王麗波,程 龍,徐雅琴,王泰恒,李魯濱,王瀚嵩
(東北農(nóng)業(yè)大學理學院,哈爾濱 150030)
南瓜籽多糖熱水提取工藝優(yōu)化及其抗氧化活性
王麗波,程 龍,徐雅琴※,王泰恒,李魯濱,王瀚嵩
(東北農(nóng)業(yè)大學理學院,哈爾濱 150030)
為開發(fā)利用南瓜籽中多糖資源,基于前期水提醇沉制得南瓜籽多糖的研究基礎上,該文進一步探討了熱水浸提法提取南瓜籽多糖工藝參數(shù)并對其結構進行了初步分析。結果表明:南瓜籽多糖的最佳提取條件為提取溫度60℃、提取時間2.5 h、液料比40:1 mL/g,此條件下多糖得率的預測值為2.25%,實際驗證值為2.18%。初步分析南瓜籽多糖由鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖和半乳糖6種單糖組成,摩爾比為0.52∶0.88∶0.73∶0.14∶1.00∶1.12,不含糖醛酸,為中性雜多糖。體外抗氧化活性試驗表明,南瓜籽多糖對DPPH·、·OH和O2-· 3種自由基均具有一定的清除效果,多糖質量濃度為1.0 mg/mL時,清除率分別達到21.3%±0.14%、57.14%±0.28%和40.50%±0.64%。研究結果為后續(xù)南瓜籽多糖純品制備、結構表征提供了基礎,為提高南瓜籽相關保健品附加值提供了一定理論依據(jù)。
提?。还に?;優(yōu)化;南瓜籽;多糖;抗氧化活性
南瓜籽,又名白瓜子、金瓜子、南瓜仁,是葫蘆科植物南瓜(Cucurbita moschata Duch)的成熟種子。南瓜籽中含有豐富的脂肪、蛋白質、甾醇以及各種礦物質等營養(yǎng)成分[1-4],具有驅蟲、消炎、止痛等功效,可用于治療絳蟲、蛔蟲,產(chǎn)后手足浮腫、百日咳等疾病[5-7],長期食用具有保健和防病治病的功效。南瓜在中國種植歷史悠久、種植面積廣泛、產(chǎn)量居世界第一位,目前南瓜籽產(chǎn)量也在逐年上升,南瓜籽已被公認為保健食品,日益受到消費者的重視,所以開發(fā)南瓜籽新產(chǎn)品,提高南瓜籽的附加值具有廣闊的發(fā)展前景。
多糖,又稱多聚糖,是由10個以上的單糖通過糖苷鍵連接而成的一種高分子化合物。它是調控生物體生長發(fā)育的一種重要的大分子化合物。大量研究表明多糖具有多種藥理活性,如調節(jié)機體免疫力、抗氧化、降血糖、抗腫瘤、抗輻射和抗衰老等作用[8-11],且具有毒副作用小、安全性高等優(yōu)點,因此,多糖類物質的研究與開發(fā)一直是近年來的研究熱點。
目前,已有很多文獻表明南瓜果肉中多糖具有降血糖、抗氧化、抗腫瘤以及抑菌活性[12-15],但對于南瓜籽中多糖成分尚未給予更多關注,本課題組前期研究已表明,南瓜籽中含有一定量的非淀粉類多糖成分,經(jīng)過熱水提取、乙醇沉淀可以制得南瓜籽多糖[16],在前期研究基礎上,本文以蒸餾水為提取溶劑,通過單因素試驗考察提取溫度、提取時間及液料比3個因素對南瓜籽多糖得率的影響,在此基礎上利用中心組合設計響應面分析法對多糖提取工藝進行優(yōu)化篩選,旨在探求熱水法提取南瓜籽多糖的適宜工藝條件。同時測定南瓜籽多糖的組成和抗氧化活性,為進一步深入開展南瓜籽多糖生物活性及構效關系的研究提供參考。
1.1 材料與儀器
寶庫1號裸仁南瓜籽(Semen Moschatae):訥河市寶庫良種繁育研究所;阿拉伯糖、木糖、巖藻糖、鼠李糖、半乳糖、葡萄糖、甘露糖、肌醇均為生化試劑:美國Sigma公司;色譜純吡啶:天津光復精細化工研究院;分析純乙酸酐:天津科密歐化學試劑有限公司;色譜純?nèi)宜幔荷虾A璺寤瘜W試劑有限公司;分析純1,1-二苯基-2-苦基肼(DPPH, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl);阿拉丁化學試劑有限公司;維生素C、鄰苯三酚、硫酸亞鐵、過氧化氫均為分析純。
