• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮摻雜碳層包覆金屬鈷顆粒與氮摻雜石墨烯納米復(fù)合材料作為高容量鋰離子電池負(fù)極材料

    2016-12-15 07:42:38耿凱明吳俊杰耿洪波胡亞云瞿根龍潘越鄭軍偉顧宏偉
    關(guān)鍵詞:碳層蘇州大學(xué)負(fù)極

    耿凱明 吳俊杰 耿洪波 胡亞云 瞿根龍 潘越 鄭軍偉 顧宏偉*,

    氮摻雜碳層包覆金屬鈷顆粒與氮摻雜石墨烯納米復(fù)合材料作為高容量鋰離子電池負(fù)極材料

    耿凱明1吳俊杰1耿洪波1胡亞云1瞿根龍1潘越1鄭軍偉2顧宏偉*,1

    (1蘇州大學(xué)材料與化學(xué)化工學(xué)部,江蘇省有機(jī)合成重點(diǎn)實(shí)驗(yàn)室;蘇州納米科學(xué)技術(shù)協(xié)同創(chuàng)新中心,蘇州215123)
    (2蘇州大學(xué)物理與光電·能源學(xué)部,蘇州215123)

    合成了一種石墨烯基納米復(fù)合材料即:由氮摻雜碳層包覆的金屬鈷納米顆粒,充分分散于氮摻雜的石墨烯表面。這種納米復(fù)合材料進(jìn)一步提高了石墨烯的導(dǎo)電性,增加了石墨烯的儲(chǔ)鋰容量。該材料被用作鋰離子電池負(fù)極材料,在性能測(cè)試中展現(xiàn)了良好的循環(huán)性能,在以100 mA·g-1的電流密度循環(huán)200圈后,放電容量高達(dá)950.1 mAh·g-1,庫倫效率約為98%。

    鈷納米顆粒;氮摻雜的石墨烯;負(fù)極材料;鋰離子電池

    (2College of Physics,Optoelectronics and Energy,Soochow University,Suzhou,Jiangsu 215123,China)

    0 Introduction

    Lithium-ion batteries(LIBs)have been applied in industrial production during the past three decades.It has drawn intensive attention due to its unique advantages,such as high energy density,high average output voltage,environmentally friendly,no memory effect,long service life[1].To a large extent,anodematerial is a crucial part of lithium-ion batteries and has significantinfluence on its performance[2].Graphite has been used as an anode material and gained commercialization due to its high Coulombic efficiency and cycling performance.However,the specific capacity ofgraphite is relatively low(theoretical value: 372 mAh·g-1).As the portable household appliances and electric vehicles are developing rapidly, alternative anode materials are urgently required to enhance the battery performance.

    In recent years,non-metallic heteroatom(N,S,P and B)doped carbon-based materials are proposed to be promising candidates anode substrate materials. Many studies show that the doped atoms play an important role on the electrical conductivity and the capacity of carbon materials in LIBs[3-6].Among them, N-doping carbon materials attract the most attention. Generally,the insertion of N atoms to the graphitic lattice can form C-N bond,modulate the band structure and lead to a metal-semiconductor transition, which could dramatically promote the electronic performance,offer more Li-storage sites and reduce Li diffusion barriers[7-12].The morphology of carbon material is also criticalfor the development of carbonbased anode.Among many types of carbon materials (e.g.nanotubes,nanofibers,C60,graphene)[13-16],graphene is one of the most desirable anode materials owing to its high surface area,outstanding electrical conductivity and stable mechanical properties[17].There are already several studies about graphene-based materials,which exhibits better performance than commercialgraphite[18-23].Meanwhile,to further improve the performance of carbon-based anode,many kinds of metal or alloy(e.g.Sn,Sb,Si)[24-26]with electrochemical capability were added onto carbon materials.According to previous reports,these composites can generate synergistic effect between metal and carbon materials, exhibiting a notable capacity increase of carbon-based anode[27-28].Thanks to the beneficial modification of N-doping,the superior electrochemical properties of graphene,and the advantage of metal/carbon composition effect,we consider metal/N-doped graphene-based composites to be very promising anode materials for the application in lithium-ion batteries.

    Hence,in this paper,we synthesized N-doped carbon-encapsulated Co nanoparticles on N-doped graphene(NC@Co@NG)and exploited its performance as anode materials in lithium-ion batteries.The composite has a unique structure,in which Co nanoparticles dispersed on N-doped graphene and wrapped by N-doped carbon layer.When evaluated as an anode material for LIBs,it shows outstanding cycling performance and high Coulombic efficiency. The capacity is up to about 950.1 mAh·g-1after 200 cycles,presenting an upward tendency in the consecutive cycles at the current rate of 100 mA·g-1. Compared to N-doped graphene and Co/graphene described in the literature[29-30,54],the NC@Co@NG delivers a superior electrochemical performance. These results demonstrate that the as-synthesized material is a very promising anode candidate for developing high efficiency lithium-ion batteries.

    1 Experimental

    1.1 Preparation of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets

    1.1.1 Synthesis ofgraphene oxide

    First of all,graphene oxide was prepared by graphite powders on the basis of the modified Hummersmethod[31].Briefly,graphite powders(5.0 g) and sodium nitrate(3.8 g)was added to concentrated sulfuric acid(169 mL)under magnetic stirring in an ice-water bath for 1 day.Afterwards,22.5 g of KMnO4was gradually added.As soon as it was mixed well, the ice bath was removed and the solution was stirred at 35℃until a highly viscous liquid was obtained. After adding 100 mL of pure water,the suspension was heated in a 98℃water bath for 15 minutes. Then,it was further treated with warm water and H2O2(30%)in sequence,followed by repeated washing with water and HCl.Finally,the resulting solids were obtained via centrifuging at 6 000 r·m-1and dried at 50℃for 24 h in a vacuum oven.The product was dispersed in water by sonication for 12 h at a concentration of10 mg·mL-1.

