趙海燕,方小明,王 軍,巨浩羽,張月敬,陳興付,張 茜,劉嫣紅,高振江,肖紅偉※
(1. 中國農(nóng)業(yè)大學工學院,北京 100083;2. 中國農(nóng)業(yè)科學院蜜蜂研究所100093;3. 石河子大學機械電氣工程學院,石河子 832000)
乙醇浸漬對切片茄子干燥特性和品質(zhì)的影響
趙海燕1,方小明2,王 軍1,巨浩羽1,張月敬1,陳興付1,張 茜3,劉嫣紅1,高振江1,肖紅偉1※
(1. 中國農(nóng)業(yè)大學工學院,北京 100083;2. 中國農(nóng)業(yè)科學院蜜蜂研究所100093;3. 石河子大學機械電氣工程學院,石河子 832000)
為了提高切片茄子的干制品質(zhì)、縮短干燥時間,對熱風干燥前的切片茄子進行了乙醇浸漬處理。以不同干燥溫度(45、55、65℃)、預處理乙醇體積分數(shù)(0、5%、15%)和茄子切片厚度(1.0、1.5、2.0 cm)為試驗因素,以干燥時間及干燥后產(chǎn)品的干燥速率、色澤、復水比和微觀結(jié)構(gòu)為評價指標進行正交試驗。試驗結(jié)果表明:干燥溫度、乙醇體積分數(shù)和切片厚度對干燥時間均有顯著影響(P<0.05);綜合評價的影響順序由大到小依次為:切片厚度>干燥溫度>乙醇體積分數(shù);切片茄子的干燥過程屬于降速干燥,通過費克第二定律得到切片茄子的水分有效擴散系數(shù)在2.74×10-9~7.75×10-9m2/s;切片厚度對干燥后茄子片的復水比有顯著影響(P<0.05),復水比隨著切片厚度的增加而減少;乙醇體積分數(shù)對干燥后茄子片的色澤具有顯著影響(P<0.05),而且可以改變干燥后茄子的微觀結(jié)構(gòu)改善物料外觀品質(zhì)。當乙醇體積分數(shù)為15%、干燥溫度為65℃、切片厚度為1.0 cm時,干燥時間為225 min,復水比為4.93,明亮度為88.24,既有較快的干燥速率又能夠得到比較好的色澤。研究表明適宜體積分數(shù)的乙醇浸漬預處理能夠提高切片茄子的干燥速率、改善色澤,為高品質(zhì)切片茄子快速干燥提供了理論依據(jù)。
干燥;優(yōu)化;品質(zhì)控制;切片茄子;乙醇浸漬;復水比;色澤;微觀結(jié)構(gòu)
茄子(eggplant)是茄科茄屬一年生草本植物,是餐桌上常見的家常菜[1]。茄子營養(yǎng)豐富,具有防治高血壓、冠心病、動脈硬化和出血性紫癜等功效[2]。茄子在全國各地廣為種植,但由于新鮮茄子含水率較高、呼吸作用強,在采收后不耐儲藏,貨架期短。所以在茄子收獲后,對其進行及時食用和加工處理是減少經(jīng)濟損失的重要方式。
干燥脫水是茄子加工的主要方式之一[3]。然而,干燥時間長、干燥后產(chǎn)品色澤差是切片茄子干燥中存在的主要問題。茄子中含有大量的過氧化物酶[4],切片茄子在空氣中極易發(fā)生酶促褐變,導致干制品色澤差,影響其感官品質(zhì)。同時,目前茄子干燥大多采用自然晾曬方式,干燥時間長,一般需要3~4 d,干燥過程中易受天氣、灰塵、蟲鳥、微生物等因素的影響,干燥品質(zhì)差。Zhang 等[5]和Ertekin等[6]對茄子干燥特性和品質(zhì)進行了相關(guān)研究,然而均未得到干燥速率快且品質(zhì)較優(yōu)的干燥茄子片。因此,提高切片茄子的干燥速率、改善干燥品質(zhì)尤其是色澤勢在必行。
干燥前的預處理是加快果蔬干燥速率、改善品質(zhì)的重要工藝環(huán)節(jié),如果處理不當,不但不能提高干燥速率,而且會造成營養(yǎng)成分的損失、有害物質(zhì)的殘留、不良化學反應的發(fā)生等[7-10]。常見的果蔬預處理方法包括燙漂、熏硫、乙醇溶液等化學物質(zhì)浸漬[11-13]處理方式。研究表明,燙漂會極大改變物料的組織結(jié)構(gòu)狀態(tài),進而改變物料的干燥速率[14-15],但是會造成一些水溶性色素、維生素、多糖等的嚴重流失和降解,甚至完全損失,這使干燥后產(chǎn)品的營養(yǎng)價值大打折扣[16-17]。熏硫可以達到護色、提高營養(yǎng)物質(zhì)特別是維生素C的保留率,而且使用方便、成本低,但制成品中SO2殘留是個不容忽視的問題[18-19]。
乙醇具有滲透快、易蒸發(fā)、無殘留及對人體無害等優(yōu)點,已有將其應用于果蔬預處理的報道[20-22]。結(jié)果發(fā)現(xiàn),乙醇浸漬處理能夠顯著提高果蔬干燥速率、改善干燥后色澤的現(xiàn)象,這可能是因為乙醇的沸點比水低,易揮發(fā),干燥時受熱迅速氣化,體積膨脹對于擴充物料內(nèi)部孔隙結(jié)構(gòu)促進水分遷移具有一定作用,較高的干燥溫度又促進了其揮發(fā),揮發(fā)過程中帶走物料內(nèi)部的部分自由水,達到了作用時間短,作用效率高的目的;另外乙醇氣化后形成的惰性環(huán)境有助于物料隔絕氧氣,降低了氧化反應發(fā)生的機率,有助于物料色澤的保持,起到了護色作用。然而,將乙醇浸漬處理應用于切片茄子的促干與護色是否可行,國內(nèi)外尚無相關(guān)報道。