HHS-2S型電子恒溫水浴鍋:上海必爾得儀器實業(yè)有限公司;LD4-2型離心機:北京醫(yī)用離心機廠;R-205型旋轉蒸發(fā)儀:上海申勝生物技術有限公司;TU 1901 型雙光束紫外可見分光光度計:北京普析通用儀器有限責任公司;GC-2010 plug型氣相色譜儀:日本島津公司;FDU-1100型冷凍干燥機:日本Eyela公司;FTS135型傅立葉變換紅外光譜儀:美國BID-BAD公司。
1.2 試驗方法
1.2.1 多糖含量測定
采用苯酚-硫酸法測定南瓜籽中多糖含量[17]。以葡萄糖為標準品,于490 nm處測定,以葡萄糖質量濃度x為橫坐標(mg/L),吸光度A為縱坐標,繪制標準曲線。所得回歸方程:y=0.0123x?0.0016(R2=0.9984)式中:y為吸光度。
1.2.2 南瓜籽多糖的提取工藝流程
南瓜籽→粉碎(過80目篩)、烘干(60℃、24 h,含水率為2.0%)→乙醚脫脂(索氏抽提,50℃回流48 h)→熱水浸提(3.0 g脫脂南瓜籽粉,選擇合適的提取時間、提取溫度、液料比)→離心(4 000 r/min,15 min)→上清液旋轉蒸發(fā)→80%醇沉(4倍體積的體積分數(shù)為95%乙醇,4℃靜置12 h)→離心(4 000 r/min,10 min)→得沉淀(乙醇、丙酮各洗滌2次)→真空冷凍干燥(?50℃,真空度<15 Pa,干燥24 h)→南瓜籽粗多糖[16]。
1.2.3 多糖得率的計算公式
1.2.4 南瓜籽多糖提取單因素試驗
稱取3.0 g脫脂南瓜籽粉,以蒸餾水作為溶劑,進行提取時間、提取溫度和液料比對多糖得率影響的單因素試驗。在提取溫度60℃、液料比30∶1 mL/g條件下,提取時間分別取1.0、1.5、2.0、2.5、3.0 h;在液料比30:1 mL/g、提取時間2.5 h條件下,提取溫度分別取30、40、50、60、70℃;在溫度60℃、提取時間2.5 h條件下,液料比取值10∶1、20∶1、30∶1、40∶1、50∶1 mL/g。
1.2.5 提取工藝的響應面優(yōu)化試驗
在單因素試驗的基礎上,選以提取時間(A,h)、提取溫度(B,℃)和液料比(C,mL/g)為自變量,以南瓜籽多糖得率Y(%)為響應值,根據(jù)Box-Behnken中心組合試驗原理,設計三因素三水平響應面分析[18-20]試驗。其因素水平編碼表見表1。
表1 Box-Behnken試驗因素水平及編碼水平表Table1 Factors and levels of Box-Behnken experiment design
1.2.6 抗氧化活性
1)南瓜籽多糖清除DPPH自由基活性測定
取不同質量濃度多糖溶液(0.2、0.4、0.6、0.8、1.0 mg/mL)各2 mL于試管中,加入0.3 mol/L DPPH 2 mL,避光反應30 min,于517 nm波長處測定吸光度(Ai);再取上述多糖液2 mL,加入2 mL無水乙醇,反應30 min,于517 nm波長處測定吸光度(Aj);取2 mL DPPH,加入2 mL無水乙醇,反應30 min測定吸光度(A0)。每個濃度的樣品平行測定3次取平均值。以維生素C做陽性對照,清除率計算公式如下
式中Ai為加多糖溶液反應的吸光度;Aj為多糖溶液自身的吸光度;A0為DPPH溶液自身的吸光度。
2)南瓜籽多糖清除羥自由基(·OH)活性測定
