邢旭光,馬孝義,康端剛
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100;2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100)
鹽陽離子類型及濃度對土壤持水及干縮開裂的作用效果
邢旭光,馬孝義※,康端剛
(1. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100;2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100)
為探索陽性鹽離子對土壤持水性能的影響,同時定量分析失水過程所致的土體收縮及裂縫特征,選取陜西粉黏壤土作為供試土壤,分別采用含有K+、Na+、Ca2+和Mg2+4種離子的鹽溶液(濃度均為5、30和100 g/L)對土樣進(jìn)行飽和處理,采用離心機(jī)法測定土-水曲線,進(jìn)一步對土壤持水能力進(jìn)行評價;同時測定土體沉降高度,采用數(shù)字圖像處理技術(shù)獲取面積密度和長度密度等裂隙度量指標(biāo),對土體收縮和開裂水平進(jìn)行定量分析。結(jié)果發(fā)現(xiàn):1)van Genuchten模型適用于鹽溶液浸泡土壤的土-水曲線擬合;2)4種鹽離子均基本導(dǎo)致土壤持水能力降低(5 g/L Na+除外),且持水性與離子濃度呈負(fù)相關(guān)關(guān)系;同時使得土壤飽和含水率、殘余含水率和進(jìn)氣吸力降低,其中土壤飽和含水率與離子濃度呈負(fù)相關(guān)關(guān)系;3)K+和高濃度Na+有利于減輕土壤軸向收縮度,且土體軸向收縮應(yīng)變與K+(P<0.01)和Na+(P<0.05)濃度呈負(fù)相關(guān)關(guān)系;在收縮過程中,不同離子對土壤容重的影響程度表現(xiàn)為Mg2+>Ca2+>Na+>K+;4)4種離子均可減輕土壤開裂程度,且裂縫面積密度和長度密度與K+(P<0.01)、Na+(P<0.01)和Ca2+(P<0.05)濃度呈負(fù)相關(guān)關(guān)系,與Mg2+濃度呈正相關(guān)關(guān)系(P<0.01)。研究可為鹽堿土壤持水能力評價、制定灌溉制度提供參考。
土壤;水分;鹽分;土壤持水;干縮裂縫;鹽離子
土壤孔隙大小及其分布特征評價對于分析土壤中水分的保持和運(yùn)動、植物根系的發(fā)育和生長等方面均具有重要作用,土壤持水性和保水性又是確定田間灌溉方式(例如低頻多灌、高頻少灌)的重要依據(jù)[1-2];然而這些均可以從土壤水分特征曲線(以下簡述“土-水曲線”)獲知,它是研究土壤水分運(yùn)動和溶質(zhì)運(yùn)移特性等問題的基礎(chǔ)[3-4]。目前已有較多關(guān)于土-水曲線擬合[5-6]、影響因素[7-8]與應(yīng)用[9]以及水力參數(shù)推求與優(yōu)化[10-11]等方面的研究,但多是基于土壤水為淡水或非鹽堿土開展的。然而在極端干旱且地下水埋深較淺地區(qū),地下水礦化度通常較高,可達(dá)到(n×10)g/L甚至高達(dá)(n×100)g/L[12],關(guān)于鹽堿土壤的土-水曲線測定和水力參數(shù)的研究較少。中國鹽堿地面積廣闊,鹽漬化土中的可溶性鹽類常以鹽基形式存在,并以K+、Na+、Ca2+、Mg2+最為常見,鹽基離子濃度過高對土壤本身及作物均會產(chǎn)生較大危害[13],而有關(guān)不同鹽離子對土壤土-水曲線和土壤水分特征參數(shù)影響的研究鮮有報道。明晰鹽離子對土壤持水能力的影響,將有利于根據(jù)鹽堿地類型同時結(jié)合作物生長特性因地制宜地制定灌溉制度以及確定洗鹽方式。
農(nóng)田土壤具有干縮濕脹特性,在極端干旱和降雨分配不均勻地區(qū),常常因為陽光暴曬或土壤干濕交替而導(dǎo)致農(nóng)田出現(xiàn)裂縫[14]。農(nóng)田土壤干縮裂縫的產(chǎn)生對土壤結(jié)構(gòu)及入滲性能具有顯著影響,極易造成土壤水分和養(yǎng)分遷移特性發(fā)生改變,從而導(dǎo)致養(yǎng)分流失以及地下水位升高[15];在鹽堿土地區(qū),則更易發(fā)生地下水污染和作物根系發(fā)育不良等問題[16]。以往的研究中,張衛(wèi)國等[17]、Lima 等[18]和Pauchard等[19]均展開了土壤鹽分對裂縫特征影響的研究,但主要集中于總含鹽量的影響,忽略了不同鹽離子各自產(chǎn)生的效應(yīng)。對不同鹽離子所致的土壤開裂特征及裂縫形成規(guī)律進(jìn)行研究,對提升鹽堿土干縮開裂特性的認(rèn)知水平具有重要作用,可進(jìn)一步認(rèn)識鹽堿土的干縮開裂機(jī)理并為鹽堿地區(qū)的農(nóng)田灌溉和工程實踐(例如防治土壤和地下水污染)提供指導(dǎo)。
在已有研究成果基礎(chǔ)上,擴(kuò)展不同陽性鹽離子及濃度對土壤持水和收縮特性影響的研究。本研究將分別采用含有K+、Na+、Ca2+、Mg2+的鹽溶液對土樣進(jìn)行飽和處理:1)采用離心機(jī)法測定土-水曲線,進(jìn)而對土壤持水能力進(jìn)行評價;2)利用RETC軟件進(jìn)行水力參數(shù)擬合,探討4種離子對曲線參數(shù)的影響;3)采用線縮率和軸向收縮應(yīng)變對失水過程中土體收縮特征進(jìn)行定量分析;4)采用土壤裂縫面積密度和裂縫長度密度對土壤開裂水平進(jìn)行評價。據(jù)此探索K+、Na+、Ca2+和Mg2+對土壤持水能力、土壤水力參數(shù)、土體收縮特性以及開裂程度的影響。
1.1 供試材料