因此,為解決茄子干燥過程中存在的干燥時間長、色澤劣變等突出問題,本研究將乙醇浸漬處理應用于切片茄子的促干和護色。在前期單因素研究的基礎(chǔ)上,結(jié)合熱風干燥技術(shù),研究了不同干燥溫度(45、55、65℃)、乙醇預處理體積分數(shù)(0、5%、15%)和切片厚度(1.0、1.5、2.0 cm)對切片茄子干燥特性、色澤和復水比的影響,以期為茄子干燥加工新技術(shù)的研究開發(fā)提供理論依據(jù)。
1.1 試驗裝置及工作原理
基于溫濕度控制的箱式熱風干燥試驗裝置(中國農(nóng)業(yè)大學工學院農(nóng)產(chǎn)品加工技術(shù)與裝備試驗室自制)如圖1所示。其主要由電加熱管、干燥室、排濕風機、加濕濕簾、內(nèi)循環(huán)風扇以及自動控制部分組成。當干燥室溫度小于預設(shè)值時,電加熱管工作當;干燥室溫度大于預設(shè)值時,電加熱管停止工作。干燥室相對濕度小于設(shè)定相對濕度范圍值時,加濕電磁閥打開,濕簾對干燥室加濕;相對濕度大于設(shè)定相對濕度范圍時,排濕離心風機打開,對干燥室排濕。
圖1 溫濕度控制內(nèi)循環(huán)熱風干燥機總體結(jié)構(gòu)示意圖Fig.1 Schematic diagram of hot air internal recycle dryer based on being controlled temperature and humidity
其他儀器設(shè)備:YP型電子天平(上海精科天平,0.1 g),F(xiàn)ZQ-400/2D型真空包裝機(北京市天月緣包裝機械有限公司),DHG-9140A型電熱恒溫鼓風干燥箱(上海一恒科技有限公司);SMY-2000SF型色差儀;干燥器、培養(yǎng)皿、燒杯若干。
1.2 試驗原料
試驗所用原料是新鮮的紫色長茄子(品種:朗高),購于北京當?shù)剞r(nóng)貿(mào)市場,平均長度(20±1)cm,直徑(4.5±0.5)cm,平均質(zhì)量(190±5)g/個,平均濕基含水率94%(含水率用105℃、24 h烘干法測定)。試驗前將紫色長茄放入聚乙烯袋內(nèi)并置于(5±1)℃下保存。
1.3 試驗方法
根據(jù)前期試驗及相關(guān)文獻[23-24]報道,選擇干燥溫度(45、55、65℃)、乙醇浸漬體積分數(shù)(0、5%、15%)、切片厚度(1.0、1.5、2.5 cm)3個因素,進行正交試驗設(shè)計。浸漬過程中切片茄子完全沒入乙醇溶液中,且浸漬時間均為5 min。將物料切成所需厚度的片狀物料,按照試驗方案,對茄子片定時稱量,直至茄子片濕基含水率降低到6%時結(jié)束試驗,取出冷卻后裝袋并密封保存。每組試驗重復3次,取平均值作為結(jié)果。選擇L9(33)正交表,各因素水平及試驗設(shè)計見表1所示。
表1 正交試驗因素水平設(shè)計Table 1 Factors and levels of orthogonal test L9(33)
1.4 試驗參數(shù)的獲取方法
茄子片熱風干燥過程中的干燥曲線采用水分比MR (moisture ratio)隨干燥時間的變化曲線。不同干燥時間茄子片的水分比[25-26](MR)計算方式如公式(1)所示
式中Mo為茄子片的初始干基含水率,g/g;Me為茄子片干燥到平衡時的干基含水率,g/g;Mt為茄子片干燥到t時刻的干基含水率,g/g。
由于茄子片的平衡干基含水率Me遠小于Mo和Mt,公式(1)可以簡化為如下公式[27-28]
干燥速率(drying rate)[29]的計算采用如下公式:
式中DR為干燥過程中時間在t1和t2之間的茄子片干燥速率,g/(g·h);Mt1和Mt2為干燥過程中時間為t1和t2時茄子片的干基含水率,g/g。
干基含水率[30]Mt(moisture content on dry basis)計算采用下式
式中Wt為茄子片在干燥t時刻的總質(zhì)量,g;G為茄子片干物質(zhì)質(zhì)量,g。
干燥過程中水分的擴散規(guī)律[31-33]可以用費克第二定律來描述。即
式中Deff為水分有效擴散系數(shù),m2/s;L為茄子片的厚度,m;t為干燥時間,s。對公式(6)的兩邊取自然對數(shù)得到如下方程
因此可以畫出lnMR關(guān)于t的關(guān)系曲線,通過線性回歸計算出斜率k,就可以得出水分有效擴散系數(shù)。
1.5 復水比的測定方法