取不同質量濃度(0.2、0.4、0.6、0.8、1.0 mg/mL)的南瓜籽多糖溶液2 mL。一次加入FeSO4(6 mmol/L),H2O2溶液(6 mmol/L)各2 mL,混勻,靜置10 min;再加入6 mmol/L的水楊酸溶液2 mL,混勻,靜置30 min后;在波長510 nm處測定其吸光度Ai’,用蒸餾水代替水楊酸測定吸光度Aj′。空白對照組以蒸餾水代替多糖溶液,測定吸光度A0′,平行測定3次。按照公式計算清除率[21]
式中Ai′為加多糖溶液反應的吸光度;Aj′為多糖溶液自身的吸光度;A0′為·OH溶液自身的吸光度。
3)南瓜籽多糖清除超氧陰離子自由基(O2-·)活性測定
采用鄰苯三酚自氧化法測定南瓜籽多糖對O2-·的清除能力。加0.05 mol/L的Tris-HCL(pH 值8.2)4.5 mL于試管中,置于25℃水浴20 min,加入不同質量濃度(0.2、0.4、0.6、0.8、1.0 mg/mL)的南瓜籽多糖溶液或維生素C溶液0.4 mL和25℃的鄰苯三酚(10 mmol/L HCL溶液配制)80 μL。加入后快速搖勻,測定325 nm波長處的吸光度值,每隔0.5 min記錄一次,連續(xù)記錄4 min,平行測定3次,計算各管的氧化速率及對O2-·的清除率。
式中A0″為未加多糖溶液反應的吸光度;At″為加多糖溶液反應的吸光度。
1.2.7 氣相色譜分析
采用糖腈乙酰酯衍生氣相色譜測定單糖組成,具體方法參照文獻[16]。
1.2.8 紅外光譜分析
稱取1~2 mg經(jīng)冷凍干燥的多糖樣品與已干燥的KBr在研缽中研磨均勻,壓片。在4 000~500 cm-1范圍內(nèi)進行紅外光譜掃描。
1.3 數(shù)據(jù)處理方法
所有試驗均進行3次重復,結果表示為平均值±標準偏差(mean±SD),試驗數(shù)據(jù)處理和分析采用Excel 2013、Design-Expert 8.0及OriginPro 9.0軟件。
2.1 南瓜籽多糖提取單因素試驗
稱取3.0 g脫脂南瓜籽粉,以蒸餾水作為提取溶劑,研究提取時間、提取溫度和液料比對南瓜籽多糖得率的影響,結果見圖1。
圖1 提取時間、提取溫度、液料比對南瓜籽多糖得率的影響Fig.1 Effects of extraction time, extraction temperature and liquid to solid ratio on extraction yield of polysaccharides
由圖1a可知,在提取時間小于2.5 h時,南瓜籽多糖得率隨提取時間的增加而升高;在2.5 h時,南瓜籽多糖得率達到最大。當提取時間進一步增加時,多糖得率呈下趨勢,這可能是提取時間過長對多糖的穩(wěn)定性產(chǎn)生了影響。考慮到提取工藝的能耗和效率,選擇提取時間2.0~3.0 h為宜。由圖1b可知,在30~60℃范圍內(nèi)隨溫度的上升,多糖得率顯著增加(P<0.05),但在超過60℃以后,多糖得率呈下降趨勢,說明溫度因素可能對南瓜籽多糖的降解作用明顯,因此提取溫度不宜過高,本試驗選取50~70℃為宜。由圖1c可知,多糖得率隨著液料比由10∶1 mL/g增加到20∶1 mL/g時顯著上升(P<0.05),在20∶1~40∶1 mL/g之間多糖得率基本不變,但在超過40∶1 mL/g時,得率出現(xiàn)下降趨勢,液料比越大,后期離心、醇沉等處理步驟所造成多糖損失會越多,因此選取液料比為20∶1~40∶1 mL/g為較優(yōu)水平進行下一步響應面分析。
2.2 南瓜籽多糖提取工藝的優(yōu)化
2.2.1 響應面試驗方案及結果
應用響應面法對過程進行優(yōu)化。以提取時間A、提取溫度B、液料比C為自變量,以南瓜籽多糖得率Y為響應值,響應面試驗方案及結果見表2。
