• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvements of Vis-NIRS Model in The Prediction of Soil Organic Matter Content Using Wavelength Optimization

    2016-12-15 05:04:59LINZhidanWANGYubingWANGRujingWANGLiusanLUCuipingZHANGZhengyongSONGLiangtuLIUYang
    發(fā)光學(xué)報 2016年11期
    關(guān)鍵詞:中科院合肥波長

    LIN Zhi-dan, WANG Yu-bing, WANG Ru-jing, WANG Liu-san,LU Cui-ping, ZHANG Zheng-yong, SONG Liang-tu, LIU Yang

    (1. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China;2. Department of Automation, University of Science and Technology of China, Hefei 230026, China;3. Electronic Engineering Institute, Hefei 230037, China)

    ?

    Improvements of Vis-NIRS Model in The Prediction of Soil Organic Matter Content Using Wavelength Optimization

    LIN Zhi-dan1,2,3, WANG Yu-bing1*, WANG Ru-jing1*, WANG Liu-san1,LU Cui-ping1, ZHANG Zheng-yong1, SONG Liang-tu1, LIU Yang1

    (1.InstituteofIntelligentMachines,ChineseAcademyofSciences,Hefei230031,China;2.DepartmentofAutomation,UniversityofScienceandTechnologyofChina,Hefei230026,China;3.ElectronicEngineeringInstitute,Hefei230037,China)

    Visible-near infrared spectroscopy (Vis/NIRS) is proved to be an effective tool in the prediction of soil properties. Wavelength optimization plays an important role in the construction of Vis-NIRS prediction model. In this article, a total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to establish a Vis-NIRS model for the prediction of organic matter content (OMC) in line concretion black soils. Through comparison, the combined spectral pretreatments of smooth and multiplicative scatter correlation (MSC) were applied to minimize the irrelevant and useless information of the spectra and increase the correlation between spectra and the measured values, and subsequently, SPXY methods were used to select the representative training set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then conducted for wavelength optimization. Finally, the principal component regression (PCR) model was constructed, in which the optimal number of principal components was determined using leave-one-out cross validation technique. Results show that: both SPA and GA can significantly reduce the wavelength and favorably increase the accuracy, especially, GA can greatly improve the prediction accuracy of soil OMC, withRcc, RMSEP and RPD up to 0.931 6, 0.214 2, 2.319 5, respectively. Conclusively, using appropriate wavelength optimization methods, not only the computational load can be significantly reduced but also the prediction precision can be improved.

    visible-near infrared spectroscopy(Vis-NIRS); organic matter content (OMC); spectral pretreatments; sample selection; wavelength optimization

    1 Introduction

    The application of precision agriculture needs vast amounts of accurate, real-time and low-cost soil data over a large area, which sets high requirements for soil detection methods. The detection method should be more efficient in both detection time and cost. Visible and near infrared reflectance spectroscopy (Vis-NIRS) is a non-destructive, rapid and repeatable method that can serve as an effective substitute technology for traditional laboratory chemical detection methods[1-4]. When a sample is illuminated by light, certain bonds in the molecules vibrate with the varying electric field, which will absorb optical energy and cause less light to be reflected off the sample. Three of the most pronounced vibrations observable in near-infrared band are the groups involving C—H, N—H and O—H bonds, which thus makes it possible to measure soil properties such as moisture, organic C and N using Vis-NIRS technique[5-6]. Each soil property has distinct spectral fingerprints in Vis-NIR region. Owing to the significant developments in equipment, optical components, computer and chemometrics, Vis-NIRS now is extensively applied in many fields for qualitative and quantitative analyses[7].

    Soil organic matter content (OMC) plays a major role in soil’s many chemical and physical processes and significantly affects the pattern of a soil reflectance spectrum. As to the prediction of OMC using Vis-NIRS technique, many researchers have conducted a great number of studies and achieved many favorable results. Based on the collected Vis-NIR data, Vasquesetal.[8-9], Mouazenetal.[10], Stevensetal.[11], and Rossel and Behrens[12]used different multivariate regression methods and systematically compared their capabilities in soil OMC contents. Principle component regression (PCR) is a common model in multiple linear regression. Changetal. evaluated the ability of near infrared spectroscopy to predict soil OMC with PCR, with the determination coefficient up to 0.87 and the residual prediction deviation (RPD) of 2.79[13]. Vasquesetal. identified the best combination to predict soil OMC with five multivariate techniques including PCR[8].Wangetal. analyzed the potential of Vis-NIRS to predict soil OMC using two spectrometers, and the results showed that both two spectrometers can achieve favorable results in the prediction of soil OMC[14]. All of those proved the feasibility of PCR-based NIRS model in the prediction of OMC. However, the noise and some irrelevant or collinear information concluded in Vis-NIRS can affect the accuracy of the PCR method, which should be eliminated with some measures before the establishment of model.