供試土壤取自當(dāng)?shù)剞r(nóng)田耕作層,采集深度為30 cm;土壤經(jīng)風(fēng)干、過2 mm篩后,采用激光粒度儀(Mastersizer-2000型,英國)測定土壤顆粒組成:粒徑<0.002、≥0.002~0.02和≥0.02~2 mm的土壤顆粒質(zhì)量分?jǐn)?shù)分別為17.28%、44.32%和38.40%,按國際制土壤分類方法,土壤類型為粉黏壤土;主要黏土礦物為蒙脫石;初始土樣分別僅含有K+和Mg2+為9.80和9.28 μg/mL。
為研究K+、Na+、Ca2+和Mg2+對土壤水分特征曲線及土壤收縮特性的影響,選取氯化鉀、氯化鈉、氯化鈣和氯化鎂4種晶體/粉末分別溶于蒸餾水中,并分別配制成不同濃度鹽溶液對土樣進(jìn)行浸泡。
1.2 試驗設(shè)計與方法
田間實測容重為1.38~1.40 g/cm3,據(jù)此設(shè)置試驗土壤干容重為1.40 g/cm3;將已風(fēng)干且過篩土壤按設(shè)定容重裝入環(huán)刀內(nèi)。將4種試劑按照咸水、鹽水和鹵水標(biāo)準(zhǔn),各配制成5、30和100 g/L(分別記作Na-5、Na-30、Na-100,其余類似),無溶質(zhì)添加溶液(濃度≈0,視為淡水)作為對照組(CK)。試驗開始前將環(huán)刀樣品置于配制好的溶液中進(jìn)行飽和處理48 h;試驗結(jié)束后置于105℃恒溫箱內(nèi)干燥至恒質(zhì)量,以計算土壤含水率。各處理均4次重復(fù)(離心機(jī)每次測4個樣品),取其均值作為結(jié)果。本試驗中土體失水是由離心所致,并非自然蒸發(fā),故無需設(shè)置自然風(fēng)干試驗,而以蒸餾水浸泡處理作為對照即可。
將飽和環(huán)刀樣品置于高速恒溫冷凍離心機(jī)(CR21GⅡ型,日本)內(nèi)測定土壤水分特征曲線,離心機(jī)內(nèi)恒溫4℃,吸力范圍為10~7 000 cm,隨著吸力增加,離心過程的時間也隨之增加,本試驗選定的吸力為10、50、100、300、500、700、1 000、3 000、5 000和7 000 cm,對應(yīng)的平衡時間分別為10、17、26、42、49、53、58、73、81和85 min,對應(yīng)的當(dāng)量孔徑d分別為0.3、0.06、0.03、0.01、0.006、0.0043、0.003、0.001、0.0006和0.0004 mm;每達(dá)到平衡時間后,用電子天平稱取土樣質(zhì)量、用游標(biāo)卡尺測定環(huán)刀內(nèi)土樣沉降高度,進(jìn)而計算土體形變量以及土壤容重和收縮情況;試驗結(jié)束時,用數(shù)碼相機(jī)拍攝環(huán)刀截面圖像。
1.3 分析方法
1.3.1 土-水曲線van Genuchten擬合模型
式中θ為體積含水率,cm3/cm3;θs為飽和體積含水率,cm3/cm3;θr為殘余體積含水率,cm3/cm3;s為吸力,cm;α為進(jìn)氣吸力的倒數(shù)(即α=1/sa,sa為進(jìn)氣吸力);m和n為形狀系數(shù)。
1.3.2 土體收縮應(yīng)變
隨著離心機(jī)吸力增加,土樣持續(xù)發(fā)生失水現(xiàn)象,并伴隨土體高度減小,即發(fā)生軸向收縮。采用線縮率和軸向收縮應(yīng)變2個指標(biāo)對土壤收縮特征進(jìn)行定量分析,分別按式(2)、式(3)計算。
式中δsl為土體線縮率,%;δs為土體軸向收縮應(yīng)變,%;zi為各吸力對應(yīng)的土壤收縮量,mm;H為土樣初始高度,mm;Δh為土壤脫水始末狀態(tài)高度差,mm。
1.3.3 土體裂縫觀測與處理
試驗結(jié)束時用數(shù)碼相機(jī)拍攝樣品截面圖像,將相機(jī)置于固定支架以保證拍攝高度相同,且拍攝時僅用日光燈照明以排除外界光源或閃光燈對土壤裂縫圖像的影響;用MATLAB軟件對圖像中的裂縫參數(shù)進(jìn)行提取。
在原有的數(shù)字圖像中,裂縫區(qū)域圖像較無裂縫區(qū)域色彩黑且純度高,鑒于飽和度分量圖可以更明顯地凸顯土壤裂縫,因此將原有的三原色圖像(即RGB圖像,R:red,紅色;G:green,綠色;B:blue,藍(lán)色)進(jìn)行彩色空間轉(zhuǎn)換(即HSI轉(zhuǎn)換,H:hue,色彩;S:saturation,飽和度;I:intensity,強(qiáng)度),提取飽和度分量圖并采用全局閾值法得到土壤裂縫的二值化圖。在此基礎(chǔ)上,為了盡量保留原始的短小裂縫,利用膨脹腐蝕方法對短小裂縫進(jìn)行適當(dāng)連接,并去除該圖像中的孤立單點和雜點。最后根據(jù)處理后的土壤裂縫二值化圖像提取裂縫面積密度和裂縫長度密度參數(shù)。
2.1 鹽離子對土壤持水能力的影響
不同離子類型及濃度條件土壤水分特征曲線形態(tài)一致,在土壤脫水過程中均表現(xiàn)為含水率隨吸力增加而減小的趨勢,且在較低吸力段(s<1 000 cm)含水率變化顯著,而在較高吸力段(s≥1 000~7 000 cm)含水率變化不顯著。從圖1可以看出,對于各鹽離子處理,在相同吸力條件下,土壤含水率均表現(xiàn)為隨濃度增加而降低,且基本都較CK小,表明鹽溶液浸泡處理的土壤對水分的吸持能力弱于蒸餾水浸泡處理的土壤,且鹽溶液濃度越高則土壤持水性越弱。
