何建慧, 章永華
(臺(tái)州職業(yè)技術(shù)學(xué)院 機(jī)電工程學(xué)院,浙江 臺(tái)州 318000)
?
仿生波動(dòng)鰭推進(jìn)器設(shè)計(jì)及運(yùn)動(dòng)學(xué)仿真分析
何建慧, 章永華
(臺(tái)州職業(yè)技術(shù)學(xué)院 機(jī)電工程學(xué)院,浙江 臺(tái)州 318000)
以鰩魚為仿生對(duì)象,基于兩側(cè)胸鰭的生物學(xué)研究成果,對(duì)鰩魚的胸鰭進(jìn)行形態(tài)和結(jié)構(gòu)上的仿生設(shè)計(jì)。建立仿生鰭波動(dòng)的二維數(shù)學(xué)模型?;谟?jì)算流體動(dòng)力學(xué)(CFD:Computational Fluid Dynamics)技術(shù),采用非耦合隱式求解非定常不可壓縮N-S方程和連續(xù)性方程,利用三角形非結(jié)構(gòu)網(wǎng)格對(duì)計(jì)算區(qū)域進(jìn)行離散,比較分析了不同運(yùn)動(dòng)學(xué)參數(shù)下仿生鰭無量綱阻力系數(shù)隨時(shí)間的變化規(guī)律。從仿真結(jié)果知:仿生鰭推進(jìn)力隨著波動(dòng)頻率的增加、波幅的增加以及波長(zhǎng)的增長(zhǎng)而近似線性增大,而游動(dòng)穩(wěn)定性則與之相反。該仿真結(jié)果為深入了解仿生波動(dòng)鰭的推進(jìn)機(jī)理提供更為詳細(xì)的依據(jù),也為仿生波動(dòng)鰭的優(yōu)化設(shè)計(jì)提供參考。
仿生學(xué); 波動(dòng)鰭; 運(yùn)動(dòng)學(xué); 仿真; 計(jì)算流體動(dòng)力學(xué)
長(zhǎng)期的仿生學(xué)研究結(jié)果顯示:采用身體/尾鰭擺動(dòng)方式的仿生水下推進(jìn)器本體在運(yùn)動(dòng)過程中會(huì)產(chǎn)生劇烈晃動(dòng),限制了其在實(shí)際工程領(lǐng)域的應(yīng)用[1]。相對(duì)而言,利用兩側(cè)胸鰭波動(dòng)推進(jìn)的生物,其身體在游動(dòng)過程中幾乎保持不動(dòng),因而具有非常高的游動(dòng)穩(wěn)定性[2]。
HERIOT-WATT大學(xué)的SFAKIOTAKIS教授首先采用PBA研制了仿生波動(dòng)鰭推進(jìn)器[3]。之后,許多仿生鰭推進(jìn)器被開發(fā)出來,其驅(qū)動(dòng)系統(tǒng)包括伺服電機(jī)[4]、形狀記憶合金[5]、高分子離子聚合物等[6]。隨著研究的深入,仿生機(jī)器魚在水下考古、資源勘探、環(huán)境檢測(cè)、軍事偵查以及娛樂等方面逐漸展示出令人激動(dòng)的應(yīng)用前景。
本文研究一種仿鰩魚胸鰭波狀運(yùn)動(dòng)的機(jī)器魚鰭,通過數(shù)值仿真手段,比較分析在不同的運(yùn)動(dòng)學(xué)參數(shù)下仿生鰭無量綱阻力系數(shù)隨時(shí)間的變化規(guī)律。根據(jù)尾跡渦量場(chǎng)分布形式和渦量強(qiáng)度解釋運(yùn)動(dòng)學(xué)參數(shù)變化導(dǎo)致仿生鰭推進(jìn)性能差異的原因。該結(jié)果有利于從細(xì)節(jié)和本質(zhì)角度深刻理解和解釋仿生波動(dòng)鰭的推進(jìn)機(jī)理,為研制具有實(shí)際應(yīng)用價(jià)值的自主水下推進(jìn)器提供有意義的參考。
