• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高溫快速鹽浴滲氮提高拖拉機(jī)曲軸性能

      2016-12-19 08:53:29戴明陽
      關(guān)鍵詞:滲氮氮化耐蝕性

      戴明陽,唐 威,孫 斐,胡 靜,2※

      (1. 常州大學(xué)材料科學(xué)與工程學(xué)院江蘇省表面工程科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州 213164;2. 常州大學(xué)江蘇省光伏科學(xué)與工程協(xié)同創(chuàng)新中心,常州 213164;3. 常州輕工技術(shù)職業(yè)學(xué)院機(jī)械工程系,常州 213164)

      高溫快速鹽浴滲氮提高拖拉機(jī)曲軸性能

      戴明陽1,唐 威1,孫 斐2,3,胡 靜1,2※

      (1. 常州大學(xué)材料科學(xué)與工程學(xué)院江蘇省表面工程科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,常州 213164;2. 常州大學(xué)江蘇省光伏科學(xué)與工程協(xié)同創(chuàng)新中心,常州 213164;3. 常州輕工技術(shù)職業(yè)學(xué)院機(jī)械工程系,常州 213164)

      為提高拖拉機(jī)曲軸鹽浴滲氮效率,選擇用于生產(chǎn)拖拉機(jī)曲軸的常用材料45鋼,分別進(jìn)行不同保溫時間的高溫快速鹽浴滲氮和常規(guī)鹽浴滲氮。利用光學(xué)顯微鏡、X射線衍射儀、顯微硬度計(jì)和電化學(xué)工作站對滲層的顯微組織、物相、硬度和耐蝕性進(jìn)行了測試和分析。研究結(jié)果表明:經(jīng)過660℃×20 min高溫鹽浴滲氮處理后化合物層的厚度與560℃×140 min常規(guī)鹽浴滲氮相近,表明高溫鹽浴滲氮可以顯著縮短滲氮的時間。在化合物層厚度相近的情況下,高溫鹽浴滲氮處理后滲層中γ'-Fe4N相含量從常規(guī)鹽浴滲氮的0.46增加到0.61,同時,截面最高硬度從常規(guī)鹽浴滲氮的702提高到784 HV0.01,并且耐蝕性能也獲得了提高。該研究可為提升鹽浴滲氮技術(shù)應(yīng)用于45鋼拖拉機(jī)曲軸表面改性工藝方案提供參考。

      拖拉機(jī);溫度;試驗(yàn);曲軸;鹽浴氮化;硬度

      0 引言

      目前,隨著農(nóng)業(yè)機(jī)械化的迅速發(fā)展,拖拉機(jī)已經(jīng)在農(nóng)業(yè)生產(chǎn)方面獲得了非常廣泛的應(yīng)用[1-2]。曲軸作為拖拉機(jī)中傳遞動力的關(guān)鍵零件[3-4],在工業(yè)中常選用45鋼為生產(chǎn)材料[5]。由于曲軸在工作過程中常產(chǎn)生較大磨損[6-7],同時在一些腐蝕環(huán)境中還存在曲軸表面腐蝕問題[8-9]。故為了提高45鋼拖拉機(jī)曲軸的使用壽命,通常需要對其進(jìn)行表面改性處理來提高其表面硬度和耐磨性等綜合性能。目前,曲軸的表面強(qiáng)化一般采用高頻淬火[10],但高頻淬火存在工藝復(fù)雜,處理后材料變形較大且耐蝕性不高等缺點(diǎn)[11-13]。

      與拖拉機(jī)曲軸常用的表面強(qiáng)化方法高頻淬火相比,鹽浴滲氮具有工藝簡單,處理后材料變形小且材料表面硬度和耐蝕性更高[14]。因此可以被用來取代高頻淬火來提高45鋼曲軸的表面硬度和耐蝕性。但常規(guī)鹽浴滲氮對于要求有良好耐磨性和耐蝕性的曲軸,滲氮時間通常需要2 h以上[15],而曲軸的高頻淬火處理時間僅為十幾分鐘[16]。對比可以看出鹽浴滲氮處理后曲軸雖然性能更好,但是由于滲氮時間過長降低了曲軸生產(chǎn)效率,從而在工業(yè)生產(chǎn)上無法替代高頻淬火。

