楊瑞金,倪雙雙,張文斌,李鵬飛,劉軍軍,謝 斌
(1. 江南大學(xué)食品科學(xué)與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,無錫 214122;2. 江南大學(xué)食品學(xué)院,無錫 214122)
水媒法提取食用油技術(shù)研究進(jìn)展
楊瑞金1,2,倪雙雙2,張文斌1,2,李鵬飛2,劉軍軍2,謝 斌2
(1. 江南大學(xué)食品科學(xué)與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,無錫 214122;2. 江南大學(xué)食品學(xué)院,無錫 214122)
該文提出了水媒法提油技術(shù)的概念。水媒法提油技術(shù)是指以水為主要媒介的提油技術(shù)(水媒法),可輔以或不輔以與水互溶的可食用物質(zhì)(例如乙醇)、食品級(jí)酶、超聲波、微波等處理以破壞油料細(xì)胞壁和/或破乳的食用油提取方法。水媒法的提油過程主要分為分成破碎、提取、破乳和分離四個(gè)階段。水媒法發(fā)展至今60余年,已全面發(fā)展了水代法、水酶法和乙醇水提法等多種制油技術(shù)。目前水媒法的產(chǎn)業(yè)化還存在一些問題,如油料的預(yù)處理、酶的種類與成本等。但是,水媒法綠色健康、符合可持續(xù)發(fā)展要求,隨著工藝設(shè)備、分離技術(shù)等的發(fā)展,該技術(shù)將更加完善,成為未來未來取代傳統(tǒng)工藝的新主流。該文將水媒法研究領(lǐng)域的成果進(jìn)行歸納總結(jié)并為其未來發(fā)展提供理論參考。
提?。还に?;水;水媒法;水代法;水酶法;乙醇水提法
食用油是人類日常飲食中不可或缺的一部分。據(jù)統(tǒng)計(jì)[1],2014年全世界的油脂消耗總量為1.74億t,相當(dāng)于人均消耗24.18 kg/a。而2014年,中國(guó)的食用油消耗量為2 989萬t[2],人均消耗量為21.85 kg/a。
目前,食用油常見的生產(chǎn)方法有壓榨法、溶劑浸出法和預(yù)榨浸出法等。壓榨法是采用物理壓榨方式,經(jīng)過選料、焙炒、物理壓榨等工藝,將油料中的油脂在機(jī)械力的擠壓下滲出的方法[3]。該方法的優(yōu)點(diǎn)是能保留食用油的特色風(fēng)味,且對(duì)環(huán)境污染小。然而最大的缺點(diǎn)[4]就是餅粕殘油率高(5%~7%),且因熱處理時(shí)間長(zhǎng),蛋白質(zhì)變性嚴(yán)重,造成了蛋白資源的嚴(yán)重浪費(fèi)。溶劑浸出法是利用溶劑(通常采用六號(hào)輕汽油或正己烷)與油脂相似相溶原理,將油料在高溫下充分浸泡,溶出油脂,再經(jīng)過“五脫”工藝(即脫膠、脫酸、脫色、脫水、脫臭)得到成品油的方法[3]。溶劑浸出法的優(yōu)點(diǎn)是出油率高(>96%),這是其他方法無法比擬的。但缺點(diǎn)是毛油質(zhì)量差[5],后續(xù)需要繁瑣的精煉處理,而過度的精煉會(huì)導(dǎo)致有害物質(zhì)如反式脂肪酸和多環(huán)芳烴等的產(chǎn)生;且浸提和脫溶時(shí)難免造成溶劑溢出,對(duì)人體和環(huán)境都會(huì)造成危害。目前,正己烷已被美國(guó)環(huán)境保護(hù)署列為危險(xiǎn)性空氣污染物[6]。預(yù)榨浸出法是指油料經(jīng)蒸炒壓榨后,用榨油機(jī)先榨出一部分(約70%左右)油脂,然后再用溶劑浸出榨餅中剩余部分油脂的一種工藝[7]。該方法兼具壓榨、溶劑法的雙重優(yōu)勢(shì),更有經(jīng)濟(jì)競(jìng)爭(zhēng)力,但是依然無法規(guī)避溶劑可能帶來的安全隱患。
隨著人們對(duì)資源充分利用、綠色加工和食品質(zhì)量安全要求的不斷提高,發(fā)展環(huán)保、健康、高效的新型食用油提取技術(shù)非常必要,為此從20世紀(jì)50年代起不斷有新的食用油提取與加工新技術(shù)的探索研究,不斷有水代法、水酶法、新型溶劑(丙酮[8]、無水乙醇[9]、異丙醇[10]等)制油等技術(shù)的研究報(bào)道。為了區(qū)別以水為主要提取媒介的制油技術(shù)與其他新技術(shù)的不同,更為了歸納該技術(shù)的特點(diǎn)、工藝過程、發(fā)展歷程、存在問題及發(fā)展前景,該文首次提出“水媒法”概念,試圖從歸類開始理清易混淆的“水酶法”、“水代法”和新型水溶液法等概念框架,以期為水媒法研究領(lǐng)域提供一個(gè)系統(tǒng)性的總結(jié)并為其未來發(fā)展提供理論參考。