通過利用Design-Expert 8.0軟件中的Box-Behnken選項對表2數(shù)據(jù)進行多元回歸擬合,獲得南瓜籽多糖提取率Y(%)對自變量提取時間A(h)、提取溫度B(℃)和液料比C(mL/g)的二次多項回歸方程,對表2結果進行統(tǒng)計分析,可建立如下二次回歸方程:
對二次回歸方程進行方差分析,結果見表3。由表3可知,B,AC,B2為顯著性影響因素,提取溫度(B)對多糖得率影響最大。以南瓜籽多糖得率為響應值建立的試驗模型高度顯著(P=0.0001),而誤差項不顯著,表明本模型對試驗擬合程度較好,回歸方程顯著,可以較好地表示各影響因素與響應值之間的確定關系,因此利用該方程可以確定南瓜籽多糖提取的最佳優(yōu)化工藝。
表2 響應面分析方案及結果Table 2 Experiment design and results of response surface method analysis
2.2.2 南瓜籽多糖最佳提取條件確立和試驗驗證
在選取的各因素范圍內(nèi),根據(jù)回歸模型通過Design-Expert 8.0軟件分析得出南瓜籽多糖最佳提取條件為:提取時間2.75 h,提取溫度60.61℃,液料比40∶1 mL/g,南瓜籽多糖得率預測值為2.25%。考慮到實際操作的便利,確定南瓜籽多糖提取工藝條件為:提取時間2.5 h,提取溫度60℃,液料比40∶1 mL/g。為了證實預測結果,用修正后的最佳提取工藝條件重復試驗3次,得到平均多糖得率為2.18%,與預測值誤差僅為0.07%,說明應用響應面法優(yōu)化南瓜籽多糖提取工藝條件具有實際應用價值。
表3 回歸方程方差分析表Table 3 Variance analysis of regression equation
2.3 南瓜籽多糖抗氧化活性研究
南瓜籽多糖對DPPH·、·OH和O2-·3種自由基的清除效果見圖2,由圖2a可以看出,南瓜籽多糖具有一定的清除DPPH自由基的能力,清除能力隨樣品濃度的增大而升高,但和維生素C比較,南瓜籽多糖在質量濃度為1.0 mg/mL時,清除率僅為21.32%±0.14%,而維生素C達到了93.56%±0.82%。由圖2b可知,南瓜籽多糖清除·OH的能力隨著質量濃度增加而增強,盡管在相同質量濃度下,南瓜籽多糖對·OH清除活性低于同質量濃度的維生素C,但其清除能力呈現(xiàn)較好的量效關系。多糖質量濃度為1.0 mg/mL時,·OH清除率為57.14%±0.28%。南瓜籽多糖對O2-·同樣具有一定的清除能力,但弱于同等濃度下的維生素C清除能力,在1.0 mg/mL時,南瓜籽多糖對O2-·清除率達到了40.50%±0.64%。
圖2 南瓜籽多糖對DPPH·、·OH和O2-·的清除作用Fig.2 Antioxidant activities of polysaccharides on DPPH scavenging activity, hydroxyl radical scavenging activity, superoxide anion scavenging activity
2.4 南瓜籽多糖的單糖組成分析
在相同色譜條件下,保留時間可作為定性分析的依據(jù),通過與標準單糖的保留時間相比較,可確定多糖樣品中的單糖組分。標準單糖衍生物的氣相色譜圖見圖3a,南瓜籽多糖的氣相色譜圖見圖3b。
氣相色譜分析結果表明,南瓜籽多糖是由6種單糖組成的雜多糖,分別為鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖和半乳糖,摩爾比為0.52:0.88:0.73:0.14:1.00:1.12。
2.5 南瓜籽多糖的紅外光譜分析