      為了提高滲氮效率,國內(nèi)外的相關(guān)研究已經(jīng)報(bào)道了添加稀土或外加電場這2種方法[17-18],但是由于稀土價格較高而電場催滲工藝復(fù)雜,雖然降低了滲氮時間,但卻使鹽浴滲氮成本提高,工藝操作復(fù)雜。因此,本研究旨在保持鹽浴滲氮工藝操作簡單、成本低和性能好等優(yōu)勢的前提下,通過適當(dāng)提高滲氮溫度來顯著縮短鹽浴滲氮處理拖拉機(jī)曲軸的時間。

      為此,選用拖拉機(jī)曲軸常用材料45鋼為試驗(yàn)材料,通過適當(dāng)?shù)奶岣啕}浴滲氮的滲氮溫度實(shí)現(xiàn)高溫鹽浴滲氮。對比分析高溫鹽浴滲氮和常規(guī)鹽浴滲氮處理后,45鋼的截面組織、物相、硬度和耐蝕性,同時分析相關(guān)機(jī)理,以期為高溫快速鹽浴滲氮應(yīng)用于拖拉機(jī)曲軸的表面強(qiáng)化提供一定的參考。

      1 試驗(yàn)材料與方法

      1.1 試驗(yàn)材料

      試驗(yàn)選用拖拉機(jī)曲軸常用材料調(diào)質(zhì)態(tài)的45鋼,其化學(xué)成分(質(zhì)量分?jǐn)?shù),%)為C:0.46,Si:0.17,Mn:0.52,S:0.031,P:0.032,其余為Fe[19]。采用線切割制成尺寸為10 mm×10 mm×10 mm樣品,并依次用240-2000#的砂紙打磨至鏡面,最后放入無水乙醇中用超聲波清洗干凈,吹干,待用。本試驗(yàn)滲劑為氮化鹽浴,其中的CNO-含量約為34%[20]。

      1 .2 試驗(yàn)方法

      45鋼試樣在350 ℃的空氣爐中預(yù)氧化25 min。首先選取曲軸常用的一組常規(guī)鹽浴滲氮(normal salt bath nitriding,NM)工藝參數(shù)為560 ℃×140 min,然后在640、660和680℃分別進(jìn)行不同保溫時間的高溫鹽浴滲氮(higher temperature salt bath nitriding,HT)獲得與曲軸常用的氮化工藝參數(shù)相同的化合物層厚度,同時在此保溫時間條件下進(jìn)行560℃常規(guī)鹽浴滲氮,最后進(jìn)行水冷。

      將不同鹽浴滲氮處理后的試樣先用4%的硝酸酒精溶液腐蝕其截面,用DMI3000M型金相顯微鏡(徠卡公司生產(chǎn))觀察試樣的截面的顯微組織和化合物層厚度;用D/max-2500型X 射線衍射儀XRD(X-ray diffractometer,日本理學(xué)公司生產(chǎn))分析試樣表層的物相結(jié)構(gòu);用HXD-1000TMC型維氏硬度計(jì)(上海光學(xué)儀器公司生產(chǎn))測量硬度,加載載荷為10 g,保壓時間為15 s。采用CS 350電化學(xué)測試系統(tǒng)(武漢科斯特儀器有限公司生產(chǎn))在3.5% NaCl溶液中測量試樣在室溫下的極化曲線,參比電極為飽和甘汞電極SCE(saturated calomel electrode),輔助電極為Pt電極,掃描速率為10 mV/s。

      2 試驗(yàn)結(jié)果與分析

      2.1 顯微組織和滲層厚度分析

      圖1為不同鹽浴滲氮工藝條件下45鋼鹽浴滲氮處理后的截面組織。

      圖1 不同鹽浴滲氮工藝處理后45鋼的截面組織Fig.1 Cross sectional microstructure of 45 steel after salt bath nitriding under different conditions