對于K+溶液浸泡處理:在吸力>10~7 000 cm,即當(dāng)量孔徑>0.0004~0.3 mm范圍內(nèi),K-5與CK處理土-水曲線基本重合,由此可知,此濃度并未明顯改變土壤孔隙結(jié)構(gòu);K-30和K-100處理土壤含水率比CK分別降低3.39%~9.13%(均值6.84%)和10.82%~29.47%(均值21.42%),土壤持水能力明顯減弱。對于Na+溶液浸泡處理:Na-30 和Na-100處理土壤含水率比CK分別降低9.53%~18.28%(均值14.25%)和15.66%~36.97%(均值26.35%),顯著降低了土壤持水能力;而對于Na-5處理,當(dāng)吸力大于100 cm時,土壤持水能力有所增強(qiáng)。對于Ca2+溶液浸泡處理:在吸力>10~7 000 cm,即當(dāng)量孔徑>0.0004~0.3 mm范圍內(nèi),Ca-5、Ca-30和Ca-100處理土壤含水率比CK分別降低6.05%~11.11%(均值8.15%)、9.30%~16.35%(均值12.81%)和14.46%~44.59%(均值29.26%)。由此可知,此3種Ca2+濃度均易導(dǎo)致土壤中孔隙數(shù)量增加或孔隙體積增大,從而使得土壤持水能力減弱。對于Mg2+溶液浸泡處理:3種處理土-水曲線近似重合,Mg-5、Mg-30和Mg-100處理土壤含水率相差不大,比CK分別降低3.07%~7.96%(均值4.65%)、5.38%~10.34%(均值6.71%)和1.90%~8.14%(均值5.85%)。由此可知,此3種Mg2+濃度均易導(dǎo)致土壤持水性減弱,但對土壤孔隙結(jié)構(gòu)的改變不顯著,這與其余3種離子不同。
2.2 鹽離子對土-水曲線模型參數(shù)的影響
采用RETC軟件對各處理土-水曲線進(jìn)行擬合從而獲得水力參數(shù),由表1可知,土壤含水率實測值與擬合值相差較小,VG模型擬合決定系數(shù)R2均大于0.99。表明各處理的土-水曲線擬合效果良好,均滿足精度要求,可知VG模型適用于K+、Na+、Ca2+和Mg2+溶液浸泡土壤的土-水曲線擬合。
圖1 不同陽性鹽離子濃度下土壤水分特征曲線Fig.1 Soil water characteristic curves for different salt cation treatments
表1 van Genuchten模型水力參數(shù)擬合值Table 1 Fitted values of hydraulic parameters based on van Genuchten model
鹽溶液浸泡處理過的土樣的飽和含水率(θs)基本均低于蒸餾水浸泡處理,可知對土壤進(jìn)行鹽溶液飽和處理在一定程度上可以降低θs,且θs隨鹽離子濃度增加而整體呈現(xiàn)降低趨勢。分析其原因認(rèn)為,鹽離子在一定程度上會破壞土壤結(jié)構(gòu),進(jìn)而阻礙土壤團(tuán)聚體凝聚,造成團(tuán)聚體數(shù)量減小,從而導(dǎo)致土壤飽和含水率降低;隨著溶液濃度增加,即鹽離子含量升高,土壤團(tuán)聚體進(jìn)一步被破壞,數(shù)量逐漸減小,使得土壤飽和含水率隨鹽溶液濃度增加而降低[20]。對于殘余含水率(θr)和進(jìn)氣吸力(sa),鹽溶液浸泡處理土壤的θr和sa值較蒸餾水浸泡處理(CK)均整體出現(xiàn)降低趨勢,但θr和sa與鹽離子濃度不存在明顯單調(diào)增減關(guān)系。鹽溶液浸泡后,土壤溶液濃度增加,土壤吸著水減少,導(dǎo)致θr降低;從圖1可知,鹽離子可導(dǎo)致土壤持水能力減弱,即sa降低。
2.3 鹽離子對土壤收縮特性的影響
在離心過程中土壤容重顯著增加,當(dāng)離心結(jié)束時,K+、Na+、Ca2+和Mg2+溶液浸泡處理土壤干容重分別較預(yù)設(shè)容重平均增加了0.372、0.417、0.422和0.440 g/cm3??梢?種陽性鹽離子對土壤容重變化具有不同程度的影響,具體表現(xiàn)為Mg2+>Ca2+>Na+>K+。各處理土壤線縮率均隨吸力增加而呈現(xiàn)對數(shù)型增長趨勢(R2>0.9),且其增加過程大致可劃分為3個階段,即s>10~100 cm、s>300~1 000 cm和s>3 000~7 000 cm;通過線縮率對吸力的導(dǎo)數(shù)可知,線縮率隨吸力的變化率分別為0.0220、0.0058和0.0008 cm-1,即土壤收縮度的增加速率逐漸降低。
對于線縮率-吸力曲線(即δsl-s曲線),參數(shù)a表示土壤幾何收縮量隨吸力變化而變化的程度,參數(shù)b表示當(dāng)接近飽和時土壤膨脹或收縮的變化[21]。從表2可以看出,各處理的土壤δsl-s曲線中,參數(shù)a大小表現(xiàn)為K-5>K-30>K-100、Na-5>Na-30>Na-100、Ca-5>Ca-100>Ca-30、Mg-100>Mg-30>Mg-5,這與各處理土體收縮應(yīng)變的變化是一致的;參數(shù)b均小于0,表明土壤在接近飽和時發(fā)生膨脹,這與土壤干縮濕脹特征吻合。與CK處理相比,不同離子及濃度對土壤收縮程度具有不同程度影響,具體表現(xiàn)為土體軸向收縮應(yīng)變存在差異。表2顯示,K+和高濃度Na+均有利于減小土壤軸向沉降程度,而低濃度Mg2+有這一趨勢,這對于保護(hù)根系完整和維護(hù)地基穩(wěn)定具有重要作用,然而土壤鹽分過多將導(dǎo)致作物發(fā)生鹽分脅迫,影響作物正常生長,這就需要對鹽堿土進(jìn)行洗鹽評價及綜合研究[22]。
土體軸向收縮應(yīng)變與鹽離子濃度的相關(guān)分析表明,δs與K+和Na+濃度呈現(xiàn)較好的負(fù)相關(guān)關(guān)系,r=?0.924 (P<0.01)和r=?0.657(P<0.05),與Ca2+濃度關(guān)系不顯著(r=?0.176)、與Mg2+濃度呈現(xiàn)正相關(guān)關(guān)系(r=0.556),且與二者無顯著相關(guān)性(表3)。由此可知,增加K+含量在一定程度上可以減輕土壤收縮程度,同時K+作為常規(guī)營養(yǎng)元素亦可促進(jìn)作物生長,因此,在作物可吸收K+濃度范圍內(nèi)可以增加K+含量以緩解土壤收縮,但需防止土壤溶液濃度過大導(dǎo)致根系細(xì)胞失水。增加Na+含量雖然也可以適當(dāng)緩解土壤收縮,但高濃度Na+極易引發(fā)土壤次生鹽堿化問題,因此,在鹽堿土壤地區(qū)對于耐鹽堿作物而言,在其耐鹽閾值內(nèi)可通過提高Na+濃度使得土壤結(jié)構(gòu)疏松。
表2 不同陽性鹽離子濃度下土壤收縮特性Table 2 Soil shrinkage for treatments saturated by different types and concentrations of salt cation
