区四区 | 成人影院久久| 午夜福利一区二区在线看| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 黑人巨大精品欧美一区二区蜜桃| 日本色播在线视频| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜爱| av视频免费观看在线观看| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 视频区图区小说| 日韩制服丝袜自拍偷拍| av福利片在线| 人妻系列 视频| 精品人妻偷拍中文字幕| 不卡av一区二区三区| 亚洲成色77777| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 亚洲内射少妇av| 日本欧美视频一区| av又黄又爽大尺度在线免费看| 老女人水多毛片| 亚洲成国产人片在线观看| 精品人妻一区二区三区麻豆| 国产成人91sexporn| 久久人人97超碰香蕉20202| 观看av在线不卡| 999精品在线视频| 91aial.com中文字幕在线观看| 三级国产精品片| 大香蕉久久成人网| 最近2019中文字幕mv第一页| 男女免费视频国产| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 青青草视频在线视频观看| 国产成人一区二区在线| 国产精品女同一区二区软件| 国产毛片在线视频| 久久影院123| 久久亚洲国产成人精品v| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 欧美精品国产亚洲| 亚洲第一av免费看| 一级片'在线观看视频| 男女无遮挡免费网站观看| 国产精品三级大全| 午夜福利乱码中文字幕| 国产亚洲午夜精品一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 一本—道久久a久久精品蜜桃钙片| videos熟女内射| 性少妇av在线| 99久久人妻综合| 五月伊人婷婷丁香| 久久久久久久国产电影| 成人国产麻豆网| 女人高潮潮喷娇喘18禁视频| 菩萨蛮人人尽说江南好唐韦庄| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 亚洲人成网站在线观看播放| 久久影院123| 久久精品国产亚洲av涩爱| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 嫩草影院入口| av.在线天堂| 水蜜桃什么品种好| 亚洲激情五月婷婷啪啪| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 久久久久久久大尺度免费视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美色中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 国产片内射在线| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 黄片小视频在线播放| 久久久久久久精品精品| 九草在线视频观看| 99九九在线精品视频| 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件| 午夜福利视频在线观看免费| 久久久国产一区二区| 久久亚洲国产成人精品v| 91在线精品国自产拍蜜月| 黄色一级大片看看| 欧美日韩国产mv在线观看视频|