茄子干后的復水特性采用復水比RR(rehydration ratio)作為評價指標。復水試驗的方法是:將5 g干燥后的茄子片置入200 mL溫度為90℃的熱水中,30 min后撈出用吸水紙吸干其表面水分并稱量[34]。復水比RR采用公式(5)計算
式中RR為復水比;Ww為復水后茄子片的質(zhì)量,g;Wd為復水前茄子片的質(zhì)量,g。
1.6 色澤的測定方法
茄子干燥后去掉邊緣的紫皮磨成粉,采用SMY-2000SF型色差儀,以儀器白板色澤和黑板色澤為標準,依據(jù)CIELAB表色系統(tǒng)測量茄子粉的明度值L。L*為明亮度,范圍是0(黑色)~100(白色),L*越大,產(chǎn)品顏色越好。
1.7 微觀結(jié)構(gòu)的觀測方法
茄子片干燥后,將干燥茄子片處理成3 mm×3 mm× 3 mm的小立方體樣品,然后,樣品首先被安裝在磁控濺射儀(英國Quorum科技有限公司,SC7640)上,進行5 min噴金處理以固定組織結(jié)構(gòu),并在10 kV加速電壓下對其表面組織微觀結(jié)構(gòu)用掃描電子顯微鏡(日本東京日立集團,S3400)進行觀察[35-36]。重復觀看不同區(qū)域的組織結(jié)構(gòu),并選擇具有代表性圖片進行保存與進一步分析。
1.8 綜合評價方法
為使數(shù)據(jù)具有統(tǒng)一性,需對評價指標進行歸一化。正向指標(復水率RR,明亮度L*)和負向指標(干燥時間t)歸一化公式分別如下[30]
式中yi為歸一值,xi為指標實際值,xmax和xmin分別為指標最大值和最小值。
由按照公式(14)進行加權(quán)得到干燥條件的綜合評分Y[30]
式中y1、y2、y3分別為復水率、明亮度和干燥時間歸一化后的結(jié)果,l1、l2、l3分別對應其權(quán)重。在保證干燥品質(zhì)明亮度L*,復水比RR良好條件下,使得干燥時間t減小,采用層次分析方法[30],得出明亮度L*、復水比RR、干燥時間t的權(quán)重分別為0.35、0.35、0.30。
2.1 不同干燥條件對茄子片干燥特性的影響
茄子片在不同干燥條件下的干燥曲線以及正交試驗結(jié)果極差分析表見圖2和表2所示。由圖2可知,茄子片的水分比隨著干燥時間的增加而減少。這與南瓜片[37]、李子[38]干燥以及杏子[39]和胡蘿卜丁[40]的干燥研究結(jié)果相一致。茄子片的濕基含水率從94%降低到6%的各干燥條件下的干燥時間如表2所示。從圖2可以看出當干燥溫度為45℃、預處理乙醇體積分數(shù)為5%、切片厚度為2.0 cm時所用的干燥時間最長,為660 min;而當切片厚度為1.0 cm,干燥溫度為65℃、預處理乙醇體積分數(shù)為15%或干燥溫度為55℃、預處理乙醇體積分數(shù)為5%時,所用的干燥時間最短,為225 min。
圖2 茄子片不同干燥條件下的干燥動力學曲線Fig.2 Drying kinetic curves of eggplant slices under different drying conditions
由表2極差分析結(jié)果表明,在試驗參數(shù)范圍內(nèi),三個干燥因素對干燥時間影響的大小依次為切片厚度>干燥溫度>乙醇預處理體積分數(shù),干燥溫度、乙醇體積分數(shù)和切片厚度對干燥時間均有顯著影響(P<0.05)。對切片茄子進行乙醇預處理有利于提高切片茄子的干燥速率。這與Silva[20]在乙醇對水果干燥中的研究結(jié)論相一致。這是由于乙醇具有易揮發(fā)的特性,茄子經(jīng)低濃度的乙醇浸漬后,在干燥時水分蒸發(fā)較快且?guī)С銮炎觾?nèi)部的部分自由水,提高了干燥速率;而茄子經(jīng)高濃度的乙醇浸漬后,乙醇使茄子內(nèi)部的營養(yǎng)成分產(chǎn)生變化,使其組織結(jié)構(gòu)更加致密,在干燥過程中,阻礙了水分的遷移。
試驗5和試驗9的處理切片厚度一致,試驗9的溫度和乙醇濃度均比試驗5高,但2個試驗組干燥時間一致,這可能是因為高溫促進了茄子內(nèi)部的水分遷移,提高干燥速率[25],而高體積分數(shù)15%的乙醇又阻礙了水分的遷移,降低了干燥速率,造成2個試驗組呈現(xiàn)出一致的干燥時間。在只考慮干燥時間的情況下,試驗5和試驗9的試驗條件下干燥時間最短,為225 min。
表2 試驗數(shù)據(jù)的正交分析Table 2 Experiment were analyzed by orthogonal design method
2.2 不同干燥條件對茄子片干燥后復水特性的影響