    1.1.2 Synthesis of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets

    The nano-composite was synthesized according to the literature with some modifications[32].160 mg cobaltacetate and 10 mL cyanamide were dissolved in 30 mL of a distilled water-ethanol(1∶1,V/V)and underwent ultrasonication for about 15 minutes to form a homogeneous solution.Subsequently,the above solution was maintained at80℃for 1 h.After cooling down to room temperature naturally,50 mg graphene oxide was added into the resulting mixture with vigorous magnetic stirring for 24 h.The product was dried at 75℃for removing the most of the water and the ethanol,and then further dried under vacuum conditions at 60℃overnight.The treated samples were calcined at 450℃for 2 h,then at 700℃for 2 h under N2atmosphere.

    1.2 Material characterization

    The crystal structure of the obtained samples was characterized by X-ray diffraction(XRD)(Netherlands PANalytical)with Cu Kαradiation(λ=0.154 059 8 nm),which was carried out between 20°and 80°with a scanning current of 40 mA and a scanning voltage of 40 kV.The microstructural properties were obtained using transmission electron microscopy (TEM),scanning electron microscopy(SEM)and highresolution TEM(HRTEM).The EDS is attached to the SEM.SEM spectroscopy was performed on a Hitachi S-4700 cold field emission scanning electron microscope operated at 30 kV,and TEM(TecnaiG220, FEI,American))was obtained by a Gatan CCD794 camera operated at 200 kV.HRTEM was taken on a Tecnai G2 F20 S-TWIN microscope with an accelerating voltage of 200 kV.The data of XPS are acquired through a KRATOS Axis ultra-DLD X-ray photoelectron spectrometer with monochromatic Mg Kα X-rays(1 283.3 eV).Nitrogen adsorption/desorption isotherms at 77 K were detected by means of an ASAP 2020 V3.03 H instrument.The total specific surface area is inspected relying on the multipoint BrunauerEmmettTeller(BET)method.

    1.3 Electrochemical characterization

    The electrochemical experiments were performed using two electrode coin-type cells with lithium foil serving as both counter and reference electrodes.The working electrodes were made as follows:80%(w/w)of active materials powder(1 mg·cm-2),10%(w/w)of acetylene black(The capacity is about 145 mAh·g-1, shown in Fig.S1 in the Supporting Information),and 10%(w/w)of polyvinylidene fluoride(PVDF)were mixed in an N-methyl-2-pyrrolidone(NMP)solvent to form a homogeneous slurry,followed by spreading onto a copper foil.Finally,the copper foil was dried overnight under vacuum at 100℃.The electrolyte was 1 mol·L-1LiPF6in a 1∶1(V/V)mixture of ethylene carbonate(EC)and diethyl carbonate(DEC). The cell assembly was performed in an argon-filled glove box in which moisture and oxygen were both below 1×10-7(V/V).The cells were charged and discharged between 3.00 and 0.01 V using Land CT2001A tester.Electrochemical impedance spectral measurements of cells before cycling were conducted in the frequency range from 100 kHz to 10 mHz with an alternating currentamplitude of 5 mV.

    Fig.1 Synthetic protocol for NC@Co@NG

    2 Results and discussion

    Fig.1 illustrates the fabrication procedure of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets.Briefly,the Co2+-cyanamide (DCDA)complexes were adsorbed on graphene oxide by electrostatic attraction.By virtue of annealing under N2,the cyanamide decomposed into carbon and the Co2+species reduced to Co0which catalyzed the synthesis of carbon layer.As a result,N-dopedcarbon-encapsulated Co nanoparticles on N-doped graphene nanosheets(abbreviated as NC@Co@NG) were successfully fabricated.

    Fig.2A and B shows typical low-magnification scanning electron microscopy images of the NC@Co@NG.Obviously,the surface becomes crude and plicate as compared with graphene oxide(SEM and TEM images were shown in Fig.S2).TEM images of NC@Co@NG(Fig.2C and D)affirm that Co nanoparticles are firmly anchored on the graphene nanosheets.And the N-doped carbon layerderived from the cyanamide,surrounding Co nanoparticles is also clearly observed(high resolution TEM,Fig.S3).In addition,on the basis ofenergy dispersive X-ray(EDS) analysis,the elemental composition in the as-prepared sample comprises of C,N and Co(Fig.S4).

    Fig.2 SEM images of the NC@Co@NG(A,B)and TEM images of the NC@Co@NG(C,D)

    To illustrate the crystalstructure ofthe as-prepared material,XRD measurementswere carried out.Asshown in Fig.3 the characteristic peaks at44.20°(plane(111)), 51.54°(plane(200))and 75.89°(plane(220))coincide well with pure Co(JCPDS No.15-0806).In the XRD pattern,there also is a distinct peak at 25.5°,owing to (002)crystalplanesofgraphene.

    Fig.3 X-ray diffraction(XRD)pattern ofthe NC@Co@NG

    X-ray photoelectron spectroscopy(XPS)is a powerful and accurate technology to analyze the elemental composition and valence states of the samples.So,XPS was used to determine the content and the valence states ofthe carbon,nitrogen and Co atoms in NC@Co@NG.As depicted in Fig.4A,the XPS survey scan of NC@Co@NG,carbon,cobalt,nitrogen and oxygen can be ascribed to C1s,Co3p,Co3s,N1s, and O1s,respectively.Fig.4B shows the spectrum ofN-doped carbon,in which a peak at 285.4 eV is attributed to C-N bonds for C1s.Based on the deconvolution curve(Fig.4C),the two peaks at 398.5 and 400.5 eV for N1s electrons should be assigned to pyridinic and pyrrolic nitrogen,respectively, indicating that the incorporation of N heteroatoms in graphene and carbon layer are successful[33].The broad and asymmetric Co2p XPS high-resolution scan reveals that Co0is synthesized,along with a pair of characteristic peaks at 778.3 and 793.7 eV(Fig.4D).