2.4 鹽離子對土壤裂隙的影響
土壤裂隙的發(fā)育表現(xiàn)出隨機(jī)性,當(dāng)一級裂隙成熟后,在此基礎(chǔ)上逐漸出現(xiàn)長度和寬度各不相同的若干裂隙,最終眾多裂隙相交從而停止發(fā)育(參見圖2)。在飽和度分量圖(本文省略)基礎(chǔ)上進(jìn)行短小裂隙拼接和單點去除,從二值化土壤裂隙圖像(圖2)可以看出,不同離子及濃度浸泡處理土壤裂隙數(shù)量、長度和分布特征均存在較大差異,表現(xiàn)出離子類型及濃度對土壤收縮特性具有不同程度的影響;其中,Na+在減少裂隙方面具有較好效果,裂縫面積較小,而Mg2+防止土壤出現(xiàn)裂隙的效果較差,導(dǎo)致土壤出現(xiàn)裂縫的面積和長度均較大,這從表2也可以得到證實。
采用裂隙面積密度和長度密度指標(biāo)對各處理土壤裂縫特征進(jìn)行定量評價。從表2、3看出,與CK處理相比,K+和Na+浸泡處理的裂隙評價指標(biāo)值有所減小,且隨K+和Na+濃度增加而減??;Mg2+浸泡處理的評價指標(biāo)均表現(xiàn)出隨Mg2+濃度增加而增大趨勢,但隨著濃度繼續(xù)增加,其減少土壤裂隙的效果卻減弱;Ca2+浸泡處理土壤裂隙也有所減少,但土壤裂隙評價指標(biāo)值與Ca2+濃度無明顯相關(guān)性。通過上述分析可知,各處理土壤裂隙面積密度和長度密度變化特征與土體軸向收縮特征具有較好的一致性。
圖2 不同陽性鹽離子濃度下脫水結(jié)束時土壤裂隙示意圖舉例Fig.2 Examples of soil cracks after drying for different salt cation treatments
3.1 鹽離子對土壤持水能力的影響
影響土壤持水性能的因素主要包括土壤鹽分、土壤有機(jī)質(zhì)、土壤結(jié)構(gòu)、土壤總孔隙度及毛管孔隙度等[23]。本研究表明,土壤溶液鹽分含量與土壤持水能力呈現(xiàn)負(fù)相關(guān)關(guān)系,這與郭全恩等[24-25]研究結(jié)果一致;當(dāng)鹽濃度增加時,往往導(dǎo)致土壤有機(jī)質(zhì)含量降低[26-27],同時使得土壤總孔隙度及毛管孔隙度受到不良影響,可見孔隙度隨鹽分離子濃度發(fā)生變化,進(jìn)而對土壤持水能力造成影響[25],故當(dāng)K+、Na+、Ca2+、Mg2+溶液濃度逐漸增加時,土壤持水能力整體出現(xiàn)降低趨勢。對于土壤的吸濕性,在鹽分的影響下,水汽吸附現(xiàn)象不僅是固―氣界面的作用,當(dāng)吸附量達(dá)到一定程度時變?yōu)橐酣D氣界面的相互作用[28],鹽離子導(dǎo)致土壤水分物理性質(zhì)發(fā)生較大變化,鹽分對土壤水汽現(xiàn)象的影響說明了鹽度對土壤持水能力可能帶來的影響。另一方面,鈉質(zhì)土壤中的鹽分易導(dǎo)致土壤結(jié)構(gòu)的分散,而土壤結(jié)構(gòu)體所決定的土壤孔隙組成則是通氣層積鹽的原因之一[28-29],由此一來可溶性鹽對土壤結(jié)構(gòu)的影響進(jìn)入惡性循環(huán),進(jìn)而對土壤持水性能帶來影響。土壤膠體對陽離子的親和力一般表現(xiàn)為隨價態(tài)降低而減弱,離子價態(tài)對土壤膠體穩(wěn)定性具有顯著影響,聚沉能力隨膠體異號離子價數(shù)的增高而增大;價態(tài)相同時,膠體聚沉能力隨水合離子半徑的增加而減弱;相關(guān)研究表明[30],Ca2+和Mg2+對土壤膠體的聚沉能力相同,但土壤有機(jī)質(zhì)可使得Ca2+對土壤膠體聚沉更加有效。李小剛等[31]研究表明,土壤溶液含鹽量增加將導(dǎo)致土壤團(tuán)聚體的穩(wěn)定性顯著降低,且黏粒的分散性增加,這都將導(dǎo)致土壤持水能力發(fā)生改變。這正是導(dǎo)致本研究“浸泡溶液濃度增加使得土壤持水能力降低”的原因之一。另一方面,在土壤溶液中,黏粒表面形成擴(kuò)散電雙層(示意圖參見文獻(xiàn)[32]),而靜電吸力和布朗運(yùn)動共同決定擴(kuò)散電雙層的厚度,且隨溶液濃度、離子價態(tài)和介電常數(shù)等參數(shù)發(fā)生變化[33],從而影響土壤團(tuán)聚體穩(wěn)定性,進(jìn)而使得土壤持水能力出現(xiàn)差異。基于上述分析需指出,本研究中,當(dāng)鹽溶液濃度為5 g/L時,Na+在吸力≤100 cm情況下降低土壤持水能力,在吸力>100 cm情況下則利于土壤持水。這可以從土壤團(tuán)聚體和土壤孔隙體積發(fā)生變化2個方面加以解釋:1)由于低質(zhì)量濃度鈉鹽溶液對形成土壤團(tuán)聚體具有促進(jìn)作用,使得土壤有效孔隙增加,降低了顆粒間的斥力,隨其濃度繼續(xù)升高,過多鈉離子導(dǎo)致土壤黏粒膨脹,使得土壤有效孔隙減少[34];2)基于含水率變化可知,與CK相比,Na-5處理在吸力≤100 cm和吸力>100 cm情況下分別表現(xiàn)為較大孔隙和中等孔隙體積增加和減小。但同時為消除試驗隨機(jī)誤差影響、提高研究可信度,仍需開展低濃度處理試驗進(jìn)行驗證。
3.2 干燥脫水過程中土體收縮及裂縫形成機(jī)理
土體具有壓縮性,即在壓力作用下體積縮小的特性;土體發(fā)生收縮的內(nèi)因主要包括固相礦物本身壓縮、土中液相水的壓縮和土中孔隙的壓縮,其中前兩項可忽略不計,故土體的壓縮變形主要是由于孔隙減小引起的。本研究中環(huán)刀土樣在離心力作用(外因)下,通過土中孔隙的壓縮這一內(nèi)因發(fā)生實際效果。對于初始飽和土體,土壤孔隙被水分充滿,在高速離心作用下孔隙中(包括大孔隙和小孔隙)的水分逐漸排出,且土顆粒會相互靠攏、孔徑逐漸減小,在宏觀上即表現(xiàn)為土體體積的收縮變形,并隨吸力增加伴隨土壤容重逐漸增大現(xiàn)象,本研究設(shè)定的最大吸力為7 000 cm,土中的結(jié)合水不易脫離土顆粒表面[35]。故在離心力作用下土體收縮主要是由于土壤孔隙水排出所致,并導(dǎo)致容重增加。