由圖4可知,南瓜籽多糖在4000~500 cm-1范圍內(nèi)有明顯的多糖特征吸收峰。3 294 cm-1處有一寬吸收峰,表明分子內(nèi)或分子間存在氫鍵,是由于O-H與N-H的伸縮引起的[10];2935處的小肩峰和1 449處的吸收峰為C-H伸縮振動和彎曲振動的特征峰[22];1 655和1 541 cm-1吸收峰是酰胺基C=O伸縮振動和N-H變角振動[16]。在1 072~996 cm-1間出現(xiàn)3個較強吸收峰,表示存在吡喃糖苷[23];793 cm-1處峰是由吡喃糖的α-端基差向異構體的C-H變角振動引起,在849 cm-1處峰是由β-端基差向異構體的C-H變角振動引起[24]。另外在1 730 cm-1附近沒有糖醛酸的特征吸收峰[25],表明南瓜籽多糖是中性雜多糖,不含糖醛酸。
圖3 標準單糖和南瓜籽多糖水解單糖的衍生物氣相色譜圖Fig.3 GC profile of standard monosaccharides and pumpkin seed polysaccharides with acid hydrolysis and acetylation
圖4 南瓜籽多糖紅外吸收光譜圖Fig.4 IR spectra of pumpkin seed polysaccharides
2.6 成本分析及應用前景
目前,在食品工業(yè)中南瓜籽主要應用于生產(chǎn)具有保健功能的南瓜籽油,而南瓜籽榨油后的副產(chǎn)物南瓜籽粕主要直接做廉價飼料或作為醬油生產(chǎn)輔料,利用率不高。按照本研究采用的熱水提取工藝,提取時間為2.5 h、提取溫度為60℃、液料比為40:1 mL/g的條件下,每100 g南瓜籽粕可制得11.9 g南瓜籽粗多糖產(chǎn)品,其中多糖質量分數(shù)為18.3%。每生產(chǎn)1 t南瓜籽粗多糖產(chǎn)品,南瓜籽粕原料成本約1.0萬(1 200元/t),加工成本(包括水、電、氣、人工費、設備折舊費等)約0.8萬元,總生產(chǎn)成本約為1.8萬元,成本較低。該工藝以蒸餾水作萃取劑不產(chǎn)生有機溶劑殘留,滿足了目前廣大消費者對天然健康食品的要求。而且條件溫和,操作簡單,適合工業(yè)化生產(chǎn)。含有多糖成分的營養(yǎng)粉劑具有較強抗氧化能力,可用于開發(fā)功能營養(yǎng)膠囊、片劑等等高附加值產(chǎn)品,也可用于功能飲料、保健型面包等功能營養(yǎng)食品,由此可見,南瓜籽粕采用熱水提取法所制得多糖產(chǎn)品市場發(fā)展前景非常廣闊。
1)通過響應面分析法確定南瓜籽多糖的提取的最佳工藝為:以蒸餾水為溶劑,提取時間2.5 h、提取溫度60℃、液料比40∶1 mL/g,此條件下多糖得率為2.18%,模型預測值2.25%,誤差僅為0.07%。說明采用響應面分析法優(yōu)化得到的提取工藝參數(shù)準確、可靠,具有較好的實用價值。
2)南瓜籽多糖是中性雜多糖,由鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖、半乳糖6種單糖組成,不含糖醛酸。南瓜籽多糖對DPPH·、·OH和O2-·3種自由基均具有良好的清除效果,多糖質量濃度為1.0 mg/mL時,清除率分別達到21.3%±0.14%、57.14%±0.28%和40.50%± 0.64%,是一種具有開發(fā)潛力的天然抗氧化劑。
[1] Jiao J, Li Z G, Gai Q Y, et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities[J]. Food Chemistry, 2014, 147(6): 17-24.