水媒法的概念是基于對(duì)近半個(gè)多世紀(jì)發(fā)展的除壓榨法和浸出法之外的提油技術(shù)的分析和歸類而提出的。所謂水媒法,是指以水為主要媒介的提油技術(shù),可輔以或不輔以與水互溶的可食用物質(zhì)(例如乙醇)、食品級(jí)酶、超聲波、微波等處理以破壞油料細(xì)胞壁和/或破乳的食用油提取技術(shù)。水媒法包括水代法、水酶法和乙醇水提法等,但不包括丙酮、異丙醇等新型溶劑提油技術(shù)。水媒法提油的主要工藝流程如圖1。
圖1 水媒法提油技術(shù)的一般工藝流程Fig 1 General process of vegetable oil extraction technology by water medium method
水媒法提油過程主要分成破碎、提取、破乳和分離4個(gè)階段。但是,根據(jù)不同油料和不同加工要求,有些原料建議進(jìn)行脫殼或脫皮處理,例如油茶籽需要脫殼,花生和核桃最好進(jìn)行脫皮處理等。油料破碎方法及設(shè)備、提取介質(zhì)及條件、破乳方法等是水媒法的研究重點(diǎn)。水媒法以純水為主要提取介質(zhì),且工藝路線簡(jiǎn)單,條件溫和,提取的毛油質(zhì)量比較高,理化指標(biāo)接近甚至部分達(dá)到壓榨一級(jí)成品油的標(biāo)準(zhǔn),故一般只需要進(jìn)行溫和精煉即可[11]。溫和精煉是指借鑒傳統(tǒng)的“五脫”工藝,在此基礎(chǔ)上根據(jù)水媒法毛油的品質(zhì),省略了脫膠、高溫脫臭等不必要的步驟,只采用溫和的條件(淡堿脫酸、低溫真空脫水)對(duì)其進(jìn)行適度地脫酸、脫水處理[11]。油料中的水溶性物質(zhì),例如蛋白質(zhì)(花生、葵花籽、核桃、大豆等)、茶皂素(油茶籽)和碳水化合物等保留在水相中,花生、葵花籽、核桃、大豆等提油后的水相可通過膜分離、濃縮、干燥等技術(shù)制成低脂蛋白粉,油茶籽提油的水相可提取天然表面活性劑茶皂素。花生、葵花籽、大豆等提油后渣相可直接干燥成富含纖維和蛋白質(zhì)的食品配料。
從定義和范疇可知,水媒法屬于綠色健康的食用油提取技術(shù)。水媒法的重要技術(shù)特點(diǎn)是:提取介質(zhì)為純水或可食用物質(zhì)溶液;輔以的食品級(jí)酶、超聲波、微波等都是符合食品加工要求的助劑或加工手段;生產(chǎn)過程條件溫和、環(huán)保;在確保食用油質(zhì)量安全的前提下,能同時(shí)提取食用油脂和蛋白(花生、大豆、玉米胚芽)、茶皂素(油茶籽)等高附加值產(chǎn)品,提高油料資源利用率。
水媒法發(fā)展至今,先后經(jīng)歷了水代法、水酶法、乙醇水提法等幾個(gè)主流技術(shù)階段,逐步發(fā)展成了現(xiàn)在較為成熟的水媒法技術(shù)。
2.1 水代法
水代法,也稱為水劑法[12-13],是一種僅使用水作為提取介質(zhì)的綠色提油方法。該法利用油料中非油成分(蛋白質(zhì)和碳水化合物)對(duì)油和水“親和力”的差異,同時(shí)利用油水密度不同而將油脂與蛋白質(zhì)分離出來[14]。該法可同時(shí)提取油料中的油脂和蛋白質(zhì)。
水代法是水媒法發(fā)展的第一階段。1956年,美國(guó)人Sugarman首先提出了將花生研磨后用水和堿提取其中的油和蛋白質(zhì)[15]。1972年,Khee Choon Rhee[16]又進(jìn)一步完善了此方法。水代法能夠同時(shí)提取油料中的油脂和蛋白質(zhì),得到的油清亮,后續(xù)精煉工藝少。尤其得到的蛋白質(zhì)沒有經(jīng)過水解,變性程度低,品質(zhì)優(yōu)良。水代法工藝簡(jiǎn)單,產(chǎn)品品質(zhì)好,但是油脂得率較低。目前水代法的研究多側(cè)重于增加物理、化學(xué)輔助手段,以提高清油得率。肖龍艷等[17]研究了超聲輔助水劑法提取茶葉籽油的工藝過程,并對(duì)原料粉碎度、兌漿水pH值、料液比、浸提溫度、浸提時(shí)間和超聲時(shí)間進(jìn)行了優(yōu)化,在最優(yōu)工藝條件下,獲得70.79%的提油率和56.13%的副產(chǎn)物淀粉提取率。李清華等[18]為了改善水劑法提取的油乳化嚴(yán)重、提油率低的現(xiàn)象,研究了鹽效應(yīng)輔助水劑法提取南瓜籽油的工藝,并對(duì)所提油脂的理化特性進(jìn)行了研究。研究選取了影響清油得率的碳酸鈉濃度、料液比、提取時(shí)間和攪拌溫度進(jìn)行優(yōu)化,通過響應(yīng)面分析法確定了最佳工藝,即溫度80℃、碳酸鈉濃度1.8 mol/L、料液比6.8∶1 mL/g、提取時(shí)間120 min,最終南瓜籽提油率為70.6%,油品的酸價(jià)和過氧化值等指標(biāo)均符合國(guó)家食用油質(zhì)量標(biāo)準(zhǔn),表明鹽效應(yīng)輔助水劑法的現(xiàn)實(shí)意義。
