張 浩,閆光亞,王 汀
(北京航天控制儀器研究所,北京100039)
遺傳尋優(yōu)神經(jīng)網(wǎng)絡在平臺溫控系統(tǒng)建模中的應用
張浩,閆光亞,王汀
(北京航天控制儀器研究所,北京100039)
溫度直接影響慣性儀表及慣性平臺的使用精度,而高精度溫控系統(tǒng)的設計依賴于準確的平臺加溫模型,針對平臺系統(tǒng)中多種慣性儀表加溫過程復雜度高,當前采用的階躍響應辨識方法存在模型適應性差、精度不高等情況,且針對基于梯度下降的BP學習算法存在局部收斂的問題。采用基于遺傳算法尋優(yōu)的神經(jīng)網(wǎng)絡辨識的方法,對慣性儀表加溫模型進行建模,試驗驗證通過遺傳尋優(yōu)后的BP神經(jīng)網(wǎng)絡學習算法,提高了網(wǎng)絡的學習精度,進而提高了平臺系統(tǒng)中慣性儀表加溫過程數(shù)學模型的精度,模型適應性較高,為后續(xù)慣性儀表的加溫控制方法的設計提供了必要的條件。
系統(tǒng)辨識;神經(jīng)網(wǎng)絡;遺傳算法;平臺系統(tǒng)
隨著現(xiàn)代武器系統(tǒng)對精確打擊要求的不斷提高,對慣性導航、慣性制導的性能指標及環(huán)境溫度適應能力的要求亦日益苛刻。通過多年研究和實踐發(fā)現(xiàn),慣性元件周圍溫度場的變化對慣性元件性能的影響很大,根據(jù)測定,沿陀螺馬達自轉軸方向在殼體直徑兩端出現(xiàn)1℃的溫度梯度時,將引起約0.01[(°)/h]·g的附加漂移。慣性平臺的溫度場特征及其合理設計已經(jīng)成為影響慣性系統(tǒng)工作精度和啟動后性能快速穩(wěn)定的至關重要的工程環(huán)節(jié)。
為了能夠實現(xiàn)對慣性平臺系統(tǒng)的溫度進行精確的控制,首先需要對慣性平臺系統(tǒng)建立精確的數(shù)學模型。由于平臺內部傳熱網(wǎng)絡復雜,工程上通過階躍響應辨識方法建立的模型精度不高、適應性較差,不利于先進控制器的設計。
基于多層前向BP神經(jīng)網(wǎng)絡的系統(tǒng)辨識的方法,由于神經(jīng)網(wǎng)絡具有良好的非線性映射能力、自學習適應能力和并行信息處理能力,為解決未知不確定非線性系統(tǒng)的辨識問題提供了一條新的思路。但是神經(jīng)網(wǎng)絡系統(tǒng)辨識存在訓練收斂速度較慢、與初始權值選擇相關等缺點。
本文利用遺傳算法的全局、并行尋優(yōu)能力來優(yōu)化神經(jīng)網(wǎng)絡初始權值的方法,提高神經(jīng)網(wǎng)絡的訓練收斂速度和辨識精度,進而提高模型的精度,同時模型適應性較高。通過對某型慣性平臺中陀螺儀的溫度進行實驗,與模型辨識結果進行比對,驗證了該方法在辨識平臺加溫模型上的有效性,為今后平臺溫度控制系統(tǒng)應用預測控制、神經(jīng)網(wǎng)絡自適應控制等先進控制方法奠定了基礎。
某型平臺系統(tǒng)采用內框架式的三框架四軸平臺結構,它由平臺臺體、平臺內環(huán)、平臺外環(huán)、平臺隨動環(huán)和平臺基座等五大部分組成。平臺內部中的發(fā)熱部件陀螺儀裝在平臺臺體上,陀螺儀產(chǎn)生的熱主要通過傳導、對流和輻射三種方式傳遞到外部環(huán)境空氣中,如圖1所示。
圖1 陀螺傳熱網(wǎng)絡Fig.1 Network of heat transfer
(1)陀螺儀傳導方式傳熱網(wǎng)絡
平臺上的陀螺儀產(chǎn)生的熱通過固定陀螺儀的螺釘傳遞到臺體上,用熱阻R3來表示,臺體通過兩端的軸承軸端傳遞到平臺內環(huán)中,再通過平臺內環(huán)軸端傳到平臺外環(huán)上,然后通過平臺外環(huán)軸端傳到隨動環(huán)中,再通過隨動環(huán)軸端傳到平臺基座和平臺上、下帽蓋上,最終傳到環(huán)境空氣中。其中,熱量從臺體到平臺帽蓋這部分用熱阻R6表示。
(2)陀螺儀對流方式傳熱網(wǎng)絡
陀螺儀對流傳熱包括陀螺儀本身到平臺帽蓋內腔之間的對流和平臺臺體到平臺帽蓋內腔這一段的對流,其熱阻分別用R1和R4表示。從平臺帽蓋內腔到外表面從外表面散熱到環(huán)境空氣中這兩部分,分別以熱阻R7和R8表示。
(3)陀螺儀輻射方式傳熱網(wǎng)絡
當陀螺儀溫度和臺體溫度到達溫控點后,它們的溫度顯著高于平臺帽蓋溫度,產(chǎn)生了溫差,于是就出現(xiàn)了熱輻射換熱效果。其中,陀螺儀輻射到平臺帽蓋之間的熱阻用R2表示,臺體輻射到平臺帽蓋之間的熱阻用R5表示。
由陀螺儀傳熱網(wǎng)絡可得,陀螺儀總的熱阻為:
在陀螺儀結構參數(shù)一定的條件下,單位時間流入陀螺儀內部的熱量等于陀螺儀吸收的熱量和陀螺儀散失熱量的總和。
P為加熱電功率之和。
在初始條件T(0)=T0時,求解式(2)可得:
RthCth=τ0為陀螺儀的熱時間常數(shù),Tr=T-T0。
對式(3)進行拉氏變換后,有:
經(jīng)過分析可以看出,陀螺儀傳熱的環(huán)節(jié)很多,需要確定的結構參數(shù)較多,工程上為了得到陀螺儀的傳熱方程,以式(5)為基礎采用階躍響應法辨識傳熱方程的參數(shù)。某型平臺系統(tǒng)陀螺的傳熱方程為
由于當前陀螺儀的傳熱過程較為復雜、傳熱環(huán)節(jié)較多且存在未知的或較難分析的環(huán)節(jié),從而導致階躍響應法辨識得到的模型存在適應性差、建立的模型精度不高等問題。這對陀螺溫度控制器的設計帶來很大的局限性,難以滿足控制器需要高精度模型的要求。而神經(jīng)網(wǎng)絡所具有的對任意非線性映射的任意逼近能力模擬實際系統(tǒng)的輸入和輸出關系,根據(jù)非線性系統(tǒng)的辨識結構,同時利用神經(jīng)網(wǎng)絡的自適應能力,僅僅通過輸入和輸出數(shù)據(jù)就可以經(jīng)過學習訓練方便地得到系統(tǒng)的較高精度的模型。
2.1 前向BP神經(jīng)網(wǎng)絡結構的確立
本文以某型平臺系統(tǒng)中X陀螺儀的傳熱為例對其進行建模,已知某型平臺系統(tǒng)上的陀螺儀溫度主要受兩方面的影響:一是臺體上安裝在陀螺儀外部的加溫電阻產(chǎn)生的加溫功率;二是陀螺儀內部的加溫電阻產(chǎn)生的加溫功率,這就構成了一個兩輸入單輸出的模型。
BP神經(jīng)網(wǎng)絡是一種由輸入層、隱含層和輸出層組成的多層前向神經(jīng)網(wǎng)絡。在平臺加溫系統(tǒng)中,選取3層神經(jīng)網(wǎng)絡即可完成對系統(tǒng)的辨識,設定平臺k、k-1、k-2時刻和陀螺k、k-1、k-2時刻加溫功率為UP(k)、UP(k-1)、UP(k-2)、UG(k)、UG(k-1)、UG(k-2),陀螺k、k-1、k-2時刻的溫度為TG(k)、TG(k-1)、TG(k-2)。選UP(k-1)、UP(k-2)、UG(k-1)、UG(k-2)、TG(k-1)、TG(k-2)為神經(jīng)網(wǎng)絡的輸入,輸入神經(jīng)元的個數(shù)為6,TG(k)為神經(jīng)網(wǎng)絡的輸出,輸出神經(jīng)元的個數(shù)為1;根據(jù)Kolmogorov定理并經(jīng)過多次試驗分析后,確定隱層神經(jīng)元的個數(shù)為8;以Sigmoid函數(shù)作為隱層神經(jīng)元的激活函數(shù),而輸出層神經(jīng)元的激活函數(shù)選用線性函數(shù),BP神經(jīng)網(wǎng)絡的結構如圖2所示。
圖2 BP神經(jīng)網(wǎng)絡的拓撲結構Fig.2 The topology of BP neural network
2.2 遺傳尋優(yōu)神經(jīng)網(wǎng)絡流程
由于本文采用的遺傳算法中的種群個數(shù)(神經(jīng)網(wǎng)絡的初始權值)比較多,為減少計算量,采用浮點數(shù)編碼,編碼長度為6×8+8×1+8+1=65,種群大小選為200,迭代次數(shù)為400;變異概率Pm初始值為0.01,交叉概率Pc取0.72。遺傳尋優(yōu)神經(jīng)網(wǎng)絡的具體步驟如圖3所示。
3.1 神經(jīng)網(wǎng)絡訓練數(shù)據(jù)獲取
根據(jù)系統(tǒng)辨識對輸入信號持續(xù)激勵及最優(yōu)的要求,常用的輸入信號是白噪聲,白噪聲信號是一種功率譜密度在整個頻率內為非零常數(shù)的平穩(wěn)隨機信號或隨機過程。理想的白噪聲具有無限寬帶,因而其功率無限大,這在現(xiàn)實世界是不可能存在的,一般常用偽隨機數(shù)來代替。由于Matlab本身具有生成偽隨機數(shù)的函數(shù),本文通過Matlab中的CCS插件控制DSP產(chǎn)生所需要的隨機辨識信號。
選取某型號平臺系統(tǒng)中陀螺儀進行加溫試驗,設定采樣周期為2s,選擇隨機數(shù)作為系統(tǒng)辨識的輸入信號,將臺體的加熱功率設定為0W~56W的隨機加熱功率,其功率譜密度如圖4所示,將陀螺儀的加熱功率設定為0W~12.6W的隨機加熱功率,其功率譜密度如圖5所示。由輸入信號的功率譜可以看出,輸入信號在系統(tǒng)工作頻段內功率最強,可以持續(xù)激勵系統(tǒng)。實驗進行2h,得到陀螺儀的溫度數(shù)據(jù),如圖6所示。
圖3 遺傳尋優(yōu)神經(jīng)網(wǎng)絡流程圖Fig.3 The flowchart of BP with genetic algorithm
3.2 模型測試數(shù)據(jù)獲取
為了測試神經(jīng)網(wǎng)絡所建立的模型的適用性,在相同實驗條件下獲取另一組不同輸入輸出數(shù)據(jù)進行測試,同樣取采樣周期為2s,取10h的數(shù)據(jù)。將臺體的加熱功率設定為固定值3W,同時將陀螺的加熱功率設定為固定值0.8W,得到如圖7所示數(shù)據(jù),圖8所示為陀螺儀的溫度輸出曲線。
圖4 臺體輸入信號功率譜Fig.4 Power spectrum of platform of input signal