    Fig.4(A)XPS spectra of NC@Co@NG and high-resolution scans spectra of C1s(B),N1s(C),and Co2p(D)of NC@Co@NG

    Fig.5A shows a typical discharge-charge voltage profile of NC@Co@NG ata currentdensity of100 mA· g-1on the voltage from 0.05 to 3.00 V.During the initial discharge process,the sample provides a very high storage capacity of1 287 mAh·g-1and delivers relative low reversible capacity of 559.7 mAh·g-1,giving rise to an initial Coulombic efficiency of approximately 43%. Itis the Co nanoparticles and N-doped carbon structure that contributes to the remarkable enhancement of the capacity as compared to the theoretical capacity of graphene(372 mAh·g-1)[34-45].However,it is being known that most of the anode materials would inevitably form solid electrode interface(SEI)film with electrolyte decomposition,which results in irreversible capacity loss and poor Coulombic efficiency[46-51]. Nevertheless,starting from the second cycle,the capacities gradually improve.For example,the discharge and charge capacities of 10th,50th,100th and 200th cycle are 530.1,517.9,596.6,586.3, 730.7,716.8,950.1 and 935.1 mAh·g-1,respectively, corresponding to the excellent and stable Coulombic efficiency of 98%(Fig.S5),which indicates that NC@Co@NG composition is activated slowly as anode in LIBs.The resultis to keep a fairly high retention of the enhanced capacity.

    In Fig.5B,we also could see apparently that the NC@Co@NG has a much better cyclic retention and acquires a rather higher reversible capacity than graphene.The capacity of NC@Co@NG increases dramatically from 559 to 950.1 mAh·g-1after 200 cycles,exhibiting improved capacities with respect to prolong cycling.Firstly,nitrogen doping in graphene alters the charge capacity and electric conductivity of LIBs,this is because thatthe nitrogen has the strongerelectronegativity than carbon,and nitrogen p electrons can form the hybridization(pyridinic N,pyrrolic N) with grapheneπsystem:(1)pyridinic N(N-6)can contribute one p electron to theπsystem and bond with two C atoms at the edges or defects of graphene; (2)pyrrolic N(N-5)can contribute two p electrons to theπsystem and make up a five-membered ring.As a result,nitrogen doping promotes the electronic performance,offers more active sites and reduces Li diffusion barriers,which is beneficial to enhance the conductivity and capacity of the graphene[52-56]. Secondly,each Co nanoparticle on the surface of the N-doped graphene acts as micro current collector to improve the efficiency of the electronic connection between the active material and the current collector (Cu foil)through a favorable electrical contact,thus effectively promoting the electron transfer rate of the graphene(non-mental materials).And the reversible conversion reactions of alloying and dealloying between Co and Li(discharge process:Co+Li++e-→LiCo;charge process:LiCo→Co+Li++e-),also elevate lithium storage[40].More importantly,the catalysis property of Co nanoparticles can effectively facilitate the decomposition of the SEI layer[57-61],which commands structuralintegrity of the electrode material and guarantees the insertion and extraction of lithium ion.Thirdly,the N-doped carbon layer can alleviate the degrading of the electrode,which not only provides a lot of diffusion mesoporous for Li-ion insertion and extraction and suppresses the volume change to a certain extent,but also protects the Co nanoparticles from exposing to the electrolyte and inhibits the aggregation and pulverization.Finally,the NC@Co@NG nanocomposites vastly weaken the mechanical strain generated by the volume expansion/ contraction owing to mesoporous structure that is demonstrated by the testing of nitrogen adsorption/ desorption.The specific surface area is 178 m2·g-1, and the diameter distributions of most of pores are 5~20 nm.(Fig.S6).

    Fig.5 Electrochemical properties the NC@Co@NG electrode:(A)Voltage profiles plotted for 1st,10th,50th,100th and 200th cycles at a current density of 100 mA·g-1;(B)Charge/discharge capacities versus cycle number plots at a current density of 100 mA·g-1;(C)Rate capability at various current densities from 100 to 1 000 mA·g-1;(D)Nyquist plots of the NC@Co@NG(red)and graphene(black)

    The rate performance of the NC@Co@NG composite material as electrode of Li-ion batteries was tested at various current densities ranging from 100 to 1 000 mA·g-1(Fig.5C).After 10 cycles of charge-discharge at 100 mA·g-1,the current rate is raised stepwise to 1 000 mA·g-1for 10 or 5 cycles at each rate.Notably,the capacity has a small fluctuation, keeping a fairly high reversible capacity of 511.9, 471.3,394.9 and 336.9 mAh·g-1,at the current rates of 100,200,500 and 1 000 mA·g-1,respectively.In addition,when the rate goes back to 100 mA·g-1,the capacity exhibits a steady-state growth once again.We owe the stable rate stability and good electrochemical performance to the synergistic effect of the Co nanoparticles and N-doping,endowing the nanocomposite electrode high reversible lithium storage,superior electrical conductivity,more diffusion paths for Li-ions and very low volume change.The cyclic voltammogram(CV)curves of the NC@Co@NG also prove that it possesses excellent electrochemical performance(Fig.S7).

    Electrochemical impedance analyses(EIS)was further performed to verify the crucial factors of high lithium-ion storage capacity,rate performance and cycling stability of the NC@Co@NG electrodes compared with graphene electrodes.Fig.5D illustrates the Nyquist plots of NC@Co@NG(red line)and graphene(black line),respectively,using coin cells cycled for 100 cycles.It is obvious that the diameters of the semicircles in the high-medium frequency region and the sloping line in the low-frequency region for the electrodes composed of NC@Co@NG are much smaller than those of the graphene electrode,which indicates that the charge-transfer resistances(Rct)and solid-state diffusion resistance (Zw)of the NC@Co@NG electrodes are smaller than that of the graphene electrode.This result further confirms that Co nanoparticles and N-doping serve as a large number of conductive nodes,thus improving the whole conductivity of NC@Co@NG nanocomposite and leading to a high electrochemical performance for the NC@Co@NG electrodes as anode materials for LIBs.