    In this paper, PCR was used to relate the Vis/NIR spectra with soil OMC, while spectral pretreatments, sample selection and wavelength optimization were conducted for improving the prediction accuracy of the constructed model. By comparing the prediction results using different methods, the application of spectral pretreatment, sample selection and wavelength optimization on the improvement of soil OMC prediction capacities were evaluated.

    2 Materials and Methods

    2.1 Collection of Soil Samples

    The experimental field in Tongfeng Seed Industry was selected in the present study, which is located in the Guoyang County, Bozhou City, Anhui Province, China (33°27′-33°47′N; 115°53′-116°33′E). The mean annual temperature is about 14.6 ℃, and the mean annual precipitation is about 830 mm. The overall flat fields in Guoyang County can be classified as the lime concretion black soil. As one type of ancient cultivated soils, lime concretion black soil presents a highly localized distribution in Huaibei Plain, China. According to China Soil Scientific Database (http://www.soil.csdb.cn/), it is composed of two layers from top to bottom, namely, black-soil layer and lime-concretion layer, respectively. Generally, the lime concretion black soils are abundant in K content but relatively poor in OM, N and P contents, which can also be reflected by the data in Tab.1[15-16].

    A total of 130 topsoil samples were collected using S-type sampling. Soil samples were collected from the surface layer at the bottom of a 20 cm deep trench, with the use of a special soil sampler. Each sample was about 2 000 g and was placed into a tightly sealed plastic bag to avoid external contamination. After the rejection of weeds and small pieces of rocks, the soils were then naturally air-dried and sieved less than 2 mm[17]. The soil samples after preprocessing were divided into two portions by four-way division method: A and B. The samples in Group A were placed in properly closed bags and taken to the chemical laboratory for the analysis of OMC. The soil OMC was determined by the potassium dichromate volumetric method coupling with a watering heating technique[18]. The statistical data of measured results are listed in Tab.1. The samples in Group B were taken to spectral measurements, which are described in depth in the next section.

    Tab.1 Statistical data of all samples measured results

    2.2 Spectral Data Acquisition

    The experimental instrument employed in the present work, was Vis/NIR soil sensor by Veris Technology Incorporation. As a tractor-mounted sensor that can collect real-time soil information, the spectrophotometers and the optical system of Veris Vis/NIR soil sensor were built into a shank, mounted on a toolbar and then pulled by a tractor during field investigations. In present work, the spectrophotometers (Ocean Optics USB4000 and Hamamatsu C9914GB) and the optical system (a tungsten halogen bulb and fibers) in Veris Soil Sensor were dismounted from the tractor-mounted mobile platform and performed measurements in laboratory. The total spectra range from 342 to 2 222 nm, which were automatically stitched by the software at the absorption terminal. All the data processing procedures in present work were compiled with Matlab. A total of 130 samples was adopted for measurements, which were put in a petri dish and the surface was smoothed beforehand. During the measurements, the sample surface was pressed against the sapphire window of Veris soil sensor. To make a tradeoff between the minimization of the measured errors and time consumptions, each sample was detected three times, which was rotated by 120° for the next scan. After each measurement, the collected three spectra was averaged. The averaged absorbance soil spectra was given in Fig.1, in which they-axis absorbance spectra (A) were converted from reflectance spectra (R) byA=log10(1/R) and thex-axis wavelength was reciprocal to wave number. It can be found that the first two large absorption peaks are located at around 1 420 and 1 930 nm, respectively, both of which are coincident with the characteristic absorption peaks of H2O[18].