2.2 水酶法
水酶法是水媒法技術(shù)有所突破的第二階段。水酶法的原理是在機(jī)械破碎的基礎(chǔ)上,對(duì)油料組織以及脂質(zhì)復(fù)合體進(jìn)行酶解處理。纖維素酶、半纖維素酶、果膠酶等能破壞細(xì)胞壁,而蛋白酶則滲透到脂質(zhì)體膜內(nèi),對(duì)脂多糖、脂蛋白進(jìn)行降解,這有利于油脂從脂質(zhì)體中釋放,提高出油率[19]。
1983年,美國(guó)人Fullbook使用酶從西瓜籽中制取可溶性水解蛋白時(shí)發(fā)現(xiàn),隨著水解的進(jìn)行,部分油被釋放出來。隨后他用酶對(duì)菜籽與大豆進(jìn)行試驗(yàn),取得了同樣的效果,即同時(shí)提取了油料中的油與蛋白質(zhì)。1986年,McGlone和Canales第一次在椰子油提取工藝中使用了果膠酶、α-淀粉酶和蛋白酶來降低提取過程中反應(yīng)體系的黏度,酶的添加顯著地增加了油的提取率。至20世紀(jì)90年代,水酶法得到了全面的發(fā)展,主要體現(xiàn)在相關(guān)文獻(xiàn)的驟然增多,內(nèi)容主要集中在酶的篩選和工藝優(yōu)化上。發(fā)展迄今,水酶法研究已涉及多種油料(見表1[20]),如米糠、玉米胚芽、花生、油菜籽、大豆和葵花籽等。
從表1可以看出,在各種油料中,添加酶的試驗(yàn)組提取率均顯著高于未加酶的對(duì)照組,提取率的提高幅度一般在20%~50%之間,表明水酶法的有效性、普適性和可操作性。花生的水酶法研究是各種油料作物中最典型的代表,因?yàn)槠溆椭偷鞍缀扛?,從資源綜合利用的角度講,同時(shí)提取油脂和蛋白更加有必要。為了更好地同時(shí)提取油和蛋白,李鵬飛等[40]研究了花生的粉碎方式和烘烤工藝,發(fā)現(xiàn)在150℃烘烤花生20 min,輥式研磨2次后,采用水代法提取和酶制劑破乳,清油得率為92.2%,蛋白得率為79.6%,相較于此前章紹兵等[32]的研究,降低了烘烤溫度、減少了酶制劑的用量、縮短了提取時(shí)間,油脂得率顯著提高而蛋白得率持平??ㄗ延蚚37]、玉米胚芽油[41]和米糠油[24]的水酶法研究近年來比較熱門,研究?jī)?nèi)容著重于工藝過程的優(yōu)化和酶制劑的篩選和復(fù)配。油茶籽的水酶法提油發(fā)展較快,雖然起步晚,但是目前已經(jīng)有油脂加工企業(yè)采用水酶法進(jìn)行提油[42],生產(chǎn)出了高品質(zhì)的植物油,這一進(jìn)程為水酶法提油的工業(yè)化打下了良好的基礎(chǔ)。此外,過去普遍認(rèn)為水酶法更適合高含油油料的油脂提取。近年來,科學(xué)家把目光投入到利用水酶法提取低含油作物的植物油,通過改善預(yù)處理工藝和對(duì)酶解后破乳的研究,打破了以前水酶法只適合高油料作物提取油的限制,并進(jìn)行了擴(kuò)大規(guī)模試驗(yàn)。江連洲研究團(tuán)隊(duì)研究了大豆的水酶法工藝[43]并進(jìn)行了中試放大試驗(yàn)[44]。工藝研究指出經(jīng)過擠壓膨化預(yù)處理,在最佳酶解條件下(加酶量1.85%,酶解溫度50℃,酶解時(shí)間3.6 h,料水比1∶6 g/mL,酶解pH值9.26),大豆水酶法提取的總油提取率可達(dá)93.18%,總蛋白提取率可達(dá)93.46%,證明了在低含油作物中水酶法同樣適用。
表1 水酶法在各種油料中的研究進(jìn)展Table 1 Research progress in various oil-bearing materials by aqueous enzymatic method
2.3 乙醇水提法
乙醇水提法是水媒法發(fā)展的最新階段。乙醇水提法是以食用酒精配制的乙醇水溶液為提取介質(zhì)的食用油提取方法。該方法的原理是乙醇的表面張力小于水的表面張力,乙醇的加入可以使得油水乳化體系失去穩(wěn)定,有利于破乳或減少乳狀液的形成,提高清油得率。遲延娜等[45]研究了超聲輔助、冷凍解凍、熱、極端pH值、乙醇輔助等方法處理花生頑固乳狀液。結(jié)果顯示,冷凍解凍和乙醇輔助處理可有效地使頑固乳狀液中的油滴聚集。在乙醇體積分?jǐn)?shù)為50%的條件下,乙醇輔助處理可使頑固乳狀液的破除率達(dá)90%以上,從而使全工藝流程總游離油提取率從原來的88%提高到93%,大大推進(jìn)了水媒法提取植物油的技術(shù)發(fā)展。李強(qiáng)等[46]研究了在提取過程中采用乙醇進(jìn)行破乳的方法,考察了乙醇對(duì)水代法和水酶法清油得率、過氧化值、酸值、茶皂素提取的影響。結(jié)果表明: 乙醇有很強(qiáng)的破乳能力,在其他提取條件相同的情況下,能大大減少乳狀液的生成量;采用體積分?jǐn)?shù)為15%的乙醇溶液輔助提取,可使水代法、水酶法清油得率從84.23%和86.11%提高到90.33%和92.47%。