干燥過程中土體體積收縮實際上包括軸向收縮和徑向收縮,分別表現(xiàn)為土樣高度減小和直徑減小。在測定土壤水分特征曲線時,所說的土體收縮通常是指軸向收縮,即土樣高度隨吸力增加而減?。煌瑫r,由于失水干縮導(dǎo)致表面逐漸出現(xiàn)裂隙的現(xiàn)象極為常見,通常被稱作“龜裂”[36]。土樣浸泡48 h后達(dá)到飽和狀態(tài),即準(zhǔn)備離心時的初始含水率通常較高,故徑向收縮對最終體積收縮的貢獻(xiàn)也較大,這在一定程度上解釋了自然界中高含水率土體干燥后表面極易出現(xiàn)大量收縮裂隙的現(xiàn)象,因為土體表面裂縫實際上是土體發(fā)生徑向(橫向)收縮所致[37]。對于裂縫形成機(jī)理目前仍無定論:有研究者認(rèn)為是由于土體孔隙中毛細(xì)水表面張力和土的基質(zhì)吸力引起[38-39],而施斌等[35]指出,引起土體龜裂的力學(xué)機(jī)制還應(yīng)包括其他粒間作用力(例如化學(xué)力、離子靜電引力、分子引力和水膠聯(lián)接力等)。本研究為環(huán)刀裝填擾動土,經(jīng)浸泡后出現(xiàn)輕微膨脹現(xiàn)象,則易導(dǎo)致水分分布不均勻;在裂隙發(fā)育初期,龜裂開始出現(xiàn)的部位往往為一級裂縫,可能是水分比較集中的部位,這樣才導(dǎo)致了該處粒間作用力較為薄弱,在收縮過程中易產(chǎn)生裂縫,還需進(jìn)一步試驗進(jìn)行驗證。孫凱強(qiáng)等[32]認(rèn)為關(guān)于鹽分對土體開裂的影響可以從鹽分-黏土顆粒相互作用以及鹽分影響?zhàn)ね岭p電層厚度方面進(jìn)行分析,即離子在分子熱運(yùn)動力和靜電吸力共同作用下將形成固定層和擴(kuò)散層,而擴(kuò)散層的薄厚隨孔隙水溶液濃度發(fā)生變化,對干燥過程中土體體積收縮和裂隙發(fā)育具有直接影響[40]。由此可見,土壤干縮開裂受土壤性質(zhì)(包括黏土礦物類型、含量等)、土壤結(jié)構(gòu)、土壤水分狀況和土壤中可溶性鹽等多因素影響[41-42],而各自影響機(jī)理存在一定差異,仍需進(jìn)一步展開試驗進(jìn)行深入分析。本文只是將常見鹽離子對土壤持水及收縮特征的不同影響進(jìn)行了初步報道,然而鹽離子對土壤物理性質(zhì)的影響在很大程度上是通過改變土壤化學(xué)性質(zhì)實現(xiàn)的,故欲深入探究其作用機(jī)理還需關(guān)注土壤化學(xué)性質(zhì)并進(jìn)一步將土壤物理與土壤化學(xué)相結(jié)合;另一方面,為提高本研究結(jié)果可信度,還需進(jìn)一步研究陰性鹽離子的影響,同時縮小鹽溶液濃度梯度。
1)K+、Na+、Ca2+和Mg2+可導(dǎo)致土壤持水能力減弱,且土壤持水性表現(xiàn)為隨鹽溶液濃度增高而降低;van Genuchten模型適合用于K+、Na+、Ca2+和Mg2+溶液浸泡土壤的土-水曲線擬合;4種離子降低土壤飽和含水率、殘余含水率和進(jìn)氣吸力,其中土壤飽和含水率隨溶液濃度增加而降低。
2)土體線縮率隨吸力呈現(xiàn)對數(shù)增加趨勢;土體軸向收縮應(yīng)變與K+和Na+濃度均呈負(fù)相關(guān)關(guān)系,且分別存在極顯著和顯著相關(guān)性;K+和高濃度Na+均有利于減輕土壤軸向收縮度,在收縮過程中,4種離子導(dǎo)致土壤容重增加的幅度表現(xiàn)為Mg2+>Ca2+>Na+>K+。
3)K+、Na+、Ca2+和Mg2+可減輕土壤開裂程度,且土壤裂隙面積密度和長度密度與K+、Na+和Ca2+濃度呈負(fù)相關(guān)、與Mg2+濃度呈正相關(guān)關(guān)系;其中,與K+、Na+和Mg2+濃度存在極顯著相關(guān)性(P<0.01),與Ca2+濃度存在顯著相關(guān)性(P<0.05)。
[1] 冉艷玲,王益權(quán),張潤霞,等. 保水劑對土壤持水特性的作用機(jī)理研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2015,33(5):101-107. Ran Yanling, Wang Yiquan, Zhang Runxia, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101-107. (in Chinese with English abstract)
[2] 邢旭光,趙文剛,馬孝義,等. 土壤水分特征曲線測定過程中土壤收縮特性研究[J]. 水利學(xué)報,2015,46(10):1181-1188. Xing Xuguang, Zhao Wen’gang, Ma Xiaoyi, et al. Study on soil shrinkage characteristics during soil water characteristic curve measurement[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1181-1188. (in Chinese with English abstract)
[3] Carrick S, Buchan G D, Almond P, et al. A typical early-time infiltration into a structured soil near field capacity: The dynamic interplay between sorptivity, hydrophobicity, and air encapsulation[J]. Geoderma, 2011, 160(3): 579-589.