    Fig.1 Vis-NIR spectra of 130 samples measured by the Veris soil sensor

    2.3 Spectral Pretreatments

    The measured spectra were easily influenced by individual differences (the particle size of samples, the intensity of light, the condition of measurement,etc.), baseline variations and substantial noises. Therefore, the pretreatment should be applied to minimize the irrelevant and useless information of the spectra and increase the correlation between the spectra and the measured values. The frequently-adopted pretreatment methods include normalization, first and second derivatives, multiplicative scatter correlation (MSC), standard normal variate (SNV), detrending or any combination thereof[19-20]. In the present study, the pretreatment and the subsequent processing programs were compiled with MATLAB 2012b.

    SNV and MSC transformations can remove the baseline drift from spectra caused by the scattering and the variation of particle sizes. To remove high frequency noise, Savitzky-Golay polynomial smoothing filter can digitally smooth a given spectrum by approximating it within a specified data window using a polynomial with a specified order. Accordingly, the data can be best matched in the window on a least-square basis. In the present work, the filter with a polynomial of order 3 and the window with the width of 7 data points were used[14]. By comparing the results using 17 different pretreatment methods, the best pretreatment method employed in present work was the combination of S-G filter for smoothing and MSC.

    2.4 Sample Selection

    The selection of a representative training set plays a determinative role in the construction of prediction models, since the models established with the representative-characteristics samples can lead to the acceleration of regressions, the improvement of the prediction accuracy and the reduction of storage space and costs. Moreover, the application range of the established models can be expanded by adding a small amount of representative samples, being beneficial to the update and improvement of the models.

    Kennard-Stone (KS) method and the sample set partitioning based on jointx-ydistance (SPXY) method Kennard-Stone (K-S) algorithm aim at covering the multidimensional space in a uniform manner by maximizing the Euclidean distances between the instrumental response vectors (x) of the selected samples[21]. SPXY method extends the K-S algorithm by encompassing bothx- andy- differences in the calculation of inter-sample distances[22].

    2.5 Wavelength Optimization

    Wavelength optimization on the full spectrum with the aim of enhancing accuracy is still a challenging task, especially when the collected spectra display strong overlapping and imperceptible distinctive features. The spectra in Vis-NIR range are mainly composed of the overtones and combination bands of hydrogen groups, and the absorption peaks are of weak intensity, relatively low sensitivity, wide absorption band width, serious overlaps and multiple correlations in spectral information. If the full spectrum was involved in the model, it would not only increase the complexity of the model and calculation load, but also reduce the prediction accuracy of the model owing to the irrelevant variables and collinearity between variables.

    Successive projections algorithm (SPA) selects the wavelengths according to the contribution value sequence of the test samples and looks for the original spectral data with minimum redundant information. Accordingly, the overlapping information can be avoided and the redundant information can be eliminated in the selected wavelength data. This method can greatly reduce the amount of calculation model and improve the stability and accuracy of the model[23].

    Genetic algorithm (GA) is a kind of random search optimization algorithm by reference to the rule of biological evolution. Owing to the invisible parallelism, adaptive and global optimization ability, GA has become a common method for the optimization of wavelength in the construction of NIR prediction models. In combination with GA algorithm, the constructed NIR prediction models exhibit relatively high predictive abilities[24].

    2.6 Calibration and Validation

    Among the training set after selection with 130 samples, the calibration and validation sets were selected in the present work, with the aim of prediction an unknown sample scientifically and exactly. The selected 100 samples were divided as calibration data set, and the rest 30 samples were used as the validation set. In calibration stage, the spectra were compressed using principal components analysis (PCA), and the optimum number of principal components (PCs) was determined using leave-one-out cross validation (LOOCV) technique, in which each sample was omitted and predicted using the calibration model established by the remaining samples[25]. With the pre-processed spectra, the prediction residual error sum of squares (PRESS) in leave-one-out cross validation for different number of PCs and soil contents was calculated. A suitable number of PCs is an efficient way of taking full advantage of spectral information and noise-filtering, while some useless information, such as the measured errors, can be over-included for more number of PCs, also known as ‘over-fitting’. Subsequently, the models were constructed using PCR method, in which multiple linear regressions were performed using the obtained optimum numbers of PCs. In validation stage, the above-described calibration model developed from training set (100 samples) was used to predict the contents of soil samples in validation set (30 samples), and the predicted values were compared with measured values. The statistic parameters for evaluating the predictive capability of the models include correlation coefficient (Rcc), root means square error of prediction (RMSEP) and the ratio of standard deviation of the validation set to standard error of prediction (RPD)[26].