BLEVINS等人對(duì)鰩魚巡游時(shí)鰩魚胸鰭波動(dòng)幅度沿展長(zhǎng)和弦長(zhǎng)的變化做了實(shí)驗(yàn)測(cè)量,分別沿兩個(gè)方向在鰩魚上表面做標(biāo)記點(diǎn),通過定量測(cè)量,發(fā)現(xiàn)鰩魚胸鰭波動(dòng)幅度沿展長(zhǎng)和弦長(zhǎng)均呈現(xiàn)逐漸增大的趨勢(shì),如圖1所示。每根鰭條由與其相連的兩側(cè)肌肉(紅肌和白肌)驅(qū)動(dòng),鰭條兩側(cè)肌肉交替收縮和伸長(zhǎng),實(shí)現(xiàn)鰭條往復(fù)的柔性運(yùn)動(dòng)[8]。
圖1 鰩魚胸鰭波動(dòng)幅度沿展長(zhǎng)和弦長(zhǎng)的變化[7]Fig.1The amplitude of stingray pectoral fin changes with chord length and extend length
根據(jù)鰩魚解剖學(xué)、形態(tài)學(xué)和運(yùn)動(dòng)學(xué)的研究結(jié)果,設(shè)計(jì)了仿生魚鰭波動(dòng)推進(jìn)器模型,如圖2所示。該模型由一對(duì)胸鰭和推進(jìn)器主體組成。每側(cè)胸鰭由八根鰭條覆蓋彈性蒙皮構(gòu)成(舵機(jī)型號(hào):FUTABA-S9402)。為了提高仿生鰭的運(yùn)動(dòng)控制精度,鰭條采用硬鋁材料加工。鰭條上每間隔一段距離有一過孔用來固定蒙皮。鰭條長(zhǎng)度分布與仿生對(duì)象的外沿輪廓曲線一致。通過控制舵機(jī)的擺動(dòng)頻率和幅度以及相鄰舵機(jī)間擺動(dòng)的相位可分別調(diào)節(jié)魚鰭波動(dòng)推進(jìn)頻率、擺幅和波長(zhǎng)。推進(jìn)器主體為一長(zhǎng)方形箱體,內(nèi)置能源供給模塊、硬件電路及重心調(diào)節(jié)機(jī)構(gòu)。側(cè)壁四個(gè)圓孔用于舵機(jī)和控制電路的信號(hào)與能量傳遞。波動(dòng)方程如式(1)描述[4]:
z(x,y,t)=A(x,y)sin(ωt-ky)
(1)
A(x,y)為仿生鰭的波動(dòng)幅度,它的形式?jīng)Q定運(yùn)動(dòng)模式,ω=2πf為角頻率,k=2π/λ為波數(shù),f為頻率,λ波長(zhǎng)。
圖2 仿生魚鰭推進(jìn)器機(jī)械結(jié)構(gòu)Fig.2 Mechanical structure of biomimeticfin propulsor
控制方程為非定常不可壓縮N-S方程和連續(xù)性方程[9],如式(2)所示,采用非耦合隱式求解器進(jìn)行求解:
(2)
p為壓力,ρ為流體密度,μ為流體粘性系數(shù),ui為速度脈動(dòng)量。采用RNGK-ε湍流模型,湍動(dòng)能和湍流耗散率的輸運(yùn)方程如式(3)和(4)所示。采用三角形非結(jié)構(gòu)網(wǎng)格對(duì)計(jì)算區(qū)域進(jìn)行離散,魚鰭模型四周區(qū)域及尾跡區(qū)域局部網(wǎng)格加密。速度入口,壓力出口,其余為無滑移壁面。時(shí)間離散采用一階隱式格式,用SIMPLE方式求解壓力/速度耦合項(xiàng),而對(duì)流項(xiàng)則用二階迎風(fēng)格式離散。其他有關(guān)參數(shù)設(shè)置詳見文獻(xiàn)[10]。
(3)
(4)
分別計(jì)算了波動(dòng)頻率、波幅和波長(zhǎng)對(duì)仿生魚鰭推進(jìn)性能的影響,給出不同運(yùn)動(dòng)學(xué)參數(shù)下無量綱阻力系數(shù)隨時(shí)間的變化規(guī)律。
5.1 頻率對(duì)仿生鰭推進(jìn)性能的影響
圖3所示為在四種不同波動(dòng)頻率下仿生鰭無量綱阻力系數(shù)Cd隨計(jì)算時(shí)間的變化情況。