乙醇不會(huì)對(duì)油茶籽油的過氧化值、酸值造成顯著影響。因此乙醇水提法可行,操作安全,具備工業(yè)化應(yīng)用潛力。目前本文作者及團(tuán)隊(duì)已經(jīng)完成了乙醇水提法提取油茶籽油的小試和中試,并在江西建立了國(guó)內(nèi)第一條乙醇水提法生產(chǎn)茶油的生產(chǎn)線。該生產(chǎn)線日處理油茶籽2 t(從分級(jí)開始計(jì)),日產(chǎn)高檔油茶籽油500~600 kg,得率可達(dá)到89%~91%,產(chǎn)品達(dá)到國(guó)家一級(jí)壓榨茶油指標(biāo),這一進(jìn)程為乙醇水提法的工業(yè)化建立了良好的開端。
水媒法發(fā)展至今,在油料破碎、提取介質(zhì)、酶及超聲、微波等輔助手段應(yīng)用、乳狀液破除、油與乳狀液分離等的理論、技術(shù)和裝備均有了很大突破,清油得率逐步提高,多種油料作物的提油率達(dá)到90%以上,有的甚至達(dá)到94%以上,特別是油茶籽的水酶法提油和乙醇水提法提油實(shí)現(xiàn)產(chǎn)業(yè)化。然而,水媒法的工業(yè)化、產(chǎn)業(yè)化發(fā)展仍然存在一些亟待解決的問題。
1)油料的預(yù)處理。無論是水代法、水酶法還是乙醇水提法提油,均要求將油料粉碎至細(xì)胞大小水平,而目前油料加工廠使用的破碎機(jī)械主要是齒輥破碎機(jī)、圓盤(破碎)剝殼機(jī)、錘片式粉碎機(jī)等[47]。這些粉碎設(shè)備在小試甚至中試規(guī)模下可用,但在產(chǎn)業(yè)化規(guī)模下無法做到粉碎粒度均勻,不能滿足水媒法提油對(duì)油料粉碎的要求,必須發(fā)展適合油料粉碎、研磨的高效且可大規(guī)模工業(yè)化加工要求的粉碎設(shè)備。
2)商業(yè)酶的種類和成本。水酶法的提取和破乳都需要用酶。酶成本的高低直接關(guān)系水酶法提油技術(shù)產(chǎn)業(yè)化的發(fā)展前景。目前沒有水酶法提油的專用酶,采用的是商品纖維素酶、半纖維素酶、果膠酶、蛋白酶、α-淀粉酶等[48]。這些酶對(duì)于不同油料的效果不同。大多數(shù)油料采用幾種酶混合使用時(shí)比單一酶使用效果好。酶的選擇和復(fù)配仍然是水酶法技術(shù)發(fā)展的重要研究?jī)?nèi)容。目前一般水酶法提油的酶用量為1%~2%左右,酶的用量和成本還比較高,限制了水酶法提油的發(fā)展。研究開發(fā)專用酶,減少酶用量,最終降低酶成本是水酶法提油技術(shù)產(chǎn)業(yè)化必須解決的重大問題。
3)三相連續(xù)分離技術(shù)。三相分離在水媒法的工藝過程中十分重要。油料提取過程中油、水、渣等多相難以高效分離的問題一直制約著該工藝進(jìn)一步產(chǎn)業(yè)化發(fā)展。目前水媒法的三相分離大多采用小型沉降式離心機(jī)進(jìn)行多次分離,效率低,且根本無法連續(xù)進(jìn)行。開發(fā)能夠進(jìn)行三相高效連續(xù)分離,且不會(huì)嚴(yán)重乳化清油的分離技術(shù),才能真正推進(jìn)水媒法的大規(guī)模產(chǎn)業(yè)化發(fā)展。
4)油料副產(chǎn)物的提取與利用。水媒法的一個(gè)突出優(yōu)點(diǎn)就是資源利用率高,除了可以提取油脂外,蛋白質(zhì)、碳水化合物、茶皂素等也可以高效回收。從水媒法的水相和渣相中快速、高效分離提取出這些成分,并實(shí)現(xiàn)其作為食品配料進(jìn)行高附加值利用,仍然是急需解決的技術(shù)問題和商業(yè)化應(yīng)用問題。
針對(duì)目前食用油因加工方法會(huì)對(duì)食用油的質(zhì)量帶來安全隱患[49],傳統(tǒng)壓榨法、溶劑法也在不斷改進(jìn),朝著油脂安全的大方向發(fā)展。水媒法的提取介質(zhì)為純凈水和乙醇等可食用物質(zhì)的溶液,提取條件溫和,對(duì)食用油產(chǎn)品質(zhì)量安全更有保障。隨著人們對(duì)包括食用油的質(zhì)量和安全要求的不斷提高,水媒法食用油的市場(chǎng)將很快形成并迅速發(fā)展,推動(dòng)水媒法的產(chǎn)業(yè)化發(fā)展。
同時(shí),中國(guó)蛋白質(zhì)資源匱乏,自給量不足50%。目前的制油方法容易造成蛋白質(zhì)嚴(yán)重變性,蛋白質(zhì)難以高效利用,造成巨大浪費(fèi)[50]。水媒法在提取油脂的過程中能保持大部分蛋白質(zhì)的功能性質(zhì),回收后可以應(yīng)用于食品制造中,使得蛋白質(zhì)利用率和附加值大大提高,對(duì)提高企業(yè)綜合經(jīng)濟(jì)效益和緩解中國(guó)蛋白質(zhì)資源緊缺的局面大有裨益。另外,水媒法提油過程溫和、無有毒有害物質(zhì)排出,無污染,符合綠色可持續(xù)發(fā)展的要求。