      由圖1可知,常規(guī)和高溫鹽浴滲氮處理后45鋼的表面都會形成一層化合物層(也稱為白亮層[21])。經(jīng)560℃× 20 min鹽浴滲氮處理后化合物層的厚度僅為3.8 μm,說明短時間常規(guī)鹽浴滲氮獲得的化合物層厚度很薄,無法滿足45鋼拖拉機(jī)曲軸性能的要求。而在相同保溫時間條件下經(jīng)660℃高溫鹽浴滲氮處理后的化合物層為17.1 μm,與經(jīng)560℃×140 min獲得的化合物層厚度相近,表明高溫鹽浴滲氮具有高效快速的特點(diǎn),在代替常規(guī)鹽浴滲氮用于曲軸工業(yè)生產(chǎn)時能顯著的縮短滲氮時間,提高生產(chǎn)效率。此外,對比圖1c和圖1d可知,當(dāng)高溫鹽浴滲氮的溫度從660降低到640℃時,在相近化合物層厚度條件下,鹽浴滲氮的保溫時間增加到40 min,表明660℃高溫鹽浴滲氮時效率更高。繼續(xù)將滲氮溫度提高到680℃時,發(fā)現(xiàn)滲氮所用的氮化鹽分解太快,已經(jīng)不適合進(jìn)行滲氮處理。因此660℃×20 min 是一個比較理想的工藝參數(shù)。同時高溫鹽浴滲氮處理后在化合層與擴(kuò)散層之間形成了白亮色的中間層,亦稱為奧氏體層,其實(shí)質(zhì)為氮在奧氏體中的固溶體[22]。此外,對比圖1b和1d可以看出,經(jīng)660℃×20 min高溫鹽浴滲氮工藝處理后45鋼基體組織與560℃×140 min常規(guī)鹽浴滲氮基本一致。表明經(jīng)660℃×20 min高溫鹽浴滲氮工藝處理后對基體組織沒有影響。

      2.2 物相分析

      圖2是白亮層層深相近的情況下,不同工藝鹽浴滲氮處理后45鋼滲層的X射線衍射圖譜。由圖2可知,雖然高溫快速鹽浴滲氮和常規(guī)鹽浴滲氮處理后滲層物相都由ε-Fe2-3N和γ′-Fe4N相組成,但兩者γ′-Fe4N與ε-Fe2-3N的最強(qiáng)峰比值[23]分別為(Iγ′Iε)NT=0.61和(Iγ′Iε)NM=0.46。從γ′-Fe4N和ε-Fe2-3N最強(qiáng)峰比值可判斷,高溫快速鹽浴滲氮后γ′-Fe4N相對含量較高??梢?,高溫鹽浴滲氮有利于N元素向基體內(nèi)擴(kuò)散,滲層中富N相-Fe2-3N較少,γ′-Fe4N較多。

      圖2 不同鹽浴滲氮工藝處理后45鋼的X射線衍射圖譜Fig.2 X-Ray diffraction patterns of 45 steel after salt bath nitriding under different conditions

      2.3 硬度分析

      圖3為45鋼經(jīng)不同鹽浴滲氮處理后的截面硬度曲線。從圖中可以看出,經(jīng)560℃×20 min短時間常規(guī)鹽浴滲氮處理后的截面硬度最低,因此不能滿足曲軸耐磨性的要求。而經(jīng)過660℃×20 min短時高溫鹽浴滲氮處理后的截面硬度不僅要遠(yuǎn)遠(yuǎn)大于相同滲氮時間處理后的常規(guī)鹽浴滲氮,并且還大于經(jīng)560℃×140 min常規(guī)鹽浴滲氮處理后的截面硬度,截面最高硬度從常規(guī)鹽浴滲氮的702提高到784 HV0.01。這是因?yàn)楦邷佧}浴滲氮處理后化合物層中高硬度γ′-Fe4N相的含量相對較高,從而進(jìn)一步提高了滲層的截面硬度。因此,快速高溫鹽浴滲氮處理后的45鋼拖拉機(jī)曲軸的耐磨性會更高。此外,由圖3可知,高溫鹽浴滲氮和常規(guī)鹽浴滲氮處理后的基體硬度基本相同,均為300 HV0.01左右。因此,經(jīng)過660℃×20 min高溫鹽浴滲氮處理后對基體硬度沒有影響。

      圖3 不同鹽浴滲氮工藝處理后45鋼的截面硬度曲線Fig.3 Micro-hardness profile of 45 steel after salt bath nitriding under different conditions

      2.4 耐蝕性分析

      圖4為不同工藝鹽浴滲氮處理后45鋼的動電位極化曲線。使用CS 350電化學(xué)工作站自帶軟件CView2,應(yīng)用Tafel方法對圖4進(jìn)行數(shù)據(jù)擬合得到了試樣的腐蝕電位Ecorr和腐蝕電流Icorr如表1所示。

      圖4 不同鹽浴滲氮工藝處理后45鋼的動電位極化曲線Fig.4 Potentiodynamic polarization curve of 45 steel after salt bath nitriding under different conditions