Cd數(shù)值為正說明仿生鰭波動(dòng)產(chǎn)生的推進(jìn)力不足以克服在計(jì)算初始條件入口速度0.06 m/s下的流體阻力。反之,Cd數(shù)值為負(fù)則說明仿生鰭波動(dòng)產(chǎn)生的推進(jìn)力足以克服流體阻力而產(chǎn)生前行的凈推力,且負(fù)數(shù)越小,說明產(chǎn)生的推進(jìn)力越大。從計(jì)算結(jié)果發(fā)現(xiàn):不同運(yùn)動(dòng)頻率下,阻力系數(shù)隨時(shí)間變化的有如下特點(diǎn):
(1) 無量綱阻力系數(shù)曲線隨時(shí)間呈周期性變化。通常情況下,無量綱阻力系數(shù)Cd曲線隨時(shí)間作類似正弦的周期性變化,從計(jì)算結(jié)果看,其變化頻率為仿生鰭波動(dòng)頻率的一倍。該現(xiàn)象是由魚鰭運(yùn)動(dòng)過程中表面附近流體區(qū)域反卡門渦街的周期性形成和脫落造成的,且反卡門渦街形成和脫落的頻率為魚鰭運(yùn)動(dòng)頻率的一倍。
圖3 不同頻率下無量綱阻力系數(shù)的變化情況Fig.3 The change of non-dimensional drag coefficient with frequency
(2) 無量綱阻力系數(shù)曲線的幅度隨著頻率增大而顯著增大。計(jì)算時(shí),仿生鰭進(jìn)入穩(wěn)定游動(dòng)后(t≥1 s) Cd曲線的幅度反應(yīng)了游動(dòng)穩(wěn)定性問題,幅度越大,則穩(wěn)定性越差。從結(jié)果看,Cd曲線的幅度隨著頻率增大而顯著增大,說明其運(yùn)動(dòng)穩(wěn)定性變差。
(3) 無量綱阻力系數(shù)時(shí)間平均值隨頻率的變化而改變。如圖4所示:在10 Hz的時(shí)候,Cd值為-1.25,說明在這個(gè)頻率下仿生鰭產(chǎn)生足夠的推進(jìn)力;當(dāng)頻率小于4 Hz之后,Cd逐漸變?yōu)檎龜?shù),頻率為2 Hz時(shí)Cd值為0.01,波動(dòng)鰭在該頻率下產(chǎn)生的推進(jìn)力不足以克服流體阻力。
圖4 無量綱阻力系數(shù)的時(shí)間平均值隨頻率變化規(guī)律Fig.4The change of averaged non-dimensional drag coefficient with frequency
仿生鰭產(chǎn)生的推力隨頻率增大而增大,其原因是隨著頻率增大,尾跡渦量強(qiáng)度越大,射流作用于波動(dòng)鰭上的流體反作用力越大;渦對(duì)在垂直于運(yùn)動(dòng)方向的距離增大,射流作用于波動(dòng)鰭上的流體反作用力沿波動(dòng)鰭前進(jìn)方向上的分力也越大。另外,在頻率增大過程中,波動(dòng)鰭逐漸形成的前緣渦產(chǎn)生的吸力也被認(rèn)為是推進(jìn)力增大的重要原因[11]。該計(jì)算結(jié)果與先前關(guān)于鯵科魚類魚體波動(dòng)推進(jìn)實(shí)驗(yàn)結(jié)論基本相符[12],所不同的地方在于:實(shí)驗(yàn)測(cè)試中,當(dāng)頻率達(dá)到一定數(shù)值后推進(jìn)力隨頻率的增大反而減少,這是由于波動(dòng)頻率繼續(xù)增大時(shí),機(jī)電系統(tǒng)進(jìn)入飽和區(qū),實(shí)際并未達(dá)到設(shè)定的頻率值造成的,制約了推進(jìn)器推進(jìn)速度的進(jìn)一步增大[12]。
5.2 波幅對(duì)仿生鰭推進(jìn)性能的影響