    3 Conclusions

    In summary,we demonstrate a facile synthesis of N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets(NC@Co@NG)with unique structure.When applied as electrodes in LIBs, the as-prepared NC@Co@NG exhibits excellent electrochemicalper for mance.And the results display a steadily rising specific capacity of 559 to 950.1 mAh· g-1over 200 cycles ata currentdensity of100 mA·g-1, superior to commercial graphite electrode.Meanwhile, a stable rate performance is simultaneously observed, at different current densities ranging from 100 to 1 000 mA·g-1,which indicates a promising anode materialfor Lithium-ion batteries.

    Supporting information is available athttp://www.wjhxxb.cn

    [1]Kang K,Meng Y S,Bréger J,et al.Science,2006,311 (5763):977-980

    [2]Lee J,Urban A,Li X,et al.Science,2014,343(6170):519 -522

    [3]Sun Y,Ning G,Qi C,et al.Electrochim.Acta,2016,190: 141-149

    [4]Reddy A L M,Srivastava A,Ajayan P M,et al.ACS Nano, 2010,4:6337-6342

    [5]Wang Z,Li P,Chen Y,et al.J.Power Sources,2014,263: 246-251

    [6]Wang C,Guo Z,Shen W,et al.Adv.Funct.Mater.,2014,24 (35):5511-5521

    [7]Wu Z S,Winter A,Chen L,et al.Adv.Mater.,2012,24(37): 5130-5135

    [8]Ling Z,Wang Z Y,Qiu J S,et al.Adv.Funct.Mater., 2016,26(1):111-119

    [9]Liu R L,Wan L,Zhao D Y,et al.Adv.Funct.Mater., 2015,25(4):526-533

    [10]Tang J,Wang T,Yamauchi Y,et al.Chem.Eur.J.,2015,21 (48):17293-17298

    [11]Yu X,Kang Y B,Park H S.Carbon,2016,101:49-56

    [12]Wu G,Hu Y,Chen W,et al.Nat.Commun.,2015,6:7258

    [13]Endo M,Kim C,Nishimura K,et al.Carbon,2000,38(2): 183-197

    [14]Wu Y P,Rahm E,Holze R.J.Power Sources,2003,114(2): 228-236

    [15]Casas C D L,Li W Z.J.Power Sources,2012,208:74-85

    [16]Moradi B,Botte G G.J.Appl.Electrochem.,2016,46(2): 123-148

    [17]Bari C D,Go?i-Urtiaga A,Pita M,et al.Electrochim.Acta,2016,191:500-509

    [18]Liu R L,Pan L X,Wu D Q,et al.Phys.Chem.Chem. Phys.,2015,17(6):4724-4729

    [19]Deng Y F,Xie Y,Ji X L,et al.J.Mater.Chem.A,2016,4 (4):1144-1173

    [20]Hao P,Zhao Z H,Yang B,et al.Nano Energy,2015,15:9-23

    [21]Wang D W,Min Y G,Peng B,et al.J.Colloid Interface Sci.,2014,417:270-277

    [22]Liang J Y,Wang C C,Lu S Y.J.Mater.Chem.A,2015,3 (48):24453-24462

    [23]Wu Z S,Ren W C,Cheng H M,et al.ACS Nano,2011,5(7): 5463-5471

    [24]Youn D H,Heller A,Mullins C B.Chem.Mater.,2016,28 (5):1343-1347

    [25]Domi Y,Usui H,Sakaguchi H,et al.ACS Appl.Mater. Interfaces,2016,8(11):7125-7132

    [26]Ding Y L,Wu C,Yu Y,et al.Small,2015,11(45):6026 -6035

    [27]Zhang G,Lu W,Cao F,et al.J.Power Sources,2016,302: 114-125

    [28]Zou X,Huang X,Goswami A,et al.Angew.Chem.,2014, 126(17):4461-4465

    [29]Li X F,Geng D S,Zhang Y,et al.Electrochem.Commun., 2011,13(8):822-825

    [30]Zhu J S,Wang D L,Liu T F,et al.Electrochim.Acta, 2014,125(10):347-353

    [31]Li C,Yang X,Zhao Y,et al.Org.Electron.,2014,15(11): 2868-2875.

    [32]Zhou W J,Zhou J,Zhou Y C,et al.Chem.Mater.,2015,27 (6):2026-2032

    [33]Qu L T,Liu Y,Baek J B,et al.ACS Nano,2010,4(3):1321 -1326

    [34]Wang L X,Li J C,Mao C S,et al.Dalton Trans.,2013,42 (4):8070-8077

    [35]González J R,Alcántara R,Nacimiento F,et al.Electrochim. Acta,2011,56:9808-9817

    [36]Zhang J,Liang Y H,Zhou Q,et al.J.Power Sources, 2015,290:71-79

    [37]Yang S B,Cui G L,Pang S P,et al.ChemSusChem,2010,3: 236-239

    [38]Yue H Y,Shi Z P,Wang Q X,et al.ACS Appl.Mater. Interfaces,2014,6(19):17067-17074

    [39]Mei L,Li C C,Qu B H,et al.Nanoscale,2012,4(18):5731 -5737

    [40]Yue H Y,Shi Z P,Wang Q X,et al.RSC Adv.,2015,5(92): 75653-75658

    [41]Chen C J,Hu X L,Jiang Y,et al.Chem.Eur.J.,2014,20 (5):1383-1388

    [42]Lightcap L V,Kosel T H,Kamat P V.Nano Lett.,2010,10 (2):577-583

    [43]Yang S B,Feng X L,Lvanovici S,et al.Angew.Chem.Int. Ed.,2010,49:8408-8411

    [44]He G Y,Li J H,Chen H Q,et al.Mater.Lett.,2012,82:61 -63

    [45]Liang Y Y,Li Y G,Wang H L,et al.Nat.Mater.,2011,10: 780-786.