      表1 不同工藝處理后45鋼極化曲線擬合獲得的電化學(xué)參數(shù)Table 1 Electrochemistry parameters fitted by potentiodynamic polarization curve under different conditions

      由表1可知,在化合物層厚度相近的條件下,高溫快速鹽浴滲氮處理后45鋼的腐蝕電位Ecorr大于常規(guī)鹽浴滲氮,由?1 090提高至?1 053 mV。同時腐蝕電流Icorr由0.302降低到0.214 μA/cm2。由此表明高溫鹽浴滲氮處理后45鋼耐蝕性比常規(guī)鹽浴滲氮進(jìn)一步提高。這是因?yàn)楦邷乜焖冫}浴滲氮處理形成的中間層(圖1d)有利于進(jìn)一步提高45鋼的耐蝕性。因此高溫鹽浴滲氮處理后的45鋼耐蝕性更好,所以高溫鹽浴滲氮處理45鋼拖拉機(jī)曲軸耐蝕更好。

      2.5 機(jī)理分析

      通過對試驗(yàn)數(shù)據(jù)處理和分析,表明相比于常規(guī)鹽浴滲氮,高溫鹽浴滲氮工藝可以顯著的縮短鹽浴氮化的時間,應(yīng)用于曲軸的工業(yè)生產(chǎn)時能顯著提高生產(chǎn)效率。而產(chǎn)生這種有利作用的原因主要有以下2個方面。

      1)在鹽浴滲氮過程中,活性氮原子是通過CNO?的分解產(chǎn)生的,主要的化學(xué)反應(yīng)如下[23]

      而在常規(guī)鹽浴滲氮工藝中,由于鹽浴氮化的溫度較低。CNO?分解的速度較慢且不完全,從而導(dǎo)致活性氮原子濃度較低。因此,常規(guī)鹽浴滲氮工藝中化合物層增長的速度較慢。而在高溫鹽浴氮化工藝中,由于提高了鹽浴氮化的溫度,從而有效的提高了CNO?的分解速度。因此使活性氮原子的濃度提高。同時在高的鹽浴氮化溫度下,活性氮原子的運(yùn)動的速度加快,從而加快了鹽浴氮化的速度。

      2)45 鋼中的空位濃度[24]

      式中C為空位濃度;A為常數(shù),通常取1;Qf為Fe形成1 mol空位所需做的功,本文取176 000 J/mol;R為氣體常數(shù),8.314 J/(mol·K);T為溫度,K。

      由式(1)可知,常規(guī)鹽浴滲氮在560℃時45鋼中的空位濃度約為9.2×10-10%,而高溫鹽浴滲氮在660℃時45鋼中的空位濃度約為1.4×10-8%,高溫鹽浴滲氮處理時45鋼中的空位濃度約為常規(guī)鹽浴滲氮的5倍以上。而空位濃度的增加為氮原子擴(kuò)散進(jìn)入基體中提供了更多的空間,并且減少了活性氮原子的擴(kuò)散阻力,因此,會有更多的氮原子進(jìn)入基體中,從而有效的縮短鹽浴滲氮的時間,提高生產(chǎn)效率。

      3 結(jié)論

      1)高溫快速鹽浴滲氮顯著縮短滲氮時間,45鋼經(jīng)660℃×20 min鹽浴滲氮處理后化合物層厚度與560℃×140 min基本相同;同時高溫鹽浴滲氮后化合層與擴(kuò)散層之間形成了中間層。

      2)高溫鹽浴滲氮不改變45鋼滲層物相,與常規(guī)鹽浴滲氮處理一樣,由ε-Fe2-3N和γ'-Fe4N相組成,但前者γ'-Fe4N相的相對含量從常規(guī)鹽浴滲氮的0.46增加到0.61。

      3)高溫鹽浴滲氮提高45鋼表面硬度,最高截面硬度從常規(guī)鹽浴滲氮的702提高到784 HV0.01。

      4)高溫鹽浴滲氮提高45鋼耐蝕性,自腐蝕電位從常規(guī)鹽浴滲氮的?1 090提高到?1 053 mV,自腐蝕電流由0.302降低到0.214 μA/cm2。

      [1] 趙剡水,楊為民. 農(nóng)業(yè)拖拉機(jī)技術(shù)發(fā)展觀察[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):42-48. Zhao Yanshui, Yang Weimin. Technological development of agricultural tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6):42-48. (in Chinese with English abstract)