圖5所示為在四種不同波幅下仿生鰭產(chǎn)生的無量綱阻力系數(shù)隨計(jì)算時(shí)間的變化情況。Cd曲線的幅度隨著仿生鰭幅度的增大而增大,其運(yùn)動(dòng)穩(wěn)定性變差。圖6所示為無量綱阻力系數(shù)的時(shí)間平均值隨波幅變化情況,從圖中可以看出,當(dāng)波幅增大,仿生鰭產(chǎn)生的推力隨之近似線性增大。該結(jié)果與文獻(xiàn)[12]的實(shí)驗(yàn)結(jié)論相符。
圖5 不同波幅下無量綱阻力系數(shù)的變化情況Fig.5 The change of non-dimensional drag coefficient with amplitude
圖6 無量綱阻力系數(shù)的時(shí)間平均值隨波幅變化規(guī)律Fig.6The change of averaged non-dimensional drag coefficient with amplitude
5.3 波長(zhǎng)對(duì)仿生鰭推進(jìn)性能的影響
圖7所示為四種不同波長(zhǎng)下仿生鰭無量綱阻力系數(shù)隨計(jì)算時(shí)間的變化情況。圖8所示為無量綱阻力系數(shù)的時(shí)間平均值隨波長(zhǎng)變化情況。從結(jié)果知:在波長(zhǎng)為0.033m時(shí),Cd值為-0.05,當(dāng)波長(zhǎng)為0.1m時(shí),Cd值增大到-0.25。無量綱阻力系數(shù)的時(shí)間平均值隨波長(zhǎng)的增大而增大,仿生鰭推力隨之近似線性增大。這一點(diǎn)和生物觀察測(cè)量實(shí)驗(yàn)結(jié)果一致[13]。同樣,波長(zhǎng)的增大導(dǎo)致仿生鰭運(yùn)動(dòng)穩(wěn)定性的變差。
圖7 不同波長(zhǎng)下無量綱阻力系數(shù)的變化情況Fig.7 The change of non-dimensional drag coefficient with wavelength
圖8 無量綱阻力系數(shù)的時(shí)間平均值隨波長(zhǎng)變化規(guī)律Fig.8The change of averaged non-dimensional drag coefficient with wavelength
本文以鰩魚的胸鰭為仿生對(duì)象,設(shè)計(jì)了仿生波動(dòng)鰭機(jī)械結(jié)構(gòu)和控制軟硬件系統(tǒng),建立了仿生鰭波動(dòng)的二維數(shù)學(xué)模型,比較分析了在不同的運(yùn)動(dòng)學(xué)參數(shù)下仿生鰭無量綱阻力系數(shù)隨時(shí)間的變化規(guī)律。發(fā)現(xiàn):當(dāng)頻率、波幅和波長(zhǎng)增大時(shí),仿生鰭波動(dòng)形成的渦結(jié)構(gòu)、強(qiáng)度及其分布形式發(fā)生了變化,導(dǎo)致仿生鰭產(chǎn)生的推進(jìn)力隨之增大,其游動(dòng)穩(wěn)定性則相對(duì)變差。
[1] Krylov V V,Pritchard G V.Experimental confirmation of the propulsion of marine vessels employing guided flexural waves in attached elastic fins[J].Journal of Fluids and Structures,2007,23(2):297-307.
[2] Sfakiotakis M,Lane D M,Davies J B C.Review of fish swimming modes for aquatic locomotion[J],Journal of Oceanic Engineering,1999,24(2):237-252.