    [46]Mai Y J,Tu J P,Gu C D,et al.J.Power Sources,2012,209: 1-6

    [47]Guo W,Li X,Xu J T,et al.Electrochim.Acta,2016,188: 414-420

    [48]Reddy A L M,Srivastava A,Gowda S R,et al.ACS Nano, 2010,4(11):6337-6342

    [49]Liu R L,Pan L X,Wan L,et al.Phys.Chem.Chem.Phys., 2015,17(6):4724-4729

    [50]Deng Y F,Xie Y,Zou K X,et al.J.Mater.Chem.A, 2016,4(4):1144-1173

    [51]Hao P,Zhao Z H,Leng Y H,et al.Nano Energy,2015,15: 9-23

    [52]Wang H B,Zhang C J,Liu Z H,et al.J.Mater.Chem., 2011,21(14):5430-5434

    [53]Hu T,Sun X,Sun H T,et al.Phys.Chem.Chem.Phys., 2014,16(3):1060-1066

    [54]He C Y,Wang R H,Fu H G,et al.J.Mater.Chem.A, 2013,1(46):14586-14591

    [55]LIU Mei-Pin(劉美玭),HU Yu-Xiang(胡宇翔),DU Hong-Bin (杜紅賓).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (12):2425-2431

    [56]LI Yan-Bing(李嚴(yán)冰),DUAN Xiao-Bo(段曉波),HAN Ya-Miao(韓亞苗),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31(4):641-648

    [57]He Y S,Bai D W,Yang X W,et al.Electrochem.Commun., 2010,12(4):570-573

    [58]Park G D,Lee J H,Kang Y C.Carbon,2015,84:14-23

    [59]Lancelot C,Ordomsky V V,Stéphan O,et al.ACS Catal., 2014,4(12):4510-4515

    [60]Xiao Q Q,Zhang Y X,Guo X,et al.Chem.Commun., 2014,50(86):13019-13022

    [61]Beaumont S K,Alayoglu S,Specht C,et al.J.Am.Chem. Soc.,2014,136(28):9898-9901

    N-Doped Carbon-Encapsulated Cobalt Nanoparticles on N-Doped Graphene Nanosheets as a High-Capacity Anode Material for Lithium-Ion Storage

    GENG Kai-Ming1WU Jun-Jie1GENG Hong-Bo1HU Ya-Yun1QU Gen-Long1PAN Yue1ZHENG Jun-Wei2GU Hong-Wei*,1

    (1Key Laboratory of Organic Synthesis of Jiangsu Province;College of Chemistry,Chemical Engineering and Materials Science& Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou,Jiangsu 215123,China)

    A graphene-based anode material is demonstrated:N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets(NC@Co@NG),in which cobalt nanoparticles encapsulated by N-doped carbon layer are highly dispersed on the N-doped graphene nanosheets,forming multiple sites for electrical conductivity enhancement and lithium insertion.When used as anode materials in lithium-ion batteries,the nanocomposites exhibitoutstanding electrochemicalperformance,including a considerably large reversible capacity of950.1 mAh·g-1after 200 cycles at a current density of 100 mA·g-1and Coulombic efficiency of98%.

    cobalt nanoparticles;N-doping graphene;anodes;lithium-ion batteries

    TB333

    A

    1001-4861(2016)09-1495-08

    10.11862/CJIC.2016.173

    2016-03-18。收修改稿日期:2016-05-23。

    國家自然科學(xué)基金(No.21373006)、江蘇省省屬高校自然科學(xué)基金(No.14KJB430021)和江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(PAPD)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:hongwei@suda.edu.cn;會(huì)員登記號(hào):S06N8847S1505。