    3 Results and Discussion

    The spectra after the combined pretreatments of S-G filter for smoothing are displayed in Fig.2. One

    can observe that, compared with the original spectra, the pretreated spectra can smooth the spectra, reduce the effect of noise and then enhance the spectral characteristics.

    Fig.2 Vis-NIR spectra of 130 samples after the combined pretreatment of S-G filter for smoothing and MSC

    After the pretreatments, SPXY and KS method were used for the selection of training set and PCR-based prediction models for OMC were then developed. Tab.2 and Fig.3 show the results of OMC prediction using different training set selection methods. It can be observed that, using random selection (RS), the prediction results are considerably poor; the prediction results using KS sample selection are much better than the results using RS, asRccincreases from 0.329 0 to 0.719 8, RMSEP decreases from 0.453 7 to 0.437 9, and RPD increases from 1.078 0 to 1.282 6. The prediction results using SPXY results are best, withRcc, RMSEP and RPD up to 0.829 8, 0.273 8, 1.721 6, respectively. As stated above, SPXY method selects the training set by calculating the inter-sample distances based on overall considerations of the NIR spectral and target variables, so the selected training set is more representative than that selected using KS method and the established model is best in prediction accuracy. Consequently, SPXY method was picked out for further in-depth discussions in calibration and validation.

    Tab.2 OMC prediction results of PCR models with smooth+MSC and different sample selection methods

    Fig.3 Correlation between the predicted and the measured values of OMC with different sample selection methods. (a) RS. (b) KS. (c) SPXY.

    Tab.3 lists the results of PCR models with the use of different wavelength optimization methods (as the modeling detains illustrated in Section 2.6), and Fig.4 shows the comparison between the predicted results and the measured values. As shown in Tab.3, SPA and GA can both increase the accuracy of PCR model and greatly decrease the predicting errors. Both two methods can contribute to the optimization of wavelengths so as to remove the effects of noise and enhance the predictive capability. This can be reflected by the increased correlation coefficientRccand RPD as well as the decreased RMSEP.

    Fig.5 displays the characteristic wavelengths selected by SPA and GA, respectively. SPA and GA employ simple operations in a vector space to obtain the subsets of variables with small collinearity, which can effectively eliminate the redundant information of the wavelength variables and thus improve

    Tab.3 Prediction results of PCR models with different wavelength optimization methods

    Fig.4 Correlation between the predicted and the measured values of OMC with different wavelength selection methods. (a) NULL. (b) SPA. (c) GA.

    the prediction precision. In the present study, using SPA method, the optimal wavelength combination was selected based on the calculated RMSEP.While using GA method, the number of iterations, the population size, the genetic probability and mutation probability were set as 250, 30, 0.7 and 0.3, respectively. Specifically, SPA requires a less computational work load than GA, however, GA-based prediction model has a better prediction precision. Since GA is an adaptive global search algorithm and takes the serial correlation characteristics of the spectral data into account in the optimization of wavelength, more useful spectral information was included while some irrelevant or nonlinear variables were rejected. Thus, the GA-PCR model is superior to SPA-PCR model in the prediction of soil OMC.

    4 Conclusion

    In order to establish an accurate and robust prediction model for soil OMC, different pretreatment methods, sample selection methods and wavelength optimization methods were applied in the process of Vis-NIRS model establishment. Results show that the combination of S-G filter for smooth and MSC can effectively eliminate the effects of noise and baseline drift better. Both KS and SPXY can select the representative samples, but SPXY method overall considers bothx-andy-differences in the calculation of inter-sample distances, and can select the more representative samples and gain more accurate results. SPA and GA can decrease the number of jointed wavelengths enormously, simplify the model and increase the accuracy remarkably. SPA requires a less computational work load but GA is preferable in prediction accuracy. In conclusion, after spectral processing and the selection of training set, the GA-PCR model can accurately predict soil OMC while occupies fewer computational resources. The proposed method,i.e., the adoption of wavelength optimization before regression, can provide a new thought for the practical application of Vis-NIRS in the prediction of soil properties.

    [1] BEN-DOR E, BANIN A. Near infrared analysis as a rapid method to simultaneously evaluate several soil properties [J].SoilSci.Soc.Am.J., 1995, 59:364-372.

    [2] REEVES J B, MCCARTY G W, Meisinger J J. Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils [J].JNIRS, 2000, 8(3):161-170.