      [2] 羅錫文,張智剛,趙祚喜,等. 東方紅X-804 拖拉機(jī)的DGPS 自動導(dǎo)航控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):139-145. Luo Xiwen, Zhang Zhigang, Zhao Zuoxi, et al. Design of DGPS navigation control system for Dong fang hong X-804 tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 139-145. (in Chinese with English abstract)

      [3] 李繼山,廖日東,陳國華. 42CrMo 鋼曲軸電磁感應(yīng)加熱過程奧氏體化[J]. 材料熱處理學(xué)報(bào),2015,36(1):217-222. Li Jishan, Liao Ridong, Chen Guohua. Austenite formulation of 42CrMo steel induction heating crankshaft[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 217-222. (in Chinese with English abstract)

      [4] 馬躍進(jìn),張建華,劉淑霞,等. 干噴鋼砂在電弧噴涂修復(fù)曲軸中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(1):71-74. Ma Yuejin, Zhang Jianhua, Liu Shuxia, et al. Application of dry blasting steel grit on repairing crankshaft with arc spraying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(1): 71-74. (in Chinese with English abstract)

      [5] 韓存?zhèn)}. 45鋼拖拉機(jī)曲軸斷裂分析[J]. 金屬熱處理,2010,35(3):104-107. Han Cuncang. Fracture analysis of 45 steel crankshaft for tractor[J]. Heat Treatment of Metals, 2010, 35(3): 104-107. (in Chinese with English abstract)

      [6] Li Wei, Yan Qing, Xue Jianhua. Analysis of a crankshaft fatigue failure[J]. Engineering Failure Analysis, 2015, 55: 139-147.

      [7] Fonte M, Duarte P, Anes V, et al. On the assessment of fatigue life of marine diesel engine crankshafts[J]. Engineering Failure Analysis, 2015, 56: 51-57.

      [8] 黃邦戈,陸宇衡,謝德錦. 發(fā)動機(jī)曲軸再制造工藝研究[J].裝備制造技術(shù),2011(5):10-12. Huang Bangge, Lu Yuheng, Xie Dejin. Study on engine crankshaft remanufacturing process[J]. Equipment Manufactring Technology, 2011(5): 10-12. (in Chinese with English abstract)

      [9] 常建,徐兆坤. 國外發(fā)動機(jī)曲軸連桿軸承材料分析[J]. 汽車與配件,1997(3):26-27.

      [10] 方華,高崢,袁兆成,等. 淬火強(qiáng)化曲軸的彎曲疲勞分析[J].內(nèi)燃機(jī)學(xué)報(bào),2002,21(6):465-472. Fang Hua, Gao Zhen, Yuan Zhaocheng, et al. Research on bending fatigue of quenching strengthened crankshaft[J]. Transactions of Csice, 2002, 21(6): 465-472. (in Chinese with English abstract)

      [11] 李軍迎,陳學(xué)富,楊釗,等. 45鋼曲軸的感應(yīng)淬火工藝[J].金屬熱處理,2013,38(4):67-68. Li Junying, Chen Xuefu, Yang Zhao, et al. Induction hardening process of 45 steel crankshaft[J]. Heat Treatment of Metals, 2013, 38(4): 67-68. (in Chinese with English abstract)

      [12] 周建忠,花銀群,楊繼昌,等. 球鐵曲軸激光淬火強(qiáng)化技術(shù)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(3):109-112. Zhou Jianzhong, Hua Yinqun, Yang Jichang, et al. Study on the laser hardening technology for a crankshaft of nodular iron[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(3): 109-112. (in Chinese with English abstract)

      [13] 魯金忠,孫益飛,張雷洪,等. 激光斜沖擊對S1100型曲軸疲勞強(qiáng)度的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(11):167-169. Lu Jinzhong, Sun Yifei, Zhang Leihong, et al. Effect of oblique laser shock processing on fatigue strength of S1100 crankshaft[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(11): 167-169. (in Chinese with English abstract)

      [14] 李惠友,羅德福,吳少旭. QPQ技術(shù)的原理與應(yīng)用[M]. 北京:機(jī)械工業(yè)出版社,2008.