油茶籽水酶法和乙醇水提法提油技術(shù)已經(jīng)產(chǎn)業(yè)化,花生水酶法技術(shù)產(chǎn)業(yè)化也在進(jìn)行中,水媒法提油技術(shù)已經(jīng)在食用油加工行業(yè)中嶄露頭角。
隨著人類生活水平的提高,人們對(duì)食用油脂的安全性越來越重視,也對(duì)油脂加工技術(shù)提出了更高的要求。經(jīng)過國(guó)內(nèi)外學(xué)者多年的研究,水媒法技術(shù)已逐漸成熟,逐步發(fā)展出了水代法、水酶法、乙醇水提法以及各種組合形式的提油新技術(shù)。水媒法技術(shù)溫和安全、高效環(huán)保,隨著工藝設(shè)備、分離技術(shù)等的發(fā)展,水媒法技術(shù)將更加完善,成為未來取代傳統(tǒng)工藝的新主流。
[1] USDA. Oilseeds: World Markets and Trade[R]. Washington DC: United State Department of Agriculture. 2015.
[2] 車進(jìn),張宏顧,善松. 2014年中國(guó)食用油產(chǎn)業(yè)報(bào)告[N]. 糧油市場(chǎng)報(bào),2014-10-16.
[3] 匿名. 壓榨油是否真的優(yōu)于浸出油[J]. 大眾科技,2007(1):190.
[4] 李楊,江連洲,楊柳,等. 水酶法制取植物油的國(guó)內(nèi)外發(fā)展動(dòng)態(tài)[J]. 食品工業(yè)科技,2009,30(6):383-387. Li Yang, Jiang Lianzhou, Yang Liu, et al. Current status and development tendency of aqueous enzymatic plant oil extraction in home and abroad[J]. Science and Technology of Food Industry, 2009, 30(6): 383-387. (in Chinese with English abstract)
[5] 馮華. 壓榨制油與浸出制油[J]. 黑龍江糧食,2006(4):29-30.
[6] Kadioglu S I, Phan T T, Sabatini D A. Surfactant-based oil extraction of corn germ[J]. Journal of the American oil Chemists Society, 2011, 88(6): 863-869.
[7] 劉玉蘭,鄭來寧. 玉米胚預(yù)榨毛油和浸出毛油品質(zhì)及綜合脫色效果的研究[J]. 糧食與食品工業(yè),2014,21(6):6-10, 13. Liu Yulan, Zheng Laining. The comparison of the quality and comprehensive decolorization effect of crude corn germ oil obtained respectively by pre-pressing and leaching process[J]. Cereal & Food Industry, 2014, 21(6): 6-10, 13. (in Chinese with English abstract)
[8] 張雪松,朱媛. 丙酮溶劑提取辣椒油樹脂工藝的研究[J].農(nóng)產(chǎn)品加工:學(xué)刊,2007,10(10):45-46, 49. Zhang Xuesong, Zhu Yuan. Study on Extracting Oleoresin from Capsicum by Acetone[J]. Academic Periodical of Farm Products Processing, 2007, 10(10): 45-46, 49. (in Chinese with English abstract)
[9] Kwiatkowski J R, Cheryan M. Extraction of oil from ground corn using ethanol[J]. Journal of the American oil Chemists Society, 2002, 79(8): 825-830.
[10] 王秀菊,王麗娟. 異丙醇提取大豆油脂的研究[J]. 糧油加工,2008(6):48-50.