[2] 王麗波,徐雅琴,楊昱,等. 南瓜籽油的水酶法提取工藝及產(chǎn)品的理化性質[J]. 農(nóng)業(yè)工程學報,2011,27(10):383-387. Wang Libo, Xu Yaqin, Yang Yu, et al. Aqueous enzymatic extraction of pumpkin seed oil and its physical-chemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 383-387. (in Chinese with English abstract)
[3] 王麗波,于澤源,徐雅琴,等. 南瓜籽中一種抗真菌蛋白的提取及抗菌活性研究[J]. 中國糧油學報,2013,29(3):63-66. Wang Libo, Yu Zeyuan, Xu Yaqin, et al. Study on extraction and antibacterial activity of antifungal protein in pumpkin seed[J]. Journal of the Chinese Cereals and Oils Association, 2013, 29(3): 63-66. (in Chinese with English abstract)
[4] Stevenson D G, Eller F J, Wang L, et al. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars[J]. Journal of Agriculture and Food Chemistry, 2007, 55(10): 4005-4013.
[5] Iwo M I, Insanu M, Dass C A S. Development of immunonutrient from pumpkin (Cucurbita Moschata Duchense Ex. Lamk.) seed[J]. Procedia Chemistry, 2014, 13(12): 105-111.
[6] Veronzi C M, Jorge N. Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food[J]. Journal of Food Science, 2012, 77(6): 653-657.
[7] Tsai Y S, Tong Y C, Cheng J T, et al. Pumpkin seed oil and phytosterol-F can block testosterone/prazosin-induced prostate growth in rats[J]. Urology International, 2006, 77(3): 269-274.
[8] Shao P, Chen X X, Sun P L. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri[J]. Carbohydrate Polymers, 2014, 105(1): 260-269.
[9] Imbs T I, Skriptsova A V, Zvyagintseva T N. Antioxidant activity of fucose-containing sulfated polysaccharides obtained from Fucus evanescens by different extraction methods[J]. Journal of Applied Phycology, 2015, 27(1): 545-553.
[10] 徐雅琴,宋秀梅,任中杰,等. 黑穗醋栗果實多糖清除自由基活性及結構初步研究[J]. 現(xiàn)代食品科技,2013,29(12):2821-2825. Xu Yaqin, Song Xiumei, Ren Zhongjie, et al. Preliminary identification of free radicial activity and structure of kurikami polysaccharide[J]. Modern Food Science and Technology, 2013, 29(12): 282-2825. (in Chinese with English abstract
[11] 許春平,楊琛琛,鄭堅強,等. 植物葉多糖的提取和生物活性綜述[J]. 食品研究與開發(fā),2014,35(14):111-114. Xu Chunping, Yang Chenchen, Zheng Jianqiang, et al. Review on extraction and biological activity of polysaccharides from plant leave[J]. Food Reseach and Development, 2014, 35(14): 111-114. (in Chinese with English abstract)
[12] Kostálová Z, Hromádková Z, Ebringerová A, et al. Polysaccharides from the styrian oil-pumpkin with antioxidant and complement-fixing activity [J]. Industrial Crops and Products, 2013, 41(1): 127-133.
[13] 張高帆,蘇東洋,張擁軍,等. 南瓜多糖對不同糖尿病模型小鼠的降糖作用[J]. 中國食品學報,2014, 14(2):23-27. Zhang Gaofan, Su Dongyang, Zhang Yongjun, et al. The hypoglycemic effect of the pumpkin polysaccharide to the different diabetic model mice[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(2): 23-27. (in Chinese with English abstract)
[14] 萬艷娟,劉曉娟,趙力超,等. 南瓜多糖抑制α-淀粉酶及抑菌活性的研究[J]. 食品科技,2012,37(3):45-47. Wan Yanjuan, Liu Xiaojuan, Zhao Lichao, et al. The inhibitory effect on α-amylase and antibiotic activity from pumpkin polysaccharide[J]. Food Science and Technology, 2012, 37(3): 45-47. (in Chinese with English abstract)
[15] Song Y, Zhang Y Y, Zhou T T. A preliminary study of monosaccharide compositionand α-glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbita moschata) fruit[J]. International Journal of Food Science and Technology, 2012, 47(2): 357-361.