      [15] 周鼎華. QPQ處理工藝及其質(zhì)量控制[J]. 熱處理技術(shù)與裝備,2006,27(1):28-30. Zhou Dinghua. QPQ technology and quality control[J]. Heat Treatment Technology and Equipment, 2006, 27(1): 28-30. (in Chinese with English abstract)

      [16] 徐洪波. 重卡曲軸熱處理工藝性能分析[D]. 青島:山東大學(xué),2009. Xu Hongbo. Heavy Truck Crankshaft Performance Analysis of Heat Treatment Process[D]. Qingdao: Shangdong University, 2009. (in Chinese with English abstract)

      [17] Zhou Zhengshou, Dai Mingyang, Shen Zhiyuan, et al. Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis[J]. Journal of Alloys and Compounds, 2015, 623: 261-265.

      [18] Cleugh D, Blawert C, Steinbach J, et al. Effects of rare earth additions on nitriding of EN40B by plasma immersion ion implantation[J]. Surface and Coatings Technology, 2001, 142: 392-396.

      [19] 劉傳博,湯文彬,劉琎. 35鋼45鋼化學(xué)成分與機(jī)械性能的關(guān)系[J]. 鋼鐵研究,1995(2):20-23. Liu Chuanbo, Tang Wenbin, Liu Jin. Dependence of mechanical properties on chemical compositions of No.35 & No.45 steel[J]. Research on Iron & Steel, 1995(2): 20-23. (in Chinese with English abstract)

      [20] Cai Wei, Meng Fanna, Hu Jing, et al. Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel[J]. Applied Surface Science, 2012, 261: 411-414.

      [21] 戴明陽,周正壽,胡靜,等. 35鋼稀土快速鹽浴滲氮技術(shù)及動力學(xué)分析[J]. 材料熱處理學(xué)報(bào),2015,36(9):197-201. Dai Mingyang, Zhou Zhengshou, Hu Jing, et al. Rapid rare earth salt bath nitriding of 35 steel and kinetics analysis[J]. Transactions of Materials and Heat Treatment, 2015, 36(9): 197-201. (in Chinese with English abstract)

      [22] Balikci E, Yaman O. Investigation on liquid bath nitriding of selected steels[J]. Surface Engineering, 2011, 27(8): 609-615.

      [23] Wang Jun, Lin Yuanhua, Yan Jing, et al. Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding[J]. Surface and Coatings Technology, 2012, 206(25): 3399-3404.

      [24] Luo Heng, Shin Y, Yu Yang, et al. Predicting oxygen vacancy non-stoichiometric concentration in perovskites from first principles[J]. Applied Surface Science, 2014, 323: 65-70.

      Improvement of tractor crankshaft properties by rapid high temperature salt bath nitriding

      Dai Mingyang1, Tang Wei1, Sun Fei2,3, Hu Jing1,2※
      (1. Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, 213164, China; 3. Department of Mechanical Engineering, Changzhou Institute of Light Industry Technology, Changzhou, 213164, China)

      Salt bath nitriding is one of the most popular surface modification technologies to treat tractor’s crankshaft for obtaining the required properties. Generally, several hours is needed to acquire the required layer depth in normal salt bath nitriding, and especially, it is almost impossible to get the required qualified deep layer depth due to the loose outermost surface layer formed at longer duration. Therefore, it is of significant value to improve its efficiency and get the required layer depth with good quality. In order to enhance the nitriding efficiency of tractor’s crankshaft, AISI 1045 carbon steel, which is a type of common material used to produce tractor’s crankshaft in industrial production, was selected as the testing material. Rapid salt bath nitriding was conducted at higher temperature of 660℃ instead of normally used 560℃ .Then we compared normal salt bath nitriding with higher temperature salt bath nitriding for different nitriding time. Optical microscopy (OM), X-ray diffraction (XRD), micro-hardness testing and electrochemical workstation were employed for analyzing the microstructure, phase, micro-hardness and corrosion resistance of the tested material, respectively. The results show that compound layer (also called white layer) is formed at the outermost surface after salt bath nitriding under all conditions. The thickness of compound layer is only 3.8 μm nitrided at 560℃ for 20 min, which is too thin to effectively improve the surface hardness and corrosion resistance of AISI 1045 steel, and it is increased to 17.1 μm treated at higher temperature of 660℃ for 20 min, which is the same thickness as that nitrided at 560℃ for140 min. Therefore, it can be concluded that higher temperature salt bath nitriding is much more efficient than normal salt bath nitriding. Meanwhile the main phases of compound layer are composed of ε-Fe2-3N and γ'-Fe4N nitrided under different conditions. But the relative contents of ε-Fe2-3N and γ'-Fe4N are different, which can be obtained by calculating the ratio of the strongest peak of γ'-Fe4N to the strongest peak of ε-Fe2-3N. The ratio of γ'-Fe4N to ε-Fe2-3N is 0.61 and 0.46 for higher temperature salt bath nitriding and normal temperature salt bath nitriding, respectively, which clearly shows that the relative content of γ'-Fe4N is more at higher temperature salt bath nitriding. Higher surface hardness and modestly higher sub-surface hardness are obtained with the same compound layer thickness after higher temperature salt bath nitriding. The maximum cross-sectional micro hardness of the AISI 1045 steel is increased from 702 to 784 HV0.01, which implies that the tractor’s crankshaft made of AISI 1045 steel treated by higher temperature salt bath nitriding may have better wear resistance. Moreover, AISI 1045 steel treated by higher temperature salt bath nitriding shows higher corrosion potential of -993 mV and lower corrosion current of 0.302l A/cm2compared with that treated by normal temperature salt bath nitriding, which indicates that AISI 1045 steel treated by higher temperature salt bath nitriding has better corrosion resistance. The mechanism of high temperature salt bath nitriding process is that the decomposition rate of CNO?is greatly accelerated, and thus much more active nitrogen atoms can be produced in the salt bath media, plus the vacancy concentration in AISI 1045 steel is significantly increased at higher temperature. Therefore, a conclusion can be drawn that high temperature salt bath nitriding is possible to replace normal salt bath nitriding to further enhance the tractor’s crankshaft made of AISI 1045 steel, since high temperature salt bath nitriding can not only shorten salt bath nitriding time, but also enhance the combined properties of tractor’s crankshafts.