[4] Fu Xiaoli, Shao Ming’an, Lu Dianqing, et al. Soil water characteristic curve measurement without bulk density changes and its implications in the estimation of soil hydraulic properties[J]. Geoderma, 2011(167/168): 1-8.
[5] 鄭健,王燕,蔡煥杰,等. 植物混摻土壤水分特征曲線及擬合模型分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(5):107-112. Zheng Jian, Wang Yan, Cai Huanjie, et al. Soil-water characteristic curves of soil with plant additive and analyses of the fitting models [J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2014, 45(5): 107-112. (in Chinese with English abstract)
[6] 付曉莉,邵明安,呂殿青. 土壤持水特征測定中質(zhì)量含水量、吸力和容重三者間定量關(guān)系II.原狀土壤[J]. 土壤學(xué)報,2008,45(1):50-55. Fu Xiaoli, Shao Ming’an, Lü Dianqing. Quantitative relationship between mass water content, pressure head and bulk density in determination of soil water retention characteristics II. Undisturbed Soils [J]. Acta Pedologica Sinica, 2008, 45(1): 50-55. (in Chinese with English abstract)
[7] Thyagaraj T, Rao S M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1695-1702.
[8] 邵明申,李最雄. PS對非飽和重塑黏土的土-水特征曲線的影響[J]. 中南大學(xué)學(xué)報:自然科學(xué)版,2011,42(5):1432-1436. Shao Mingshen, Li Zuixiong. Effect of PS on soil-water characteristic curve of remolded unsaturated clay [J]. Journal of Central South University: Science and Technology, 2011, 42(5): 1432-1436. (in Chinese with English abstract)
[9] 張季如,胡泳,余紅玲,等. 黏性土粒徑分布的多重分形特性及土-水特征曲線的預(yù)測研究[J]. 水利學(xué)報,2015,46(6):650-657. Zhang Jiru, Hu Yong, Yu Hongling, et al. Predicting soil-water characteristic curve from multi-fractal particle-size distribution of clay[J]. Journal of Hydraulic Engineering, 2015, 46(6): 650-657. (in Chinese with English abstract)
[10] 李峰,繳錫云,李盼盼,等. 田間土壤水分特征曲線參數(shù)反演[J]. 河海大學(xué)學(xué)報:自然科學(xué)版,2009,37(4):373-377. Li Feng, Jiao Xiyun, Li Panpan, et al. Parametric inversion of soil water characteristic curves of farmland[J]. Journal of Hohai University: Natural Sciences, 2009, 37(4): 373-377. (in Chinese with English abstract)
[11] 王志超,李仙岳,史海濱,等. 農(nóng)膜殘留對土壤水動力參數(shù)及土壤結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015,46(5):101-106,140. Wang Zhichao, Li Xianyue, Shi Haibin, et al. Effects of residual plastic film on soil hydrodynamic parameters and soil structure[J]. Transactions of the Chinese Society for Agricultural Machinery (Transactions of the CSAM), 2015, 46(5): 101-106, 140. (in Chinese with English abstract)
[12] 栗現(xiàn)文,周金龍,靳孟貴,等. 高礦化度土壤水分特征曲線及擬合模型適宜性[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(13):135-141. Li Xianwen, Zhou Jinlong, Jin Menggui, et al. Soil-water characteristic curves of high-TDS and suitability of fitting models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 135-141. (in Chinese with English abstract)
[13] 代希君,張艷麗,彭杰,等. 土壤水溶性鹽基離子的高光譜反演模型及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22):139-145. Dai Xijun, Zhang Yanli, Peng Jie, et al. Prediction and validation of water-soluble salt ions content using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 139-145. (in Chinese with English abstract)
[14] 張展羽,朱文淵,朱磊,等. 根系及鹽分含量對農(nóng)田土壤干縮裂縫發(fā)育規(guī)律的影響[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(20):83-89. Zhang Zhanyu, Zhu Wenyuan, Zhu Lei, et al. Effects of roots and salinity on law of development for farmland soil desiccation crack[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 83-89. (in Chinese with English abstract)
[15] 梁愛民,邵龍?zhí)? 土壤中空氣對土結(jié)構(gòu)和入滲過程的影響[J].水科學(xué)進(jìn)展,2009,20(4):502-506. Liang Aimin, Shao Longtan. Experimental study of the air entrapment effects on soil structure and infiltration[J]. Advances in Water Science, 2009, 20(4): 502-506. (in Chinese with English abstract)
[16] 李曉潔,趙凱,任建華,等.吉林西部鹽漬土電導(dǎo)率、可溶性鈉與裂紋相關(guān)性測量[J].土壤與作物,2012,1(1):49-54. Li Xiaojie, Zhao Kai, Ren Jianhua, et al. Correlation between conductivity, soluble sodium and crack of saline soil in west Jilin province[J]. Soil and Plant, 2012, 1(1): 49-54. (in Chinese with English abstract)
[17] 張衛(wèi)國. 鹽漬土地區(qū)工程質(zhì)量常見病分析[J]. 科技情報開發(fā)與經(jīng)濟(jì),2004,14(1):131-132. Zhang Weiguo. Analysis on common engineering quality diseases in salty soil areas[J]. Sci/Tech Information Development & Economy, 2004, 14(1): 131-132. (in Chinese with English abstract)
[18] Lima L A, Grismer M E. Soil crack morphology and soil salinity[J]. Soil Science, 1992, 153(2): 149-153.