由極差分析結(jié)果可知,3個因素對復水比的影響順序為:預處理乙醇體積分數(shù)>切片厚度>干燥溫度。茄子切片厚度對干燥茄子片的復水比影響顯著(P<0.05),隨厚度增加,干燥后茄子片的復水比減少。這可能是由于茄子的組織結(jié)構(gòu)特殊,厚度越厚收縮越小。溫度和預處理乙醇濃度對茄子片的復水比影響不顯著(P>0.05),然而,適當?shù)臏囟群瓦m宜的預處理乙醇濃度會改善干燥茄子片的復水特性。這可能是由于較大切片厚度會使茄子片失水不至于過快,避免了表面的結(jié)殼現(xiàn)象。溫度升高復水比降低可能是由于高溫導致茄子片快速失水導致表面硬化結(jié)殼,致使組織內(nèi)部孔道皺縮[41]。適宜的預處理乙醇濃度可以改善干燥后茄子片的復水比可能是由于乙醇預處理強化了茄子片內(nèi)部的微觀結(jié)構(gòu),使其不至于干燥過程發(fā)生孔道坍塌等變化,而濃度過高又會破壞水分遷移孔道。這與Corrêa和Braga對香蕉[22]干燥和Braga對菠蘿[42]干燥的研究結(jié)論一致。
2.3 不同干燥條件對茄子片色澤變化的影響
由表2正交試驗的極差分析可知,3個因素對明亮度影響順序為預處理切片厚度>乙醇體積分數(shù)>干燥溫度;乙醇體積分數(shù)對干燥后茄子片的色澤有顯著影響(P<0.05)。茄子干燥過程中色澤的改變反映了其褐變的程度[6],這可能是由于茄子中的糖分在干燥過程中發(fā)生美拉德反應所導致的[5]。而乙醇處理對其色澤起到改善作用,可能是因為乙醇氣化后形成的惰性環(huán)境有助于物料隔絕氧氣,降低了氧化反應發(fā)生的幾率,有助于物料色澤的保持。這與Silva[20]在研究乙醇預處理對果蔬干燥的影響的結(jié)論一致,Correa和Braga[22]研究也發(fā)現(xiàn)乙醇處理可以改善菠蘿干制品的色澤。
2.4 不同干燥條件下對茄子片綜合評分的影響
由表2極差分析可知,3個因素對干燥后茄子片的綜合評分的影響順序為:切片厚度>干燥溫度>預處理乙醇體積分數(shù)。最佳干燥工藝為切片厚度為1.0 cm,干燥溫度為65 ℃,預處理乙醇濃度為15%,驗證試驗表明此條件下,干燥時間t為225 min,復水比RR為4.93,明亮度L*為88.24。
2.5 茄子片在不同干燥條件下的有效擴散系數(shù)
由圖3可知,茄子在干燥過程中沒有恒速干燥段,整個干燥過程屬于降速干燥。這說明,茄子片的干燥過程是由內(nèi)部水分擴散控制的[41]。不同干燥條件下的水分有效擴散系數(shù)Deff計算結(jié)果如表3所示。
圖3 茄子片在不同干燥條件下的干燥速率曲線Fig.3 Drying rate curves of eggplant slices under different drying conditions
表3 線性回歸擬合公式和水分有效擴散系數(shù)Table 3 Linear regression formulas and effective moisture diffusion coefficients of eggplant slices
由表3可以看出,茄子片的水分有效擴散系數(shù)范圍在(2.74~7.75)×10-9m2/s。由表2極差分析結(jié)果可知,切片厚度的極差值最大,因此,切片厚度是影響茄子片干燥的主要決定因素,可以得到水分有效擴散系數(shù)隨切片厚度的增加整體呈增加趨勢。這可能是因為切片越厚,水分的遷移路徑增加導致的結(jié)果[38]。
2.6 茄子片在不同干燥條件下的微觀結(jié)構(gòu)
不同干燥條件下干燥茄子切片的表面組織結(jié)構(gòu)如圖4所示。從圖4中可以看出,乙醇處理的茄子切片干燥后其微觀結(jié)構(gòu)出現(xiàn)較多蜂窩狀結(jié)構(gòu);溫度較高時,干燥后茄子切片表面的蜂窩狀結(jié)構(gòu)更多且微孔直徑也增大。這可能是因為乙醇處理后,茄子內(nèi)部組織中的水分由于乙醇與水的替換而且乙醇易揮發(fā),干燥時受熱迅速氣化,體積膨脹,使物料內(nèi)部孔隙結(jié)構(gòu)擴充,而使茄子內(nèi)部組織的微孔變大[20];而干燥溫度較高時,切片茄子表面由于快速失水而結(jié)殼硬化,隨著干燥的進行物料溫度逐漸升高物料內(nèi)外的蒸汽壓力梯度也逐漸增大,當茄子切片內(nèi)部水分的蒸汽壓力大于其組織的結(jié)合應力時,就會將原來的組織破壞而產(chǎn)生新的結(jié)構(gòu)致使其組織微孔增大。這一結(jié)論與之前的研究有相似之處。同時,進一步佐證了經(jīng)高溫處理的干制茄子片復水比低的特性。Deng和Zhao[43]認為干燥過程中物料不同組織結(jié)構(gòu)的溫度梯度、壓力梯度、溶質(zhì)濃度梯度以及化學反應(如淀粉糊化或凝膠)均可破壞物料的組織結(jié)構(gòu)。Musielak[44]研究發(fā)現(xiàn)干燥失水會導致組織結(jié)構(gòu)變形,引起局部應力,當應力積累到超過組織結(jié)構(gòu)之間的結(jié)合力時,組織就會被撕裂或產(chǎn)生變形,尤其是干燥速度較快時比較明顯。