圖5 陀螺儀輸入信號功率譜Fig.5 Power spectrum of gyroscope of input signal
圖6 陀螺儀溫度數(shù)據(jù)Fig.6 Temperature data of gyroscope
圖7 臺體和陀螺儀固定加熱功率Fig.7 Fixed heating power of platform body and gyroscope
圖8 陀螺儀溫度輸出Fig.8 Temperature output of gyroscope
采用Matlab編寫遺傳算法和神經(jīng)網(wǎng)絡訓練學習算法,設置算法參數(shù),分別用未經(jīng)遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡和經(jīng)過遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡兩種結構進行訓練。辨識采用的誤差準則是用來衡量模型接近實際系統(tǒng)的標準,本文采用輸出誤差準則,具體表示為實際系統(tǒng)的輸出和模型的輸出差值的平方和。將每次訓練輸出誤差準則的倒數(shù)作為個體適應度函數(shù),遺傳算法中個體適應度的優(yōu)化過程如圖9所示。
圖9 個體適應度的優(yōu)化過程Fig.9 Optimization process of individual fitness
從圖10中可以看出,未經(jīng)遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡經(jīng)過125步迭代學習實現(xiàn)輸出誤差準則為0.0032,經(jīng)過遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡經(jīng)過17步實現(xiàn)輸出誤差準則為0.000793,階躍響應法得到的輸出誤差準則達到了3.4×103。經(jīng)過遺傳尋優(yōu)后的神經(jīng)網(wǎng)絡訓練時間更快,精度更高;未經(jīng)過遺傳尋優(yōu)的神經(jīng)網(wǎng)絡能以較高精度辨識陀螺的加溫系統(tǒng);階躍響應法得到的模型不具有適用性。
圖10 神經(jīng)網(wǎng)絡訓練輸出對比圖Fig.10 The simulation result of the control method
選取測試數(shù)據(jù)對已經(jīng)訓練好的神經(jīng)網(wǎng)絡進行檢測,結果顯示神經(jīng)網(wǎng)絡輸出仍然能夠和實際數(shù)據(jù)以較高精度進行擬合如圖11所示。但是未經(jīng)遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡輸出數(shù)據(jù)產(chǎn)生了一個小尖峰,輸出誤差準則為0.0057,而經(jīng)過遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡輸出誤差準則為0.0013,階躍響應法輸出誤差準則為0.0147。經(jīng)過遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡模型的適應性最高,未經(jīng)遺傳算法優(yōu)化的神經(jīng)網(wǎng)絡模型次之,階躍響應法最低。
由于系統(tǒng)存在難以分析的環(huán)節(jié)導致階躍響應法辨識系統(tǒng)所依賴的式子結構不準確,從而出現(xiàn)了模型適應性差的問題。由于神經(jīng)網(wǎng)絡具有良好的非線性映射能力、自學習適應能力和并行信息處理能力,很好地解決了模型結構不準確的問題。
圖11 神經(jīng)網(wǎng)絡測試輸出對比圖Fig.11 The simulation result of the control method
本文通過介紹慣性平臺系統(tǒng)中陀螺儀傳熱過程,針對當前某型平臺系統(tǒng)的陀螺儀加溫系統(tǒng)結構復雜,采用傳統(tǒng)的階躍響應法建模模型精度不高的情況,采用BP神經(jīng)網(wǎng)絡系統(tǒng)辨識的方法對其進行辨識。在此基礎上對基于梯度下降的BP學習算法存在的局部收斂的問題,引入遺傳算法來解決神經(jīng)網(wǎng)絡的權值、閾值學習,通過在Matlab中對某型號平臺上陀螺加溫系統(tǒng)進行實驗辨識,實現(xiàn)了對平臺上的陀螺加溫系統(tǒng)的模型建立,模型精度相對較高,模型適應性強,滿足工程要求,這對今后慣性平臺系統(tǒng)溫度控制器的設計與改進具有重要的指導意義。
[1]陸元九.慣性器件[M].北京:中國宇航出版社,1990.LUYuan?jiu.Inertialdevice[M].Beijing:China Aerospace Press,1990.