[16] 王麗波,徐雅琴,于澤源,等. 南瓜籽多糖的乙醇分級沉淀及超聲波改性研究[J]. 農(nóng)業(yè)機械學報,2015,46(8):215-220. Wang Libo, Xu Yaqin, Yu Zeyuan, et al. Ethanol fractional precipitation and ultrasonic modification of pumpkin polysaccharides[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(8): 215-220. (in Chinese with English abstract)
[17] 池源,王麗波. 苯酚-硫酸法測定南瓜籽多糖含量的條件優(yōu)化[J]. 食品與機械,2014,30(1):89-92. Chi Yuan, Wang Libo. Study on phenol-sulfuric acid method for determination of polysaccharide content in pumpkin seeds[J]. Food and Machinery, 2014, 30(1): 89-92. (in Chinese with English abstract)
[18] 柯樂芹,張東旭,肖建中. 杏鮑菇深加工殘渣多糖酶法微波輔助提取工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2014,30(21):332-338. Ke Leqin, Zhang Dongxu, Xiao Jianzhong. Optimization of microwave-assisted enzyme extraction process of polysaccharide from Pleurotus eryngii stalk residue after deep treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 332-338. (in Chinese with English abstract)
[19] 許鍵,蔡慧農(nóng),倪輝,等. 殼聚糖澄清蘆柑果汁工藝條件的優(yōu)化[J]. 農(nóng)業(yè)工程學報,2013,29(23):268-275. Xu Jian, Cai Huinong, Ni Hui, et al. Optimized conditions for clarification of chitosan on ponkan juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 268-275. (in Chinese with English abstract)
[20] Yin X L, You Q H, Su X Y. A comparison study on extraction of polysaccharides from Tricholoma matsutake by response surface methodology[J]. Carbohydrate Polymers, 2014, 102(15): 419-422.
[21] 王振斌,劉加友,馬海樂,等. 無花果多糖提取工藝優(yōu)化及其超聲波改性[J]. 農(nóng)業(yè)工程學報,2014,30(10):262-269. Wang Zhenbin, Liu Jiayou, Ma Haile, et al. Extraction process optimization and ultrasonic modification of polysaccharide from Ficus carica L.[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 262-269. (in Chinese with English abstract)
[22] Xie J H, Xie M Y, Nie S P, et al. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja[J]. Food Chemistry, 2010, 119(4): 1626-1632.
[23] Jiang C X, Xiong Q P, Gan D, et al. Antioxidant activity and potential hepatoprotective effect of polysaccharides from Cyclina sinensis[J]. Carbohydrate Polymers, 2013, 91(1): 262-268.
[24] 黎英,陳雪梅,嚴月萍,等. 超聲波輔助酶法提取紅腰豆多糖工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2015,31(15):293-301. Li Ying, Chen Xuemei, Yan Yueping, et al. Optimal extraction technology of polysaccharides from red kindey bean using ultrasonic assistant with enzyme[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 293-301. (in Chinese with English abstract)
[25] Yu Z Y, Liu L, Xu Y Q, et al. Characterization and biological activities of a novel polysaccharide isolated from raspberry (Rubus idaeus L.) fruits[J]. Carbohydrate Polymers, 2015, 132(68): 180-186.