圖4 不同干燥條件下茄子的微觀結(jié)構(gòu)Fig.4 Microstructure of eggplant under different drying conditions
1)茄子切片厚度、干燥溫度、預處理乙醇體積分數(shù)3個因素對干燥時間的影響順序由大到小依次為:切片厚度>干燥溫度>預處理乙醇體積分數(shù);對復水比的影響順序為:預處理乙醇體積分數(shù)>切片厚度>干燥溫度;對明亮度影響順序為:切片厚度>預處理乙醇體積分數(shù)>干燥溫度。
2)綜合考慮各指標因素,溫度為65℃,預處理乙醇體積分數(shù)為15%時,切片厚度為1.0 cm時,干燥茄子片的干燥時間為225 min,復水比RR為4.93,明亮度為88.24,其干燥速率較高、品質(zhì)較好。
3)茄子片干燥屬于降速干燥,可以通過費克第二定律得出茄子片的水分有效擴散系數(shù)范圍在(2.74~7.75)×10-9m2/s。
4)乙醇處理對干燥后茄子片的微觀結(jié)構(gòu)有較大影響,將乙醇用于干燥前的預處理可以改善干后物料的外觀品質(zhì)。
[1] Gramazio P, Prohens J, Plazas M, et al. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidasegenes in a new interspecific anchored linkage map of eggplant[J]. BMC PlantBiology, 2014, 14(1): 350-365.
[2] 魏好程,湯鳳霞,沈塞群. 茄子多酚氧化酶特性及控制研究[J]. 食品研究與開發(fā),2009,30(6):48-52. Wei Haocheng, Tang Fengxia, Shen Saiqun. Study on the activity and the inhibitor of the polyhenol oxidase from eggplant[J]. Food Research and Development, 2009, 30(6): 48-52.
[3] 張慜,王成芝,李春麗,等. 茄子脫水工藝及模型研究[J].東北農(nóng)業(yè)大學學報,1993,24(4):366-370. ZhangMin, Wang Chengzhi, Li Chunli, et al. Research on drying technology and model of eggplant[J]. Journal of Northeast Agriculture College, 1993, 24(4): 366-370. (in Chinese with English abstract)
[4] 劉春麗,陳欲云. 鮮切茄子酶促褐變的過氧化物酶的特性研究[J]. 四川理工學院學報:自然科學版,2012,25(2):8-11. Liu Chunli, Chen Yuyun. Study on the characteristics of enzyme browning of peroxidase in fresh-cut eggplant[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2012, 25(2): 8-11. (in Chinese with English abstract)
[5] Zhang Lili, Wang Xiangyou, Yu Long, et al.Drying characteristics and color changes of infrared drying eggplant[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(Supp 2): 291-296.
[6] Ertekin C, Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model[J]. Journal of Food Engineering, 2004, 63(3): 349-359.
[7] Xiao Hongwei, Yao Xuedong, Lin Hai, et al. Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices[J]. Journal of Food Process Engineering, 2012, 35(3): 370-390.