[11] 倪雙雙,楊瑞金,張文斌,等. 乙醇水溶液提取玉米胚芽油的工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):283-289. Ni Shuangshuang, Yang Ruijin, Zhang Wenbin, et al. Process optimization for extraction of corn germ oil by aqueous ethanol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 283-289. (in Chinese with English abstract)
[12] 郭耀東,游新勇,呂俊麗,等. 水劑法提取胡麻籽油的工藝研究[J]. 中國(guó)油脂,2014,39(8):22-25. Guo Yaodong, You Xinyong, Lv Junli, et al. Aqueous extraction of linseed oil[J]. China Oils and Fats, 2014, 39(8): 22-25. (in Chinese with English abstract)
[13] 胡娟,萬楚筠,鈕琰星. 水劑法提取雙低菜籽脫皮冷榨餅中油脂和蛋白質(zhì)的研究[J]. 中國(guó)油脂,2014,39(8):18-22. Hu Juan, Wan Chuyun, Niu Yanxin, et al. (Aqueous extraction of oil and protein from cold-pressed dehulled double-low rapeseed cake[J]. China Oils and Fats, 2014, 39(8): 18-22. (in Chinese with English abstract)
[14] 趙翔,陸啟玉,章紹兵. 水劑法同時(shí)提取花生油和蛋白質(zhì)的工藝研究[J]. 農(nóng)業(yè)機(jī)械,2012,4(12):35-38.
[15] Nathan Sugarman. Process for simultaneously extracting oil and protein from oleaginous materials[P]. United States: US19500187473, 1956- 09-29.
[16] Rhee K C, Cater C M, Mattil K F. Simultaneous recovery of protein and oil from raw peanuts in an aqueous system[J]. Journal of Food Science, 1972, 37(1): 90-93.
[17] 肖龍艷,齊玉堂,張維農(nóng),等. 超聲波輔助水劑法提取茶葉籽油工藝的研究[J]. 中國(guó)油脂,2011,36(7):5-8. Xiao Longyan, Qi Yutang, Zhang Weinong, et al. Ultrasonicassisted aqueous extraction of oil from tea seed[J]. China Oils and Fats, 2011, 36(7): 5-8. (in Chinese with English abstract)
[18] 李清華,夏仙亦,于修燭,等. 鹽效應(yīng)輔助水劑法提取南瓜籽油及其理化特性研究[J]. 食品工業(yè)科技,2012,33(24):286-289. Li Qinghua, Xia Xianyi, Yu Xiuzhu, et al. Aqueous extraction of pumpkin seed oil by salt effect and its pH ysicochemical properties[J]. Science and Technology of Food Industry, 2012, 33(24): 286-289. (in Chinese with English abstract)
[19] 梁鉆好,杜冰,謝藍(lán)華,等. 水酶法提取美藤果粕油脂的工藝研究[J]. 食品科技,2015,40(1):199-202, 208. Liang Zuanhao, Du Bing, Xie Lanhua, et al. Oil extracting process of dregs of Sacha inchi by aqueous enzymatic method[J]. Food Science and Technology, 2015, 40(1): 199-202, 208. (in Chinese with English abstract)
[20] Zhang Wenbin, Li Pengfei, Yang Ruijin. Enzymes in Oil and Lipid-Based Industries[M]. in Enzymes in Food and Beverage Processing. Florida: CRC Press, 2015: 227-253.
[21] Sengupta R, Bhattacharyya D K. Enzymatic extraction of mustard seed and rice bran[J]. Journal of the American Oil Chemists Society, 1996, 73(6): 687-692.
[22] Hanmoungjai P, Pyle D L, Niranjan K. Enzymatic process for extracting oil and protein from rice bran[J]. Journal of the American Oil Chemists Society, 2001, 78(8): 817-821.
[23] Hanmoungjai P, Pyle D L, Niranjan K. Enzyme-assisted water-extraction of oil and protein from rice bran[J]. Journal of Chemical Technology and Biotechnology, 2002, 77(7): 771-776.
[24] 楊慧萍,王素雅,宋偉,等. 水酶法提取米糠油的研究[J].食品科學(xué),2004,25(8):106-109. Yang Huiping, Wang Suya, Song Wei, et al. Study on extracting rice bran oil from rice bran by aqueous enzymatic method[J]. Food Science, 2004, 25(8): 106-109. (in Chinese with English abstract)
[25] 劉春雷,李丹,王騰宇,等. 響應(yīng)面優(yōu)化水酶法提取米糠油工藝的研究[J]. 食品工業(yè),2011(12):46-49. Liu Chunlei, Li Dan, Wang Tengyu, et al. Aqueous enzymatic extraction of response surface optimization process of rice bran oil[J]. The Food Industry, 2011(12): 46-49. (in Chinese with English abstract)
[26] Robert A Moreau, David B Johnston, Michael J Powell, et al. A comparison of commercial enzymes for the aqueous enzymatic extraction of corn oil from corn germ[J]. Journal of the American Oil Chemists' Society, 2004, 81(11): 1071-1075.
[27] Leland C Dickey, Michael J Kurantz, Nicholas Parris, et al. Foam separation of oil from enzymatically treated wet-milled corn germ dispersions[J]. Journal of the American Oil Chemists Society, 2009, 86(9): 927-932.