Extraction technology optimization and antioxidant activity of polysaccharides from pumpkin seeds
Wang Libo, Cheng Long, Xu Yaqin※, Wang Taiheng, Li Lubin, Wang Hansong
(College of Science, Northeast Agricultural University, Harbin 150030, China)
Pumpkin seeds are rich in lipids, proteins, phytosterols, vitamins, minerals and other valuable components. In recent years, many researches have showed pumpkin seeds can significantly reduce serum cholesterol and triglycerides, and play a role in the prevention and mitigation of cardiovascular disease as well as in preventing prostate disease. It has been found that natural polysaccharides extracted from plant seeds possess various important biological activities, such as anti-cancer, antioxidant, immunization and hypolipidemic activities. However, there is not much published information on polysaccharides in pumpkin seeds. For the development and utilization of polysaccharides in pumpkin seeds, at present, degreased pumpkin seed powder was used as raw material, and the extraction of polysaccharides was mainly performed by hot-water extraction. The optimum extraction technology was studied and the preliminary structure of polysaccharides was analyzed by using infrared spectrum scanning (IR) and gas chromatography (GC). Taking polysaccharide yield as an index, the effects of extraction time, extraction temperature, liquid-solid ratio were studied through the single-factor experiment. And then on the basis of single-factor experiment, the optimum extraction condition was investigated with the response surface methodology (RSM) according to the Box-Behnken center combination design principle by the Design-Expert 8.0 software. The results showed that the optimum parameters were: extraction time 2.5 h, extraction temperature 60 °C, liquid-solid ratio 40:1 mL/g, and the extraction yield of pumpkin seed polysaccharides was 2.25%. Under this condition, the actual value was 2.18%, which was closely matched with the predicted yield. The result showed that, the developed model was adequate and precise when compared with experimental data. The monosaccharide composition of polysaccharide was analyzed through comparing the retention time against the standards by GC. Composition analysis indicated that the polysaccharides were composed of rhamnose, arabinose, xylose, mannose, glucose and galactose with a mole ratio of 0.52 : 0.88 : 0.73 : 0.14 : 1.00 : 1.12. The IR spectrum showed that pumpkin seed polysaccharide exhibited the typical absorption peaks of a polysaccharide within the wave number of 4000-500 cm-1. Three strong absorption peaks of polysaccharide within the range of 1072-996 cm-1indicated the possible presence of pyranose ring in polysaccharides. There was no peak at 1730 cm-1of COOH, which showed that polysaccharides were neutral heteropolysaccharide with the absence of uronic acid. The antioxidative assays in vitro showed that polysaccharides presented certain scavenging activity toward DPPH·, HO·, and O2-·. The scavenging activity was increased with the increasing of the sample concentration within the test dosage range. At the same test concentration, the scavenging effects of polysaccharide against these 3 radicals were slightly lower than ascorbic acid. The scavenging rate of polysaccharide was respectively 21.3%±0.14%, 57.14%±0.28% and 40.50%±0.64% at the mass concentration of 1.0 mg/mL. In the future, pumpkin seed polysaccharides might be expected to play a promising role as dietary free radical scavengers for oxidative damage prevention. The experimental results provide the basis for the further preparation of pure polysaccharide product, the structure characterization and the biological activity determination. At the same time, this study provides the theoretical basis for the further development of the pumpkin seed function and the improvement of the added value of nonfat pumpkin seed cake.
extraction; technology; optimization; pumpkin seeds; polysaccharides; antioxidant activity
10.11975/j.issn.1002-6819.2016.09.040
TS218
A
1002-6819(2016)-09-0284-07
王麗波,程 龍,徐雅琴,王泰恒,李魯濱,王瀚嵩. 南瓜籽多糖熱水提取工藝優(yōu)化及其抗氧化活性[J]. 農(nóng)業(yè)工程學報,2016,32(9):284-290.
10.11975/j.issn.1002-6819.2016.09.040 http://www.tcsae.org
Wang Libo, Cheng Long, Xu Yaqin, Wang Taiheng, Li Lubin, Wang Hansong. Extraction technology optimization and antioxidant activity of polysaccharides from pumpkin seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 284-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.040 http://www.tcsae.org
2015-11-21
2016-02-05
黑龍江省自然科學基金面上項目(C2015004)。
王麗波,女,博士,副教授。研究方向:天然產(chǎn)物提取及活性研究。哈爾濱 東北農(nóng)業(yè)大學理學院,150030。Email:wanglibo99166@163.com
※通信作者:徐雅琴,女,教授。研究方向:天然產(chǎn)物提取及活性研究。哈爾濱 東北農(nóng)業(yè)大學理學院,150030。Email:xu-yaqin@163.com