    猜你喜歡
    碳層蘇州大學(xué)負(fù)極
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    國家藝術(shù)基金“基礎(chǔ)美術(shù)教育百年文獻(xiàn)展”首站在蘇州大學(xué)開幕
    蘇州大學(xué)藏《吳中葉氏族譜》考述
    尋根(2022年2期)2022-04-17 11:01:38
    Shifting of the Agent of Disciplinary Power in J. M.Coetzee’s Foe
    三維多孔復(fù)合碳層對(duì)電極的制備及其光伏性能研究?
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    低密度防熱材料燒蝕性能研究
    載人航天(2016年3期)2016-06-04 06:08:42
    乙醇為燃料的SOFC陽極Ru抗積碳層的制備及研究
    韓國三星開發(fā)出新型鋰離子電池負(fù)極
    久久久久久久久久久免费av| 久久精品综合一区二区三区| 欧美人与善性xxx| av视频在线观看入口| 久久久亚洲精品成人影院| 麻豆乱淫一区二区| 国产 一区精品| 国产在视频线在精品| 三级国产精品欧美在线观看| 欧美成人精品欧美一级黄| 爱豆传媒免费全集在线观看| 亚洲,欧美,日韩| 亚洲国产色片| 欧美日本亚洲视频在线播放| 久久久欧美国产精品| 内地一区二区视频在线| 成人特级av手机在线观看| 国产精品一区二区性色av| 国产免费男女视频| 亚洲在线观看片| 亚洲av电影不卡..在线观看| 大香蕉97超碰在线| 国产精品日韩av在线免费观看| 国产乱人视频| 少妇的逼水好多| 欧美成人午夜免费资源| 三级毛片av免费| 能在线免费看毛片的网站| 色噜噜av男人的天堂激情| 亚洲,欧美,日韩| 99热这里只有精品一区| 亚洲内射少妇av| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 欧美成人一区二区免费高清观看| 日本wwww免费看| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 久久久久精品久久久久真实原创| 特级一级黄色大片| 亚洲精品456在线播放app| 日韩av在线大香蕉| 国产精品人妻久久久影院| 午夜日本视频在线| 你懂的网址亚洲精品在线观看 | 中国美白少妇内射xxxbb| 国产成人aa在线观看| 能在线免费看毛片的网站| 丝袜美腿在线中文| 国产视频首页在线观看| 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验| 亚洲国产精品国产精品| 国产麻豆成人av免费视频| 一个人观看的视频www高清免费观看| 夜夜看夜夜爽夜夜摸| 精品国内亚洲2022精品成人| av黄色大香蕉| 国产黄色小视频在线观看| 欧美又色又爽又黄视频| 国产精品一区二区性色av| 国产精品一区二区三区四区免费观看| 卡戴珊不雅视频在线播放| 日韩欧美三级三区| 天天躁夜夜躁狠狠久久av| 国产日韩欧美在线精品| 丰满乱子伦码专区| av免费观看日本| 亚洲精品,欧美精品| 久久精品人妻少妇| 国产高潮美女av| 国产麻豆成人av免费视频| 亚洲精品久久久久久婷婷小说 | 人人妻人人看人人澡| a级毛色黄片| 国产精品久久久久久av不卡| 国产高清有码在线观看视频| 狂野欧美激情性xxxx在线观看| 日韩三级伦理在线观看| 国内揄拍国产精品人妻在线| 日韩精品有码人妻一区| 少妇被粗大猛烈的视频| 久久精品国产自在天天线| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 又粗又硬又长又爽又黄的视频| 91av网一区二区| 亚洲色图av天堂| 久久久久九九精品影院| 精品国产露脸久久av麻豆 | 国产欧美另类精品又又久久亚洲欧美| 久久精品91蜜桃| 直男gayav资源| 午夜福利在线观看吧| 久久精品综合一区二区三区| av在线观看视频网站免费| 亚洲成av人片在线播放无| 国产乱来视频区| 亚洲精品国产av成人精品| 亚洲国产欧洲综合997久久,| 亚洲中文字幕一区二区三区有码在线看| 中文字幕久久专区| 亚洲av成人精品一区久久| 99久国产av精品国产电影| 少妇的逼好多水| 91久久精品电影网| 久久久久久久久久成人| 午夜福利成人在线免费观看| 综合色丁香网| 在线观看一区二区三区| 成人亚洲欧美一区二区av| 日韩视频在线欧美| 能在线免费观看的黄片| 久久久久久久午夜电影| 欧美又色又爽又黄视频| av天堂中文字幕网| 亚洲丝袜综合中文字幕| 国产一级毛片在线| 一级爰片在线观看| 中文字幕精品亚洲无线码一区| 日本wwww免费看| 亚洲成色77777| av在线老鸭窝| 亚洲欧美日韩高清专用| 久久综合国产亚洲精品| 神马国产精品三级电影在线观看| 午夜视频国产福利| 国产中年淑女户外野战色| 亚洲国产精品成人综合色| 精品国产三级普通话版| 亚洲电影在线观看av| 亚洲丝袜综合中文字幕| 亚洲av电影不卡..在线观看| 六月丁香七月| 久久久久久久久久黄片| 我的老师免费观看完整版| 国产精品.久久久| 国产探花在线观看一区二区| 1024手机看黄色片| 久久久精品94久久精品| 国产精品福利在线免费观看| 高清午夜精品一区二区三区| 免费一级毛片在线播放高清视频| 在现免费观看毛片| 国产精品三级大全| 精品一区二区免费观看| 国产熟女欧美一区二区| 国产欧美日韩精品一区二区| 国产69精品久久久久777片| 2021少妇久久久久久久久久久| 久久久久久久午夜电影| 久久久成人免费电影| 日韩av在线免费看完整版不卡| 天堂中文最新版在线下载 | 成人三级黄色视频| 久久精品久久久久久噜噜老黄 | 国产亚洲一区二区精品| 国产欧美另类精品又又久久亚洲欧美| 国产不卡一卡二| 亚洲国产欧美在线一区| 亚洲熟妇中文字幕五十中出| 日本午夜av视频| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 看片在线看免费视频| 国产 一区 欧美 日韩| 亚洲国产成人一精品久久久| 能在线免费看毛片的网站| 男女视频在线观看网站免费| 亚洲欧美日韩卡通动漫| 免费观看性生交大片5| 国产伦在线观看视频一区| 一级av片app| 亚洲精品456在线播放app| 女的被弄到高潮叫床怎么办| 高清在线视频一区二区三区 | 日韩一区二区视频免费看| 看片在线看免费视频| 免费看光身美女| 永久网站在线| 欧美不卡视频在线免费观看| 国产精品1区2区在线观看.