    [3] REEVES J B, MCCARTY G W, REEVES V B,etal.. Mid-versusnear-infrared diffuse reflectance spectroscopy for the quantitative analysis of organic matter in soils and other biological materials [J].AbstractofPapersofAmericanChemicalSociety, 2002, 223:U141-U142.

    [4] DUNN B W, BEECHER H G, BATTEN G D,etal.. The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia [J].Aust.J.Exp.Agr., 2002, 42(5):607-614.

    [5] SHEPHERD K D, WALSH M G. Development of reflectance spectral libraries for characterization of soil properties [J].SSSA, 2002, 66(3):988-998.

    [6] ISLAM K, SINGH B, MCBRATNEY A B. Simultaneous estimation of various soil properties by ultra-violet, visible and near-infrared reflectance spectroscopy [J].Aust.J.SoilRes., 2003, 41:1101-1114.

    [7] BEN-DOR E, IRONS J, EPEMA G F.SoilReflectance:RemoteSensingforTheEarthScience[M]. New York: John Wiley & Sons Inc., In: RENCZ A N. (Ed.), 3rd. Manual of Remote Sensing, 1999.

    [8] VASQUES G M, GRUNWALD S, SICKMAN J O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra [J].Geoderma, 2008, 146:14-25.

    [9] VASQUES G M, GRUNWALD S, SICKMAN J O. Modeling of soil organic carbon fractions using visible?near-infrared spectroscopy [J].SoilSci.Soc.Am.J., 2009, 73:176-184.

    [10] MOUAZEN A M, KUANG B, DE BAERDEMAEKER J,etal.. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy [J].Geoderma, 2010, 158:23-31.

    [11] STEVENS A, UDELHOVEN T, DENIS A,etal.. Measuring soil organic carbon in crop land satregional scale using airborne imaging spectroscopy [J].Geoderma, 2010, 158:32-45.

    [12] VISCARRA ROSSEL R A, BEHRENS T. Using data mining to model and interpret soil diffuse reflectance spectra [J].Geoderma, 2010, 158:46-54.

    [13] CHANG C W, DAVID A L, MAURICE J M,etal.. Near-infrared reflectance spectroscopy—principal components regression analyses of soil properties [J].SoilSci.Soc.Am.J., 2001, 65:480-490.

    [14] WANG Y B, HUANG T Y, LIU J,etal.. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy [J].Comput.Electron.Agr., 2015, 111:69-77.

    [15] LIU L W. Formation and evolution of vertisols in the Huaibei Plain [J].Pedosphere, 1991, 1:3-15.

    [16] 李錄久,郭熙盛,王道中,等. 淮北平原砂姜黑土養(yǎng)分狀況及其空間變異 [J]. 安徽農(nóng)業(yè)科學(xué), 2006, 34 (4):722-723. LI L J, GUO X S, WANG D Z,etal.. State and spatial variability of nutrient of lime concretion black soil in Huaibei Plain [J].J.AnhuiAgric.Sci., 2006,34 (4):722-723. (in Chinese)

    [17] NATHAN M, GELDERMAN R.RecommendedChemicalSoilTestProceduresforTheNorthCentralRegion[M]. USA:North Central Regional Research Publication No. 221, 2012.

    [18] 魯如坤. 土壤農(nóng)業(yè)的化學(xué)分析方法 [M]. 北京:中國農(nóng)業(yè)科學(xué)出版社, 2000:106-107. LU R K.ChemicalAnalysisMethodofAgriculturalSoil[M]. Beijing: China Agricultural Science Press, 2000:106-107. (in Chinese)

    [19] RINAN A, VAN DEN BERG F W J, ENGELSEN S B. Review of the most common preprocessing techniques for near-infrared spectra [J].TrendsAnal.Chem., 2009, 28(10):1201-1222.

    [20] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures [J].Anal.Chem.,1964, 36(8):1627-1639.

    [21] WU W, WALCZAK B, MASSART D L,etal.. Artificial neural networks in classification of NIR spectra data: design of training set [J].Chemometr.Intell.Lab.Syst., 1996, 33(1):35-46.