[19] Pauchard L, Parisse F, Allain C. Influence of salt content on crack patterns formed through colloidal suspension desiccation[J]. Physical Review E, 1999, 59(3): 3737.
[20] 徐爽. 化學(xué)物質(zhì)對土壤團(tuán)聚體穩(wěn)定性及其它物理性狀的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Xu Shuang. Effects of Chemicals on Soil Aggregates Stability and Their Other Physical Characters[D]. Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)
[21] 呂殿青,王宏,王玲. 離心機(jī)法測定持水特征中的土壤收縮變化研究[J]. 水土保持學(xué)報,2010,24(3):209-212,216. Lü Dianqing, Wang Hong, Wang Ling. Soil shrinking change during measuring retention characteristics by centrifugal method [J]. Journal of Soil and Water Conservation, 2010, 24(3): 209-212, 216. (in Chinese with English abstract)
[22] 栗現(xiàn)文,靳孟貴,袁晶晶,等. 微咸水膜下滴灌棉田漫灌洗鹽評價[J]. 水利學(xué)報,2014,45(9):1091-1098,1105. Li Xianwen, Jin Menggui, Yuan Jingjing, et al. Evaluation of soil salts leaching in cotton field after mulched drip irrigation with brackish water by freshwater flooding [J]. Journal of Hydraulic Engineering, 2014, 45(9): 1091-1098, 1105. (in Chinese with English abstract)
[23] 蘇楊,朱健,王平,等. 土壤持水能力研究進(jìn)展[J].中國農(nóng)學(xué)通報,2013,29(14):140-145. Su Yang, Zhu Jian, Wang Ping, et al. Research progress on soil water holding capacity[J]. Chinese Agricultural Science Bulletin, 2013, 29(14): 140-145. (in Chinese with English abstract)
[24] 郭全恩,王益權(quán),車宗賢,等. 溫度及礦化度對土壤持水性能的影響[J]. 灌溉排水學(xué)報,2012,31(6):52-55. Guo Quanen, Wang Yiquan, Che Zongxian, et al. Effect of temperature and degree of mineralization on the water-retention properties of soil[J]. Journal of Irrigation and Drainage, 2012, 31(6): 52-55. (in Chinese with English abstract)
[25] 郭全恩,王益權(quán),南麗麗,等. 溶質(zhì)類型與礦化度對半干旱鹽漬化地區(qū)果園土壤水分有效性的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2013,21(8):973-978. Guo Quanen, Wang Yiquan, Nan Lili, et al. Effects of solute type and salinity on soil water availability in orchards in saline semiarid regions[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 973-978. (in Chinese with English abstract)
[26] 謝承陶,李志杰,章友生,等. 有機(jī)質(zhì)與土壤鹽分的相關(guān)作用及其原理[J]. 土壤肥料,1993(1):19-22.
[27] 阿米娜·阿布力克木,迪麗努爾·阿吉,玉素甫江·買買提.阿圖什市鹽漬化土壤中有機(jī)質(zhì)現(xiàn)狀及有機(jī)質(zhì)與鹽分之間的相關(guān)性分析-以格達(dá)良鄉(xiāng)為例[J].信陽師范學(xué)院學(xué)報:自然科學(xué)版,2010,23(4):550-552,557. Amina·Ablikim, Dilnur·Aji, Yusupjan·Mamat. Organic matter of salinity soil and correlation analysis between organic matter and soil contents in Atux City-A case study in the Gedaliang Village [J]. Journal of Xinyang Normal University: Natural Science Edition, 2010, 23(4): 550-552, 557. (in Chinese with English abstract)
[28] 李小剛,曹靖,李鳳民. 鹽化及鈉質(zhì)化對土壤物理性質(zhì)的影響[J]. 土壤通報,2004,35(1):64-72. Li Xiaogang, Cao Jing, Li Fengmin. Influence of salinity, sodicity and organic matter on some physical properties of salt-affected soils[J]. Chinese Journal of Soil Science, 2004, 35(1): 64-72. (in Chinese with English abstract)
[29] Drozhzhina T M, Vasil’chikova S I. Effect of differential porosity on the nature of moisture migration and salt accumulation in soil (as exemplified by newly developed soils of Tadzhikistan)[J]. Soviet Soil Science, 1984, 16: 109-115.
[30] 胡瓊英,蘭葉青,薛家驊. 土壤膠體穩(wěn)定性影響因素[J].土壤,1996(6):290-294,315.
[31] 李小剛,崔志軍,王玲英,等. 鹽化和有機(jī)質(zhì)對土壤結(jié)構(gòu)穩(wěn)定性及阿特伯格極限的影響[J]. 土壤學(xué)報,2002,39(4):550-559. Li Xiaogang, Cui Zhijun, Wang Lingying, et al. Effects of salinization and organic matter on soil structural stability and atterberg limits [J]. Acta Pedologica Sinica, 2002, 39(4): 550-559. (in Chinese with English abstract)
[32] 孫凱強(qiáng),唐朝生,王鵬,等. 鹽分對土體干縮開裂的影響[J].工程地質(zhì)學(xué)報,2015,23(增刊):77-83. Sun Kaiqiang, Tang Chaosheng, Wang Peng, et al. Effect of salt content on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2015, 23(Supp.): 77-83. (in Chinese with English abstract)
[33] 李法虎,郭錦蓉. 土壤水蝕中關(guān)于化學(xué)因素的研究現(xiàn)狀和展望[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(5):32-37. Li Fahu, Guo Jinrong. Research status and future development of effects of chemical factors on soil water erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(5): 32-37. (in Chinese with English abstract)
[34] 胡傳旺,王輝,張真,等. 鈉鹽離子對黏性紅壤水力特征的影響及其模擬[J]. 灌溉排水學(xué)報,2015,34(8):49-52. Hu Chuanwang, Wang Hui, Zhang Zhen, et al. Simulation and influence of sodium ion concentration on hydraulic characteristics of red clay soil [J]. Journal of Irrigation and Drainage, 2015, 34(8): 49-52. (in Chinese with English abstract)
[35] 施斌,唐朝生,王寶軍,等. 粘性土在不同溫度下龜裂的發(fā)展及其機(jī)理討論[J]. 高校地質(zhì)學(xué)報,2009,15(2):192-198. Shi Bin, Tang Chaosheng, Wang Baojun, et al. Development and mechanism of desiccation cracking of clayed soil under different temperatures[J]. Geological Journal of China Universities, 2009, 15(2): 192-198. (in Chinese with English abstract)
[36] 唐朝生,施斌,劉春,等. 影響?zhàn)ば酝帘砻娓煽s裂縫結(jié)構(gòu)形態(tài)的因素及定量分析[J]. 水利學(xué)報,2007,38(10):1186-1193. Tang Chaosheng, Shi Bin, Liu Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese with English abstract)
[37] 唐朝生,崔玉軍,Tang A M,等. 土體干燥過程中的體積收縮變形特征[J]. 巖土工程學(xué)報,2011,33(8):1271-1279. Tang Chaosheng, Cui Yujun, Tang A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese with English abstract)
[38] Yesiller N, Miller C J, Inci G, et al. Desiccation and cracking behavior of three compacted landfill liner soils [J]. Engineering Geology, 2000, 57(1): 105-121.