| 寂寞人妻少妇视频99o| 村上凉子中文字幕在线| 七月丁香在线播放| 九色成人免费人妻av| 在线免费观看的www视频| 欧美性猛交黑人性爽| 日本av手机在线免费观看| 日韩高清综合在线| 亚洲欧美中文字幕日韩二区| 男女视频在线观看网站免费| 久久久久网色| 欧美另类亚洲清纯唯美| 国产在视频线在精品| 欧美潮喷喷水| 青春草视频在线免费观看| 一级爰片在线观看| 色尼玛亚洲综合影院| 一区二区三区免费毛片| 激情 狠狠 欧美| 久久热精品热| 在线观看66精品国产| 国产一级毛片七仙女欲春2| 亚洲精品乱码久久久久久按摩| 午夜a级毛片| 久久久精品94久久精品| 国产成人福利小说| 亚洲欧洲日产国产| 超碰av人人做人人爽久久| 亚洲内射少妇av| 精品久久国产蜜桃| 国产精品一区二区三区四区久久| 国产高清国产精品国产三级 | 免费看a级黄色片| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 免费观看人在逋| 能在线免费看毛片的网站| 国产视频内射| 国产精品永久免费网站| 看片在线看免费视频| 色网站视频免费| 亚洲成人中文字幕在线播放| 我的老师免费观看完整版| 亚洲中文字幕一区二区三区有码在线看| 色综合色国产| 美女脱内裤让男人舔精品视频| 伊人久久精品亚洲午夜| 少妇的逼水好多| 秋霞伦理黄片| 亚洲在线观看片| 久久精品国产鲁丝片午夜精品| 日本一本二区三区精品| 九九爱精品视频在线观看| 老师上课跳d突然被开到最大视频| 国产精品伦人一区二区| 三级毛片av免费| 亚洲国产精品久久男人天堂| 桃色一区二区三区在线观看| 免费黄色在线免费观看| 啦啦啦啦在线视频资源| 欧美xxxx性猛交bbbb| 人妻少妇偷人精品九色| 好男人在线观看高清免费视频| 六月丁香七月| 亚洲国产精品成人久久小说| 国产亚洲精品久久久com| 能在线免费看毛片的网站| 在现免费观看毛片| 18禁在线无遮挡免费观看视频| 欧美zozozo另类| 美女内射精品一级片tv| 视频中文字幕在线观看| 国产视频首页在线观看| 91久久精品国产一区二区三区| 成年女人永久免费观看视频| 九九热线精品视视频播放| 亚洲自偷自拍三级| 美女国产视频在线观看| 久久久久久久久大av| 亚洲av男天堂| 亚洲国产精品专区欧美| 97超视频在线观看视频| 高清日韩中文字幕在线| 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 亚洲精品乱久久久久久| 亚州av有码| av免费在线看不卡| 久久99精品国语久久久| 久久欧美精品欧美久久欧美| 亚洲av男天堂| 久久久久久久久大av| 国产男人的电影天堂91| 亚洲18禁久久av| 国产一区亚洲一区在线观看| 日韩成人av中文字幕在线观看| 我要看日韩黄色一级片| 嫩草影院新地址| 18禁裸乳无遮挡免费网站照片| 一边摸一边抽搐一进一小说| 99在线视频只有这里精品首页| 国产精品久久久久久精品电影小说 | 老师上课跳d突然被开到最大视频| 别揉我奶头 嗯啊视频| 精品99又大又爽又粗少妇毛片| 尤物成人国产欧美一区二区三区| 又爽又黄a免费视频| 国产色爽女视频免费观看| 在线播放无遮挡| 国产成人一区二区在线| 九草在线视频观看| 欧美日韩综合久久久久久| 最近中文字幕2019免费版| 国产免费福利视频在线观看| 国内精品美女久久久久久| 两个人的视频大全免费| 看非洲黑人一级黄片| 久久精品久久久久久噜噜老黄 | 熟女人妻精品中文字幕| 国产高清三级在线| 免费看光身美女| 亚洲精品亚洲一区二区| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 欧美成人免费av一区二区三区| 日本三级黄在线观看| 亚洲欧美精品综合久久99| 欧美日韩综合久久久久久| 3wmmmm亚洲av在线观看| 日韩av在线大香蕉| 又爽又黄a免费视频| 日韩av在线免费看完整版不卡| 色综合亚洲欧美另类图片| 69人妻影院| 级片在线观看| 看免费成人av毛片| 精华霜和精华液先用哪个| 亚洲av一区综合| 亚洲久久久久久中文字幕| 国产成人午夜福利电影在线观看| 日本与韩国留学比较| 欧美性感艳星| 日韩一区二区三区影片| 一级毛片aaaaaa免费看小| 国产精品福利在线免费观看| 青青草视频在线视频观看| 欧美另类亚洲清纯唯美| 欧美区成人在线视频| 男女边吃奶边做爰视频| 婷婷色av中文字幕| 久久精品91蜜桃| 我要看日韩黄色一级片| 欧美xxxx性猛交bbbb| 成人午夜精彩视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看 | 国产精品国产三级专区第一集| 免费看美女性在线毛片视频| 免费黄色在线免费观看| 国产成人freesex在线| 亚洲自拍偷在线| 日韩强制内射视频| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 日本午夜av视频| 在线观看美女被高潮喷水网站| 日韩欧美国产在线观看| 永久免费av网站大全| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 国内揄拍国产精品人妻在线| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看| 日本猛色少妇xxxxx猛交久久| 中文字幕制服av| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 2021少妇久久久久久久久久久| 国产精品人妻久久久久久| 国产精品av视频在线免费观看| 一个人免费在线观看电影| 日本三级黄在线观看| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 欧美高清性xxxxhd video| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 久久久国产成人精品二区| 特级一级黄色大片| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 男女国产视频网站| 少妇人妻精品综合一区二区| 视频中文字幕在线观看| 精品午夜福利在线看| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 日本-黄色视频高清免费观看| 色综合亚洲欧美另类图片| 成人漫画全彩无遮挡| 欧美高清性xxxxhd video| 亚洲三级黄色毛片| 久久久久免费精品人妻一区二区| 国产精品国产三级专区第一集| 国产高清国产精品国产三级 | 日韩av不卡免费在线播放| АⅤ资源中文在线天堂| 能在线免费看毛片的网站| 中文字幕亚洲精品专区| 