    [23] 章海亮,劉雪梅,何勇. LS-SVM檢測土壤有機(jī)質(zhì)和速效鉀研究 [J]. 光譜學(xué)與光譜分析, 2014, 34(5):1348-1351. ZHANG H L, LIU X M, HE Y. Measurement of soil organic matter and available K based on SPA-LS-SVM [J].Spectrosc.Spect.Anal., 2014, 34(5):1348-1351. (in Chinese)

    [24] 陸婉珍. 現(xiàn)代近紅外光譜分析技術(shù) [M]. 北京:中國石化出版社, 2001:56-67. LU W Z.ModelNIRSpectroscopy[M]. Beijing, China Petro-chemical Press, 2001:56-67. (in Chinese)

    [25] ABDI H, WILLIAMS L J. Principal component analysis [J].WileyInterdisciplinaryReviews:Comput.Stat., 2010, 2(4):433-459.

    [26] MOUAZEN A M, BAERDEMAEKER J D, RAMON H. Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy [J].JNIRS, 2006, 14(1):189-199.

    林志丹(1981-),男,山東棲霞人,博士研究生,講師,2009年于合肥電子工程學(xué)院獲得碩士學(xué)位,主要從事光譜分析與建模等方面的研究。

    E-mail: linzd@mail.ustc.edu.cn王儒敬(1964-),男,安徽亳州人,博士,研究員,2004年于中科院合肥物質(zhì)科學(xué)研究院獲得博士學(xué)位,主要從事農(nóng)業(yè)智能系統(tǒng)的理論、方法與技術(shù)的研究。

    E-mail: rjwang@iim.ac.cn汪玉冰(1985-),女,安徽六安人,博士,副研究員,2010年于中科院合肥物質(zhì)科學(xué)研究院獲得博士學(xué)位,主要從事分子光譜分析及化學(xué)計量學(xué)在精準(zhǔn)農(nóng)業(yè)中的應(yīng)用等方面的研究。

    E-mail: ybwang@iim.ac.cn

    2015-05-30;

    2016-06-25

    中科院科技服務(wù)網(wǎng)絡(luò)計劃(KFJ-EW-STS-069)資助項目

    波長優(yōu)選對土壤有機(jī)質(zhì)含量可見光/近紅外光譜模型的優(yōu)化

    林志丹1,2,3, 汪玉冰1*, 王儒敬1*,汪六三1, 魯翠萍1, 張正勇1, 宋良圖1, 劉 洋1

    (1. 中國科學(xué)院 合肥智能機(jī)械研究所, 安徽 合肥 230031;2. 中國科技大學(xué) 自動化系, 安徽 合肥 230026; 3. 合肥電子工程學(xué)院, 安徽 合肥 230037)

    可見光/近紅外光譜模型是土壤屬性預(yù)測的有效工具。波長優(yōu)選在光譜建模過程中起著重要作用。文中首先利用從安徽省渦陽縣采集的130個砂姜黑土土壤樣本獲得可見光/近紅外光譜,然后利用平滑與多重散射校正聯(lián)合的光譜預(yù)處理方式消除光譜中的無關(guān)變量和冗余信息以提高模型預(yù)測結(jié)果的相關(guān)性,再利用SPXY方法挑選建模集樣本,分別利用連續(xù)投影算法和遺傳算法進(jìn)行波長優(yōu)選,最后利用留一法進(jìn)行交互驗證建立有機(jī)質(zhì)含量的主成分回歸模型。研究結(jié)果顯示:連續(xù)投影算法和遺傳算法都可以有效地減少參與建模的波長數(shù)并提高模型的準(zhǔn)確度,尤其是遺傳算法能夠更好地提高土壤有機(jī)質(zhì)含量預(yù)測精度,其相關(guān)系數(shù)、預(yù)測均方根誤差和相對分析誤差分別達(dá)到0.931 6,0.214 2和2.319 5。通過合適的特征波長選取,不僅計算量可以大大減少,預(yù)測精度也會有效提高。