[3] Sfakiotakis M,Lane D M,Davies B C.An Experimental Undulating-fin Device Using the Parallel Bellows Actuator[C].Proceedings of the 2001 IEEE International Conference on Robotics & Automation.Seoul,Korea,2001:2356-2362.
[4] LIU Fangfang,YANG Canjun,SU Qi,et al.Simulation analysis and experimental research on the movements of biomimetic fin[J].Journal of mechanical engineering,2010,46(19):24-29.
[5] WANG Yangwei,WANG Zhenlong,LI Jian,et al.Development of a biomimetic manta ray robot fish actuated by Shape Memory Alloy[J].Robot.2010,32(2):256-261.
[6] Takagi K.Development of a Rajiform swimming robot using Ionic Polymer Artificial Muscles[C].Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.San Diego,California,the USA 2006,1861-1866.
[7] Blevins E L,Lauder G V.Rajiform locomotion:three-dimensional kinematics of the pectoral fin surface during swimming by freshwater stingray Potamotrygon orbignyi[J].The Journal of Experimental Biology,2012,215(18):3231.(10)
[8] Rosenberger L J,Westneat M W.Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes:dasyatidae)[J].The Journal of Experimental Biology,1999,202(24):3523-3539.
[9] Alexandra Laurent,Annie Rouard,Vishveshwar R Mantha et al.The computational fluid dynamics study of orientation effects of oar blade[J].Journal of Applied Biomechanics,2013,29(1):23-32.
[10] HE Jianhui,ZHANG Yonghua,Low K H.Comparative study of effect of fin arrangement on propulsion performance of bio-inspired underwater vehicles with multiple SMA fins[J].International Journal of Advanced Robotic System,2015,12:1-15.
[11] Bottom R G,Borazjani I,Blevins E L,et al.Hydrodynamics of swimming in stingrays:numerical simulations and the role of the leading-edge vortex[J].Journal of Fluid Mechanics,2016,788(13):407-443.
[12] Low K H,Chong C W.Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin[J].Bioinsp.Biomim.,2010,5(4):1-12.
[13] 章永華.柔性仿生波動(dòng)鰭推進(jìn)理論與實(shí)驗(yàn)研究[D].中國(guó)科學(xué)技術(shù)大學(xué)博士論文,2008.
ZHANG Yonghua.Theoretic and experimental research on propulsion flexible biomimetic undulatory robotic fin[D].University of Science and Technology of China,2008.
Design of a BiomimeticUndulating Fin Driven Propulsor and Numerical Analysis on Its Motion
HE Jianhui, ZHANG Yonghua
(School of Mechatronic Engineering,Taizhou Vocational and Technical College,Taizhou,Zhejiang 318000)
On the basis of biological research achievement of stingray pectoral fins,we carried out bionic design from the inspiration of its morphology and structure characteristics.A two-dimensional mathematic model for the undulating motion was established.Based on the CFD (Computational Fluid Dynamics) technology,the unsteady incompressible navier-stokes equation and continuity equation was solved using uncoupled implicit method.The calculation area was discreted using triangular unstructured grid.The change of non-dimensional drag coefficient with time was presented under the different kinematic parameters.The simulation results indicate that the propulsion force was increased linearly with the increase of undulating frequency,amplitude and wavelength.However,the propulsion stability was decreased with them.The simulation results provide valuable details for further understanding of propulsion principle of biomimetic undulating fin as well as for its optimal design.
biomimetics; undulating fin; kinematics; simulation; computational fluid dynamics
何建慧 女(1981-),浙江臺(tái)州人,副教授,主要研究方向仿生機(jī)器人及機(jī)電一體化技術(shù)。
章永華 男(1980-),浙江臺(tái)州人,副教授,主要研究方向仿生機(jī)器人及機(jī)電一體化技術(shù)。
TP 242
A
浙江省自然科學(xué)基金項(xiàng)目(LY15E060001);臺(tái)州職業(yè)技術(shù)學(xué)院校級(jí)一般課題(2016YB01)