[39] Morris P H, Graham J, Williams D J. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
[40] Sridharan A, Rao G V. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 2015, 23(3): 359-382.
[41] Ren Jianhua, Li Xiaojie, Zhao Kai, et al. Study of an on-line measurement method for the salt parameters of soda-saline soils based on the texture features of cracks[J]. Geoderma, 2016, 263(2): 60-69.
[42] Ren Jianhua, Li Xiaojie, Zhao Kai. Quantitative analysis of relationships between crack characteristics and properties of soda-saline soils in Songnen plain, China [J]. Chinese Geographical Science, 2015, 25(5): 591-601.
Impacts of type and concentration of salt cations on soil water retention and desiccation cracking
Xing Xuguang, Ma Xiaoyi※, Kang Duangang
(1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, China)
The soil water characteristic curve (SWCC) defines the relationship between soil suction and volumetric water content, and is commonly used to evaluate the size and distribution of soil pores and the soil water availability and holding capacity for investigating the functions of unsaturated soil with various properties and for modeling the transport of soil water and solutes. Besides, the SWCC is usually effectively used to evaluate soil water retention, which is always considered as a basic factor for determining reasonable irrigation schemes. The SWCC can be obtained via centrifuge method; however, soil samples often shrink and crack during the SWCC measurement. Of various influencing factors on water retention, salt ions with different types and concentrations have various effects on water-holding capacity. The present study therefore aims to explore the differences in the characteristics of the soil water retention and the shrinkage and cracking during drying process resulting from 4 types of salt cations with different concentrations. In order to achieve the objectives, silty clay loam from Shaanxi Province was selected as experimental soil. Four replicates of the samples were air dried, sieved through a 2-mm mesh, and then compacted into cutting rings at a bulk density of 1.40 g/cm3. Four powder reagents, namely potassium chloride (KCl), sodium chloride (NaCl), calcium chloride (CaCl2) and magnesium chloride (MgCl2), which included 4 kinds of salt cations (i.e., K+, Na+, Ca2+and Mg2+), were dissolved in distilled water at the concentration of 5, 30 and 100 g/L respectively. Distilled water was used as the control (CK). And all soil samples were first saturated in the solutions for 48 h before the experiment. The SWCCs were then constructed using a centrifugal method and used to quantitatively assess soil water holding capacity. At the same time, the deposit height of soil samples for each tested soil suction was measured using a vernier caliper, which was used to calculate linear shrinkage ratio and axial shrinkage strain for quantitatively evaluating soil shrinkage during the drying process. Cracks gradually occurred with soil water decreasing and were obtained using digital image processing technique in this paper, which were used to quantitatively evaluate the desiccation cracking based on crack area density and length density. The experimental results showed that first of all, salt cations had no effects on the SWCC shape, and the van Genuchten model was suitable for fitting SWCC saturated by saline solution with the R2of high than 0.99. Furthermore, the 4 kinds of salt cations could weaken soil water retention, and water-holding capacity was correlated negatively with the concentration of salt cation. According to the fitting results by the van Genuchten model, the 4 kinds of salt cations could also weaken saturated water content, residual water content and air suction, and water-holding capacity was correlated negatively with saturated water content. Besides, K+, Na+with high concentration and Mg2+with low concentration were helpful to decrease soil axial shrinkage. And the axial shrinkage strain was correlated negatively with the concentration of K+(P<0.01), Na+(P<0.05) and Ca2+and positively with Mg2+concentration. Shrink of soils during the drying process was accompanied with the increasing of soil bulk density, and the effect of salt cations ranked in the order of Mg2+>Ca2+>Na+>K+. Finally, the 4 kinds of salt cations were helpful to weaken cracking based on the quantitative analysis of crack area density and length density. And these 2 crack indicators were significantly negatively correlated with the concentration of K+, Na+and Ca2+and positively with Mg2+concentration. These findings are helpful to provide the theoretical and practical guidance for the evaluation of water retention and the determination of irrigation scheme, and to provide some references for developing the engineering practice on saline soils. The further study should add focuses on the effects of salt anions and smaller concentration gradient on soil water retention and desiccation cracking.
soils; moisture; salts; water retention; desiccation cracking; salt ion
10.11975/j.issn.1002-6819.2016.09.016
S152.7
A
1002-6819(2016)-09-0115-08
邢旭光,馬孝義,康端剛. 鹽陽離子類型及濃度對土壤持水及干縮開裂的作用效果[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):115-122.
10.11975/j.issn.1002-6819.2016.09.016 http://www.tcsae.org
Xing Xuguang, Ma Xiaoyi, Kang Duangang. Impacts of type and concentration of salt cations on soil water retention and desiccation cracking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 115-122. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.016 http://www.tcsae.org
2016-01-08
2016-03-18
國家自然科學(xué)基金資助項目(51279167);國家科技支撐基金資助項目(2012BAD08B01);公益性行業(yè)(農(nóng)業(yè))科研專項(201503124)。
邢旭光,男,博士生,遼寧沈陽人,主要從事土壤水-鹽-熱遷移監(jiān)測與模擬研究。楊凌 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,712100。Email:xingxg86@163.com
※通信作者:馬孝義,男,陜西鳳翔人,教授,主要從事農(nóng)業(yè)水土及電氣化研究。楊凌 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,712100。Email:xiaoyima@vip.sina.com