    可見光/近紅外光譜; 有機(jī)質(zhì)含量; 光譜預(yù)處理; 樣本選擇; 波長優(yōu)化

    1000-7032(2016)11-1428-08

    O235 Document code: A

    10.3788/fgxb20163711.1428

    *CorrespondingAuthors,E-mail:ybwang@iim.ac.cn;rjwang@iim.ac.cn

    猜你喜歡
    中科院合肥波長
    HPLC-PDA雙波長法同時測定四季草片中沒食子酸和槲皮苷的含量
    合肥的春節(jié)
    加大授權(quán)力度中科院先行一步
    科技傳播(2019年23期)2020-01-18 07:57:10
    中科院沈陽生態(tài)研究所技術(shù)
    雙波長激光治療慢性牙周炎的療效觀察
    合肥:打造『中國IC之都』
    日本研發(fā)出可完全覆蓋可見光波長的LED光源
    中國照明(2016年4期)2016-05-17 06:16:15
    便攜式多用途光波波長測量儀
    物理實驗(2015年9期)2015-02-28 17:36:46
    中科院位列自然指數(shù)全球首位
    生態(tài)合肥
    午夜日韩欧美国产| 亚洲精品中文字幕在线视频| 国产成人一区二区三区免费视频网站| 精品人妻1区二区| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产主播在线观看一区二区| 亚洲国产成人一精品久久久| 老熟妇乱子伦视频在线观看 | av网站在线播放免费| 精品乱码久久久久久99久播| 秋霞在线观看毛片| netflix在线观看网站| 91国产中文字幕| 欧美成人午夜精品| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品高潮呻吟av久久| 亚洲精品国产一区二区精华液| 自线自在国产av| 免费高清在线观看视频在线观看| 亚洲中文字幕日韩| 99精国产麻豆久久婷婷| 50天的宝宝边吃奶边哭怎么回事| 人妻 亚洲 视频| 婷婷丁香在线五月| 亚洲av美国av| 日本猛色少妇xxxxx猛交久久| 亚洲成人免费av在线播放| 久久这里只有精品19| 亚洲 国产 在线| 亚洲人成电影免费在线| 国产日韩欧美亚洲二区| 亚洲av男天堂| 亚洲精品日韩在线中文字幕| 国产精品久久久人人做人人爽| 侵犯人妻中文字幕一二三四区| 50天的宝宝边吃奶边哭怎么回事| 桃花免费在线播放| 人成视频在线观看免费观看| 国产真人三级小视频在线观看| 精品电影一区二区在线| 婷婷亚洲欧美| 成人三级做爰电影| 久久久久久久久久黄片| 国内少妇人妻偷人精品xxx网站 | 亚洲18禁久久av| 我的老师免费观看完整版| 欧美大码av| 最近最新中文字幕大全免费视频| 在线永久观看黄色视频| 欧美又色又爽又黄视频| 亚洲专区国产一区二区| 中出人妻视频一区二区| 成人午夜高清在线视频| 午夜a级毛片| 女同久久另类99精品国产91| 国内精品久久久久精免费| 久久久久久亚洲精品国产蜜桃av| 日本免费a在线| 国产91精品成人一区二区三区| av免费在线观看网站| 国产69精品久久久久777片 | 精品国产乱子伦一区二区三区| 欧美日韩亚洲综合一区二区三区_| 精品国内亚洲2022精品成人| 亚洲精品美女久久久久99蜜臀| 变态另类成人亚洲欧美熟女| 午夜老司机福利片| 我的老师免费观看完整版| 久久久国产成人精品二区| 日本一二三区视频观看| 97人妻精品一区二区三区麻豆| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 亚洲国产中文字幕在线视频| 久久香蕉激情| 日韩av在线大香蕉| 99国产综合亚洲精品| 99热只有精品国产| 美女免费视频网站| 我的老师免费观看完整版| 人人妻人人看人人澡| 亚洲人成网站高清观看| 欧美日韩一级在线毛片| 亚洲七黄色美女视频| 亚洲狠狠婷婷综合久久图片| 亚洲,欧美精品.