[8] 畢金峰,方芳,丁媛媛,等. 預處理對哈密瓜變溫壓差膨化干燥產(chǎn)品品質(zhì)的影響[J]. 食品與機械,2010,26(2):15-18. Bi Jinfeng, Fang Fang, Ding Yuanyuan, et al. Effect of different pretreatments on the product quality ofexplosion puffing drying for hami-melon[J]. Food and Machinery, 2010, 26(2): 15-18. (in Chinese with English abstract)
[9] 徐新風,張英麗,陳計巒,等. 不同干燥方式對無核紫葡萄干品質(zhì)的影響[J]. 農(nóng)產(chǎn)品加工:創(chuàng)新版,2010(10):48-50. Xu Xinfeng, Zhang Yingli, Chen Jiluan, et al. The effect of quality for seedless purple raisins by different drying methods[J]. Innovational Edition of Farm Products Processing, 2010(10): 48-50. (in Chinese with English abstract)
[10] Pahlavanzadeh H, Basiri A, Zarrabi M. Determination of parameters and pretreatment solution for grape drying[J]. Drying technology, 2001, 19(1): 217-226
[11] 張慜,王成芝,李春麗. 茄子滲透脫水及滲后干燥的研究[J].農(nóng)業(yè)工程學報,1992,8(4):97-101. Zhang Min, Wang Chengzhi, Li Chunli. Study on osmoite dehydration and osmosed drying of eggplant[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1992, 8(4): 97-101. (in Chinese with English abstract)
[12] 劉春菊,王海鷗,劉春泉,等. 預處理對氣流膨化干燥黃桃丁品質(zhì)的影響[J]. 食品工業(yè)科技,2016,37(3):251-255. Liu Chunju, Wang Haiou, Liu Chunquan, et al. Effect of pretreatment on product quality ofexplosion puffing drying yellow peach[J]. Science and Technology of Food Industry, 2016, 37(3): 251-255. (in Chinese with English abstract)
[13] Vásquez-Parra J E, Ochoa-Martínez C I, Bustos-Parra M. Effect of chemical and physical pretreatments on the convective drying of cape gooseberry fruits(Physalis peruviana)[J]. Journal of Food Engineering, 2013, 119(3): 648-654.
[14] Falade K O, Solademi O J. Modelling of air drying of fresh and blanched sweet potato slices[J]. International Journal of Food Science and Technology, 2010, 45(2): 278-288.
[15] Demirel D, Turhan M. Air-drying behavior of Dwarf Cavendish and Gros Michel banana slices[J]. Journal of Food Engineering, 2003, 59(1): 1-11.
[16] 鄧云,吳穎,李云飛. 黃花菜燙漂過程中維生素C降解動力學研究[J]. 食品工業(yè)科技,2006,27(12):53-54. Deng Yun, Wu Ying, Li Yunfei. Study on the degradation kinetics of Vc in Hemarocalliscitrina Baroni during blanching[J]. Science and Technology of Food Industry, 2006, 27(12): 53-54. (in Chinese with English abstract)
[17] Xin Y, Zhang M, Xu B, et al. Research trends in selected blanching pretreatments and quick freezing technologies as applied in fruits and vegetables: A review[J]. International Journal of Refrigeration, 2015, 57(9): 11-25.
[18] 辛愛玲,崔援軍. 硫磺熏制對山藥中二氧化硫殘留量的影響[J]. 安徽醫(yī)藥,2008,12(5):421-422. Xin Ailing, Cui Yuanjun. The influence of sulphur fuming on the Sulphur dioxide’s remaining quantity in dioscoreaopposita thumb[J]. Anhui Medical and Pharmaceutical Journal, 2008, 12(5): 421-422. (in Chinese with English abstract)
[19] 楊春城,古能平,侯文賢. 硫處理在果蔬保鮮與加工中的利與弊[J]. 保鮮與加工,2004,4(4):37-38. Yang Chuncheng, GuNengping, HouWenxian. Action and application of sulphur treatment preservation and processing of fruit and vegetable[J]. Storage and Process, 2004, 4(4): 37-38. (in Chinese with English abstract)
[20] Silva M A, Braga AMP, Santos P H S. Enhancement of fruit drying the ethanol effect[C]//18th International Drying Symposium, Xiamen, 2012(11): 11-15.
[21] Santos PHS,Silva MA. Kinetics of L-ascorbic acid degradation in pineapple drying under ethanolic atmosphere[J]. Drying Technology, 2009, 27(9): 947-954.
[22] CorrêaJ LG,Braga AMP. The influence of ethanol on the convective drying of unripe, ripe, and overripe bananas[J]. Drying Technology, 2012, 30(8): 817-826.
[23] Azimi A, Tavakoli T, Beheshti H K, et al. Experimental study on eggplant drying by an indirect solar dryer and open sun drying[J]. Iranica Journal of Energy & Environment, 2012, 3(4): 348-354.