[2]鄧益元.靜壓液浮陀螺平臺系統(tǒng)[M].北京:中國宇航出版社,2012.DENG Yi?yuan.Hydrostatic liquid?bearing gyro stabilized platform[M].Beijing:China Aerospace Press,2012.
[3]劉金琨,沈曉蓉,趙龍.系統(tǒng)辨識理論及MATLAB仿真[M].北京:電子工業(yè)出版社,2013.LIU Jin?kun,SHEN Xiao?rong,ZHAO Long.System i?dentificationtheoryandMATLABsimulation[M].Beijing:Electronics Industry Press,2013.
[4]王棟.高精度陀螺溫控系統(tǒng)的工程實現(xiàn)研究[D].哈爾濱工業(yè)大學,2006.WANG Dong.Research andengineering implementation of high precisiongyrotemperaturecontrolsystem[D].Harbin Institute of Technology,2006.
[5]劉黨輝.系統(tǒng)辨識方法及應用[M].北京:國防工業(yè)出版社,2010.LIU Dang?hui.System identification method and its appli?cation[M].Beijing:NationalDefenseIndustry Press,2010.
[6]周明,孫樹棟.遺傳算法原理及應用[M].北京:國防工業(yè)出版社,1999.ZHOU Ming,SUN Shu?dong.Principle and application of genetic algorithm[M].Beijing:National Defense Industry Press,1999.
APPlication of Genetic OPtimization Neural Network in Modeling of Platform TemPerature Control System
ZHANG Hao,YAN Guang?ya,WANG Ting
(Beijing Institute of Aerospace Control Devices,Beijing 100039)
Temperature directly affects the accuracy of inertial instrument and inertial platform,the design of high preci?sion temperature control system depends on the accurate platform heating model.In this paper,due to the high complexity in heating process of a variety of inertial instruments in the platform system,the current step response identification methods have poor adaptability model and accuracy is not high.At the same time,BP learning algorithm based on gradient descent has the problem of local convergence.A neural network identification method based on genetic algorithm is used to model the heating model of inertial instrument.The experiment prove the BP neural network based on genetic algorithm improves the learning accu?racy of the network.The accuracy of the mathematical model of inertial instrument heating process in the platform system is im?proved.It provides the necessary conditions for the design of the heating control method for the following inertial instruments.
system identification;neural network;genetic algorithm;platform system
U666.1
A
1674?5558(2016)01?01198
10.3969/j.issn.1674?5558.2016.06.008
2015?09?16
張浩,男,碩士,研究方向為導航、制導與控制。