      tractors; temperature; experiments; crankshaft; salt bath nitriding; hardness

      10.11975/j.issn.1002-6819.2016.09.006

      TG156.8

      A

      1002-6819(2016)-09-0040-05

      戴明陽,唐 威,孫 斐,胡 靜. 高溫快速鹽浴滲氮提高拖拉機(jī)曲軸性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):40-44.

      10.11975/j.issn.1002-6819.2016.09.006 http://www.tcsae.org

      Dai Mingyang, Tang Wei, Sun Fei, Hu Jing. Improvement of tractor crankshaft properties by rapid high temperature salt bath nitriding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 40-44. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.006 http://www.tcsae.org

      2015-09-08

      2016-03-23

      江蘇省科技成果轉(zhuǎn)化項(xiàng)目(BA2013078);江蘇省研究生創(chuàng)新基金項(xiàng)目(SCZ100431322)

      戴明陽,男,研究方向?yàn)榻饘俦砻婊瘜W(xué)熱處理。常州 常州大學(xué)江蘇省表面工程科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,213164。Email:dmy9304@126.com※通信作者:胡 靜,博士,教授,從事金屬材料表面改性研究。常州 常州大學(xué)江蘇省表面工程科學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,213164。

      Email:jinghoo@126.com

      猜你喜歡
      滲氮氮化耐蝕性
      某大修曲軸滲氮工藝研究
      氮化鋁粉末制備與應(yīng)用研究進(jìn)展
      時效硬化滲氮鋼的開發(fā)與應(yīng)用
      XD超級氮化催滲劑的運(yùn)用
      以氮化鎵/氮化鋁鎵超晶格結(jié)構(gòu)優(yōu)化氮化銦鎵LED
      電子制作(2018年12期)2018-08-01 00:47:48
      磷對鋅-鎳合金耐蝕性的影響
      AZ31B鎂合金復(fù)合鍍鎳層的制備及其耐蝕性研究
      考慮滲氮層影響的活塞銷疲勞強(qiáng)度研究
      40CrH鋼氣體軟氮化-后氧化復(fù)合處理的組織性能
      上海金屬(2016年2期)2016-11-23 05:34:32
      不銹鋼低壓真空滲氮組織與性能研究
      山丹县| 紫金县| 中宁县| 会理县| 清水河县| 务川| 荔浦县| 普洱| 高安市| 怀来县| 永嘉县| 剑阁县| 赞皇县| 高密市| 诸暨市| 自治县| 高尔夫| 大化| 贵定县| 拉萨市| 泸定县| 修武县| 来安县| 霍州市| 临泽县| 辽阳县| 家居| 安康市| 桂林市| 图木舒克市| 潼关县| 安义县| 集贤县| 普兰县| 高青县| 宽城| 寻乌县| 响水县| 始兴县| 策勒县| 金坛市|