三级经典国产精品| av在线观看视频网站免费| 日本wwww免费看| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂 | 国产一区二区亚洲精品在线观看| 一级二级三级毛片免费看| 一区二区三区乱码不卡18| a级毛色黄片| 免费观看精品视频网站| 女人久久www免费人成看片 | 亚洲内射少妇av| 好男人视频免费观看在线| 亚洲欧美精品综合久久99| 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 91精品伊人久久大香线蕉| 久久99热6这里只有精品| 黄色欧美视频在线观看| 日日摸夜夜添夜夜添av毛片| 久久久欧美国产精品| 18+在线观看网站| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 亚洲精品乱久久久久久| 午夜福利在线观看吧| 精品99又大又爽又粗少妇毛片| 亚洲丝袜综合中文字幕| 国产毛片a区久久久久| 三级国产精品欧美在线观看| 一个人看的www免费观看视频| 在线观看一区二区三区| 亚洲av不卡在线观看| 国产大屁股一区二区在线视频| 日韩在线高清观看一区二区三区| 国产伦一二天堂av在线观看| 亚洲精品自拍成人| 婷婷色麻豆天堂久久 | 色吧在线观看| 美女xxoo啪啪120秒动态图| av卡一久久| 国内精品宾馆在线| 九九爱精品视频在线观看| 99久久精品一区二区三区| 精品酒店卫生间| 22中文网久久字幕| 精品人妻视频免费看| 最近最新中文字幕免费大全7| 久久精品影院6| 春色校园在线视频观看| 直男gayav资源| 岛国毛片在线播放| 神马国产精品三级电影在线观看| eeuss影院久久| 欧美日韩精品成人综合77777| 亚洲国产欧洲综合997久久,| 免费观看人在逋| 欧美色视频一区免费| 亚洲人成网站高清观看| 国产淫语在线视频| 欧美不卡视频在线免费观看| 天天躁夜夜躁狠狠久久av| 97超视频在线观看视频| 久久精品综合一区二区三区| 日韩欧美精品免费久久| 青春草国产在线视频| 国产成人精品一,二区| 成人亚洲欧美一区二区av| 自拍偷自拍亚洲精品老妇| 中文字幕熟女人妻在线| 老司机影院成人| 真实男女啪啪啪动态图| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 免费看日本二区| 亚洲欧美成人精品一区二区| 夫妻性生交免费视频一级片| 国产真实伦视频高清在线观看| 亚洲国产欧美在线一区| 91久久精品国产一区二区成人| 欧美色视频一区免费| 国产真实乱freesex| 国产欧美日韩精品一区二区| 九草在线视频观看| 国产精品av视频在线免费观看| 欧美bdsm另类| 狠狠狠狠99中文字幕| 乱系列少妇在线播放| 成人综合一区亚洲| 99久国产av精品| 99久久成人亚洲精品观看| 国产亚洲精品av在线| 22中文网久久字幕| 长腿黑丝高跟| 国产成人a∨麻豆精品| 青春草国产在线视频| 午夜视频国产福利| 成年女人看的毛片在线观看| 久久99热这里只有精品18| 69人妻影院| 欧美丝袜亚洲另类| 亚洲不卡免费看| 内射极品少妇av片p| 中文欧美无线码| 成人特级av手机在线观看| 日韩亚洲欧美综合| 亚洲av成人精品一区久久| 老司机影院毛片| www.色视频.com| 国产精品久久久久久av不卡| 久久6这里有精品| 99久久精品国产国产毛片| 免费看av在线观看网站| 99热这里只有精品一区| 国产探花在线观看一区二区| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 久久久午夜欧美精品| 六月丁香七月| 成人午夜精彩视频在线观看| 日韩av在线免费看完整版不卡| 偷拍熟女少妇极品色| 一级av片app| 亚洲av中文av极速乱| 视频中文字幕在线观看| 日本三级黄在线观看| 精品国产露脸久久av麻豆 | 国产精品久久久久久av不卡| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 欧美日本亚洲视频在线播放| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区国产| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| av国产久精品久网站免费入址| videos熟女内射| 小说图片视频综合网站| 亚洲av成人av| 啦啦啦啦在线视频资源| 在线a可以看的网站| 七月丁香在线播放| 99久国产av精品| 最近中文字幕2019免费版| 欧美性猛交黑人性爽| 久久草成人影院| 全区人妻精品视频| 我的女老师完整版在线观看| 三级国产精品片| 在线天堂最新版资源| 我要看日韩黄色一级片| 少妇的逼水好多| 免费播放大片免费观看视频在线观看 | 国产日韩欧美在线精品| 只有这里有精品99| 色播亚洲综合网| 精品人妻一区二区三区麻豆| 九九在线视频观看精品| 一边亲一边摸免费视频| 亚洲最大成人av| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 高清av免费在线| 久热久热在线精品观看| 1000部很黄的大片| 久久久精品欧美日韩精品| 在线播放国产精品三级| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 一本久久精品| av在线老鸭窝| 国产三级中文精品| 最近手机中文字幕大全| 中文资源天堂在线| 亚洲av.av天堂| 美女高潮的动态| 国产精品久久久久久久电影| 亚洲精品色激情综合| 成年免费大片在线观看| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 精品久久久久久成人av| 国产免费一级a男人的天堂| 91精品伊人久久大香线蕉| 日韩成人伦理影院| 我的女老师完整版在线观看| 干丝袜人妻中文字幕| 一级黄色大片毛片| 少妇的逼好多水| 如何舔出高潮| 女人久久www免费人成看片 | 我要看日韩黄色一级片| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版 | 日本欧美国产在线视频| 亚洲人成网站在线观看播放| 国产欧美另类精品又又久久亚洲欧美| 午夜爱爱视频在线播放| 亚洲成av人片在线播放无| 精品久久久久久电影网 | 国产精品野战在线观看| eeuss影院久久| 国产黄色视频一区二区在线观看 | 日本午夜av视频| 在现免费观看毛片| 大香蕉久久网| 一个人免费在线观看电影| 亚洲av中文字字幕乱码综合| 91午夜精品亚洲一区二区三区| 99国产精品一区二区蜜桃av| 日韩视频在线欧美| 在线观看一区二区三区|