[24] Brasiello A, Adiletta G, Russo P, et al. Mathematical modeling of eggplant drying: shrinkage effect[J]. Journal of Food Engineering, 2013, 114(1): 99-105.
[25] 張茜,肖紅偉,代建武,等. 哈密瓜片氣體射流沖擊干燥特性和干燥模型[J]. 農(nóng)業(yè)工程學報,2011,27(增刊1):382-388. Zhang Qian, Xiao Hongwei,DaiJianwu, et al. Air impingement drying characteristics and drying model of Hami melon flake[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 382-388. (in Chinese with English abstract)
[26] Xiao Hongwei, Law C L, Sun Dawen, et al. Color change kinetics of american ginseng (panaxquinquefolium) slices during air impingement drying[J]. Drying Technology, 2014, 32(4): 418-427.
[27] Doymaz ?. An Experimental study on drying of green apples[J]. Drying Technology, 2009, 27: 478-485.
[28] Xiao Hongwei, Pang Changle, Wang Lihong,et al. Drying kinetics and quality of Monukka Seedless grapes dried in an air-impingement jet dryer[J]. Biosystems Engineering, 2010, 105(2): 233-240.
[29] 婁正,高振江,肖紅偉,等. 板栗氣體射流沖擊干燥特性和工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2010,26(11):368-373. Lou Zheng, Gao Zhenjiang, Xiao Hongwei, et al. Air impingement drying characteristics and process optimization of chestnut[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 368-373. (in Chinese with English abstract)
[30] 張衛(wèi)鵬,高振江,肖紅偉,等. 基于Weibull 函數(shù)不同干燥方式下的茯苓干燥特性[J]. 農(nóng)業(yè)工程學報,2015,31(5):317-324. Zhang Weipeng, Gao Zhenjiang, Xiao Hongwei, et al. Drying characteristics of poriacocos with different drying methods basedon Weibull distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 317-324. (in Chinese with English abstract)
[31] Doyamz I. Air-drying characteristics of tomtoes[J]. Journal of Food Engineering, 2007, 78(4) : 1291-1297.
[32] Di Matteo M, Cinquanta L, Galiero G, et al. Effect of a novel physical pretreatment process on the dryingkinetics of seedless grapes[J]. Journal of Food Engineering, 2000, 46(2): 83-89.
[33] Srikiatden J, Roberts JS. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying[J]. Journal of Food Engineering, 2006, 74(1): 143-152.
[34] Xiao Hongwei, Bai Junwen, Xie Long, et al. Thin-layer air impingement drying enhances drying rate of American ginseng (Panaxquinquefolium L.) slices with quality attributes considered[J]. Food and Bioproducts Processing, 2015, 94(2): 581-591.
[35] Dai Jianwu, Rao Junquan, Wang Dong, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(3): 365-376.
[36] Xiao Hongwei, Lin Hai, Yao Xuedong, et al. Effects of different pretreatments on drying kinetics and quality of sweet potato bars undergoing air impingement drying[J]. International Journal of Food Engineering, 2009, 5(5): 1-17.
[37] Doyamz I. Air-drying characteristics of tomtoes[J]. Journal of Food Engineering, 2007, 78(4) : 1291-1297.
[38] Doymaz I. Effect of dipping treatment on air drying of plums[J]. Journal of Food Engineering, 2004, 64(6): 465-470.
[39] 肖紅偉,張世湘,白竣文,等. 杏子的氣體射流沖擊干燥特性[J]. 農(nóng)業(yè)工程學報,2010,26(7):318-323. Xiao Hongwei, Zhang Shixiang, Bai Junwen, et al. Air impingement drying characteristics of apricot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 318-323.
[40] Xiao Hongwei, Gao Zhenjiang,Lin Hai, et al. Air impingement drying characteristics and quality of carrot cubes[J]. Journal of Food Process Engineering, 2010, 33(5): 899-918.
[41] 巨浩羽,肖紅偉,白竣文,等. 蘋果片的中短波紅外干燥特性和色澤變化研究[J]. 農(nóng)業(yè)機械學報,2013,44(增刊2):186-191. Ju Haoyu, Xiao Hongwei, Bai Junwen, et al. Medium and short wave infrared drying characteristics and color changing of apple slices[J]. Transactions of the ChineseSociety for Agricultural Machinery, 2013, 44(Supp.2): 186-191. (in Chinese with English abstract)
[42] Braga A M P, Pedroso M P, Augusto F, et al. Volatiles identification in pineapple submitted to drying in an ethanolic atmosphere[J]. Drying Technology, 2009, 27(2): 248-257.
[43] Deng Yun, Zhao Yanyun.Effect of pulsed vacuum and ultrasound osmopretreatments on glass transitiontemperature, texture, microstructure and calcium penetrationof dried apples (Fuji)[J]. LWT-FoodScience and Technology, 2008, 41(9): 1575-1585.