[28] 錢志娟,王璋,許時(shí)嬰,等. 玉米胚芽水酶法提油及蛋白質(zhì)的回收[J]. 無錫輕工大學(xué)學(xué)報(bào),2004,23(5):58-62. Qian Zhijuan, Wang Zhang, Xu Shiying, et al. Aqueous enzymatic extraction of corn germ oil and recovering protein[J]. Journal of Wuxi University of Light Industry, 2004, 23(5): 58-62. (in Chinese with English abstract)
[29] 趙瑋,王大為,李倩. 水酶法提取玉米胚芽油工藝優(yōu)化[J].食品科學(xué),2010,31(24):206-209. Zhao Wei, Wang Dawei, Li Qian. Optimal extraction processing of corn germ oil through water-enzymolysis method[J]. Food Science, 2010, 31(24): 206-209. (in Chinese with English abstract)
[30] Sharma A, Khare S K, Gupta M N. Enzyme-assisted aqueous extraction of peanut oil[J]. Journal of the American Oil Chemists Society, 2002, 79(3): 215-218.
[31] Wang Yingyao, Wang Zhang, Cheng Shangwei, et al. Aqueous enzymatic extraction of oil and protein hydrolysates from peanut[J] Food Science and Technology Research, 2008, 14(6): 533-540.
[32] Zhang Shao Bing, Lu Qi Yu, Yang Hongshun, et al. Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds[J] Journal of the American Oil Chemists Society, 2011, 88(5): 727-732.
[33] Lamsal B P, Murphy P A, Johnson L A. Flaking and extrusion as mechanical treatments for enzyme-assisted aqueous extraction of oil from soybeans[J]. Journal of the American oil Chemists Society, 2006, 83(11): 973-979.
[34] Moura de, Campbell K, Mahfuz A, et al. Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification[J]. Journal of the American oil Chemists Society, 2008, 85(10): 985-995.
[35] 李楊,江連洲,張兆國(guó),等. 擠壓膨化后纖維降解對(duì)大豆水酶法提油率的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(2):157-163. Li Yang, Jiang Lianzhou, Zhang Zhaoguo, et al. Effect of cellulose degradation on soybean oil extraction yield through extrusion and expansion processing[J] Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 157-163. (in Chinese with English abstract)
[36] Latif S, Diosady L L, Anwar F. Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds[J]. European Journal of Lipid Science and Technology, 2008, 110(10): 887-892.
[37] 冷玉嫻,許時(shí)嬰,王璋,等. 水酶法提取葵花籽油的工藝[J].食品與發(fā)酵工業(yè),2006,32(10):127-131. Leng Yuxian, Xu Shiying, Wang Zhang, et al. Aqueous enzymatic extraction of sunflower seeds oil[J]. Food and Fermentation Industries, 2006, 32(10): 127-131. (in Chinese with English abstract)
[38] 任健. 葵花籽水酶法取油及蛋白質(zhì)利用研究[D]. 無錫:江南大學(xué),2008. Ren Jian. Study on Aqueous Enzymatic Extraction of Oil and the Utilization of Protein from Sunflower Seed[D]. Wuxi Jiangnan University, 2008. (in Chinese with English abstract)
[39] Latif S, Anwar F. Effect of aqueous enzymatic processes on sunflower oil quality[J]. Journal of the American oil Chemists Society, 2009, 86(4): 393-400.
[40] Li Pengfei, Gasmalla Mohammed Abdalbasit A, Zhang Wenbin, et al. Effects of roasting temperatures and grinding type on the yields of oil and protein obtained by aqueous extraction processing[J]. Journal of Food Engineering, 2016, 173: 15-24.
[41] 錢志娟. 玉米胚芽水酶法提油及蛋白質(zhì)的回收[D]. 無錫:江南大學(xué),2005. Qian Zhijuan. Aqueous Enzymatic Extraction of Corn Germ Oil and Reclaiming Protein[D]. Wuxi Jiangnan University, 2005. (in Chinese with English abstract)
[42] 全球首條水酶法茶籽油生產(chǎn)線在湘潭投產(chǎn)[N]. 茶世界,2013(1):23.