[44] Musielak G. International stresses caused by outflow of moisture and phase change inside driedmaterial[J]. Drying Technology, 1996, 14(2): 289-306.
Effect of ethanol dipping pretreatment on drying characteristics and quality of eggplant slices
Zhao Haiyan1, Fang Xiaoming2, Wang Jun1, Ju Haoyu1, Zhang Yuejing1, Chen Xingfu1, Zhang Qian3, Liu Yanhong1, Gao Zhenjiang1, Xiao Hongwei1※
(1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. Bee Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100093, China; 3. College of Mechanical and Electric Engineering, Shihezi University, Shihezi 832000, China)
Because the eggplant is widely planted all over the country, but the moisture content of fresh eggplant is high and the shelf life is short, so harvested eggplants should be dried and dehydrated in time. How to achieve high-quality dried products is one of the important directions in drying research. Chemical impregnation process is a novel pretreatment technology, and ethanol is chosen as a chemical, which has many advantages, such as fast penetration, easy to evaporate, no chemical residues and harmless to human body, and has been applied to the pretreatment of fruit and vegetable. In order to improve the drying quality of eggplant slices and shorten the drying time, the eggplant slices were dipped in ethanol before hot air drying. The effects of different drying temperature (45, 55 and 65℃), ethanol concentration (0, 5% and 15%) in pretreatment and slice thickness (1.0, 1.5 and 2.0 cm) on drying rate, color, rehydration ratio and microscopic structure were investigated through the orthogonal experiments in this paper. Results showed that drying temperature, ethanol concentration in pretreatment and sample thickness had significant (P<0.05) effects on the drying processing. In addition, the sample thickness was most significant, followed by drying temperature and ethanol concentration in pretreatment. The drying time decreased with the increase of temperature, increased with the increase of slice thickness of the eggplant, and decreased first and then increased with the increase of alcohol concentration in pretreatment. The whole drying process was a kind of falling-rate drying. According to Fick’s Second Law, the water effective diffusion coefficient was determined, which ranged from 2.74×10-9to 7.75×10-9m2/s. The sample thickness had greater impact (P<0.05) on the rehydration ratio compared with the drying temperature and ethanol concentration, and the rehydration ratio decreased as the sample thickness increased. The ethanol concentration in pretreatment had important influence (P<0.05) on color parameters of dried eggplant slices, but the effects of eggplant thickness and drying temperature on the color and lustre were not significant, which were far less than that of ethanol concentration in pretreatment on the color and lustre. And the pretreatment with ethanol also could change the microstructure and appearance quality of the dried samples. After eggplant was dipped in ethanol with low concentration, its moisture would be faster evaporated and the internal free water would be sent out in the drying process, and the drying rate was improved. And after eggplant was impregnated with high-concentration ethanol, ethanol made eggplant’s internal nutrient composition change, which resulted in its structure more compact, and prevented moisture migration in the process of drying. Taking account of the drying rate and quality attributes, drying at 55℃, with ethanol concentration of 15% and sample thickness of 1.5 cm were recommended as the most favorable conditions for eggplant slice drying. In this drying condition, drying time, rehydration ratio and lightness was 225 min, 4.93 and 88.24, respectively. The present findings indicate that ethanol dipping pretreatment can not only enhance drying rate but also improve color attributes of dried products. The results provide a theoretical reference for the rapid drying of high-quality eggplant slices.
drying; optimization; quality control; eggplant slice; ethanol dipping pretreatment; rehydration ratio; color parameters; microstructure
10.11975/j.issn.1002-6819.2016.09.033
TS255.36; TS255.52
A
1002-6819(2016)-09-0233-08
趙海燕,方小明,王 軍,巨浩羽,張月敬,陳興付,張 茜,劉嫣紅,高振江,肖紅偉. 乙醇浸漬對切片茄子干燥特性和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2016,32(9):233-240.
10.11975/j.issn.1002-6819.2016.09.033 http://www.tcsae.org
Zhao Haiyan, Fang Xiaoming, Wang Jun, Ju Haoyu, Zhang Yuejing, Chen Xingfu, Zhang Qian, Liu Yanhong, Gao Zhenjiang, Xiao Hongwei. Effect of ethanol dipping pretreatment on drying characteristics and quality of eggplant slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 233-240. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.033 http://www.tcsae.org
2015-12-25
2016-03-22
國家自然科學基金項目(31501548,31360399,31201436)和國家科技支撐項目(2015BAD19B010201)。
趙海燕,女(漢),河南洛陽人,主要從事農(nóng)產(chǎn)品加工及貯藏的研究。北京 中國農(nóng)業(yè)大學工學院,100083。Email:zzhaohaiyann@163.com
※通信作者:肖紅偉,男(漢),河南商丘人,副教授,博士,博士生導師,主要從事農(nóng)產(chǎn)品加工技術(shù)和裝備的研究。北京 中國農(nóng)業(yè)大學工學院,100083。Email:xhwcaugxy@163.com