[43] 李楊,江連洲,魏東旭,等. 水酶法制取大豆油和蛋白關(guān)鍵技術(shù)及機(jī)理研究[C]// 中國(guó)食品科學(xué)技術(shù)學(xué)會(huì)第七屆年會(huì). 北京, 2010. Li Yang, Jiang Lianzhou, Wei Dongxu, et al. Key technology and mechanism study of soybean oil and protein extracted by enzyme assistant aqueous[C]// The 7th CIFST, Beijing, 2010. (in Chinese with English abstract)
[44] 韓宗元,李曉靜,江連洲,等. 水酶法提取大豆油脂的中試研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):283-289. Han Zongyuan, Li Xiaojing, Jiang Lianzhou, et al. Pilot-plant test of soybean oil from enzyme-assisted aqueous extraction processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 283-289. (in Chinese with English abstract)
[45] 遲延娜,張文斌,楊瑞金,等. 頑固乳狀液的破乳處理提高花生游離油提取率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):257-264. Chi Yanna, Zhang Wenbin, Yang Ruijin, et al. Destabilization of stubborn emulsion formed during aqueous extraction improving extraction rate of total free oil from peanut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 257-264. (in Chinese with English abstract)
[46] 李強(qiáng),楊瑞金,張文斌,等. 乙醇對(duì)油茶籽油水相提取的影響[J]. 中國(guó)油脂,2012,37(3):6-9. Li Qiang, Yang Ruijin, Zhang Wenbin, et al. Influence of ethanol on aqueous extraction of oil-tea camellia seed oil[J]. China Oils and Fats, 2012, 37(3): 6-9. (in Chinese with English abstract)
[47] 馬傳國(guó). 油料預(yù)處理加工機(jī)械設(shè)備的現(xiàn)狀與發(fā)展趨勢(shì)[J].中國(guó)油脂,2005,30(4):5-11. Ma Chuanguo. Current situation and development tendency of oilseed pretreatment equipment[J]. China Oils and Fats, 2005, 30(4): 5-11. (in Chinese with English abstract)
[48] 魯曾,董海洲,潘燕. 酶法提油技術(shù)研究進(jìn)展[J]. 糧食與油脂,2006(6):37-39. Lu Zeng, Dong Haizhou, Pan Yan. Research progress of oil extraction by enzymatic processing[J]. Cereals & Oils, 2006(6): 37-39. (in Chinese with English abstract)
[49] 趙國(guó)志. 油脂及相關(guān)食品的安全性問題與對(duì)策[J]. 中國(guó)油脂,2007,32(12):60-64.
[50] 車麗濤,周安國(guó). 解決我國(guó)蛋白質(zhì)資源缺乏的途徑[J]. 飼料工業(yè),2006,27(9):56-59.
Summarization on vegetable oil extraction technology by aqueous medium method
Yang Ruijin1,2, Ni Shuangshuang2, Zhang Wenbin1,2, Li Pengfei2, Liu Junjun2, Xie Bin2
(1. State Key Laboratory of Food Science & Technology and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
Vegetable oil is an exceedingly important and indispensable part of the modern diet. Most of the production methods of vegetable oils in traditional commercial company are the hot-pressing method and/or the solvent extraction method. The hot-pressing method is a conventional oil production method in which oilseeds are firstly treated under hyperthermal condition and then exuded by mechanical extrusion. This method has the characteristics of simple equipment and universality on the production of different oils, but its oil yield is relatively low. In addition, during the long-time hyperthermal treatment, oil may be oxidized, and then the oxidation product would degrade and generate some harmful compositions, such as trans-fatty acid and polycyclic aromatic hydrocarbons. The solvent extraction method applies hexane as extraction solvent chiefly, and has a high oil yield (>96%). But in hexane extraction, many byproducts would be dissolved out with the oil, which leads to the inferior physical-chemical characteristics of crude oil. Hence, the deep refining is needed, however, excessive refining not only causes the loss of nutrients, but also may bring new harmful substances, such as plasticizers, heavy metals and chlorine propanol esters. Furthermore, hexane has been identified as the hazardous air pollutant. Because of the toxicity and flammability of hexane and the increasing demand of food safety, the development of alternative green production process of vegetable oils is becoming extraordinarily urgent. The aqueous extraction method is recently receiving considerable attention, in which pure water is employed as main extraction medium. It is a new developed green and efficient oil extraction technology. Compared with traditional technology, this method is mild and safe due to the relatively low temperature and the complete avoidance of organic solvents. Based on the decades of our team’s research work on the aqueous medium extraction technology, we have established the concept of aqueous medium method of vegetable oil extraction technology firstly in this review. The so-called aqueous medium method of vegetable oil extraction technology employs pure water as the main extraction medium, with or without the assistance of edible substances that are miscible with water like ethanol, food-grade enzyme, supersonic and microwave. The effects of these supplements were to destroy the cell wall of oil-bearing materials or prevent the formation of highly-creamed emulsion in extraction process. This method contains aqueous extraction method, aqueous enzymatic extraction method and aqueous ethanol extraction method. In this review, the technological process, technical features, development history, existing problems and promising prospects are also discussed in detail.
extraction; technology; water; aqueous medium method; aqueous extraction method; aqueous enzymatic extraction method; aqueous ethanol extraction method
10.11975/j.issn.1002-6819.2016.09.043
TS224
A
1002-6819(2016)-09-0308-07
楊瑞金,倪雙雙,張文斌,李鵬飛,劉軍軍,謝 斌. 水媒法提取食用油技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):308-314.
10.11975/j.issn.1002-6819.2016.09.043 http://www.tcsae.org
Yang Ruijin, Ni Shuangshuang, Zhang Wenbin, Li Pengfei, Liu Junjun, Xie Bin. Summarization on vegetable oil extraction technology by aqueous medium method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 308-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.043 http://www.tcsae.org
2016-01-18
2016-03-22
國(guó)家863計(jì)劃重點(diǎn)項(xiàng)目課題 (2013AA102103)
楊瑞金,男,江西瑞金人,教授,博士,博士生導(dǎo)師,主要從事食品化學(xué)、食品科學(xué)。無錫 江南大學(xué)食品與工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,214122。Email:yrj@jiangnan.edu.cn