| av中文乱码字幕在线| 欧美乱码精品一区二区三区| 搡老熟女国产l中国老女人| 99热6这里只有精品| 亚洲精品国产精品久久久不卡| 99久久精品热视频| 久久欧美精品欧美久久欧美| 动漫黄色视频在线观看| 欧美激情久久久久久爽电影| 国产精品野战在线观看| 久久久久国产一级毛片高清牌| 日本免费a在线| 1024香蕉在线观看| 国产爱豆传媒在线观看 | 男人舔奶头视频| 久久久久久人人人人人| 国产精品乱码一区二三区的特点| 欧美最黄视频在线播放免费| 午夜福利成人在线免费观看| 亚洲精品久久国产高清桃花| 日本a在线网址| 免费看美女性在线毛片视频| 日韩三级视频一区二区三区| 我要搜黄色片| 一个人免费在线观看的高清视频| 长腿黑丝高跟| 国产一区二区在线观看日韩 | 夜夜看夜夜爽夜夜摸| 欧美乱色亚洲激情| 亚洲精品av麻豆狂野| 法律面前人人平等表现在哪些方面| 久久精品国产99精品国产亚洲性色| 免费看日本二区| 99精品在免费线老司机午夜| 国产激情欧美一区二区| 国产人伦9x9x在线观看| 日本在线视频免费播放| 日本一区二区免费在线视频| 一个人观看的视频www高清免费观看 | 18禁美女被吸乳视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久亚洲av毛片大全| 国产精品亚洲一级av第二区| 黑人操中国人逼视频| 99久久99久久久精品蜜桃| 中文字幕久久专区| 国产探花在线观看一区二区| 可以在线观看毛片的网站| 久久精品综合一区二区三区| 黄色视频不卡| 国产精品 国内视频| av福利片在线| 久久 成人 亚洲| 亚洲一区二区三区色噜噜| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 97超级碰碰碰精品色视频在线观看| 啦啦啦韩国在线观看视频| 老司机靠b影院| 老汉色av国产亚洲站长工具| 午夜亚洲福利在线播放| 久久久精品国产亚洲av高清涩受| 国产精品电影一区二区三区| 一区二区三区高清视频在线| 久久精品aⅴ一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 757午夜福利合集在线观看| 国产成人系列免费观看| 天天添夜夜摸| 久久精品国产亚洲av高清一级| 亚洲色图 男人天堂 中文字幕| 99在线人妻在线中文字幕| av欧美777| 国产三级黄色录像| 在线免费观看的www视频| 一进一出好大好爽视频| 久久中文看片网| 老汉色av国产亚洲站长工具| 国产精品爽爽va在线观看网站| 亚洲av美国av| 男人舔女人下体高潮全视频| 大型黄色视频在线免费观看| 欧美日韩黄片免| 在线a可以看的网站| 制服诱惑二区| 亚洲全国av大片| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产欧美日韩av| 天天躁夜夜躁狠狠躁躁| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 一本久久中文字幕| 日韩有码中文字幕| 日本一区二区免费在线视频| 免费看日本二区| 高潮久久久久久久久久久不卡| 亚洲 欧美一区二区三区| 一级毛片女人18水好多| 窝窝影院91人妻| 在线国产一区二区在线| 91在线观看av| 在线观看舔阴道视频| 中文资源天堂在线| 免费在线观看视频国产中文字幕亚洲| 亚洲av片天天在线观看| 婷婷亚洲欧美| 亚洲精品中文字幕在线视频| 亚洲真实伦在线观看| 99re在线观看精品视频| 国产成人系列免费观看| 国产三级在线视频| 村上凉子中文字幕在线| 国产真人三级小视频在线观看| 久久精品国产亚洲av香蕉五月| av国产免费在线观看| 亚洲美女视频黄频| 丰满的人妻完整版| 国产免费av片在线观看野外av| 变态另类丝袜制服| 少妇裸体淫交视频免费看高清 | 又粗又爽又猛毛片免费看| 日韩中文字幕欧美一区二区| 天天一区二区日本电影三级| 亚洲 欧美 日韩 在线 免费| 色综合婷婷激情| 日日摸夜夜添夜夜添小说| 国产成人精品久久二区二区免费| 国产aⅴ精品一区二区三区波| 国产av一区在线观看免费| 久久热在线av| 看片在线看免费视频| 国产精品亚洲美女久久久| 又黄又爽又免费观看的视频| 搞女人的毛片| 老熟妇乱子伦视频在线观看| cao死你这个sao货| 一级毛片精品| 人人妻人人看人人澡| 手机成人av网站| 老汉色∧v一级毛片| 久久婷婷成人综合色麻豆| av中文乱码字幕在线| 国产av一区二区精品久久| 国产精品自产拍在线观看55亚洲| 男女视频在线观看网站免费 | 国产欧美日韩一区二区精品| 一本一本综合久久| 老司机午夜十八禁免费视频| 精品久久久久久成人av| 国内精品久久久久精免费| 在线观看舔阴道视频| 午夜两性在线视频| 国产男靠女视频免费网站| 国产一级毛片七仙女欲春2| 一二三四在线观看免费中文在| 欧美一区二区精品小视频在线| 国内揄拍国产精品人妻在线| 亚洲av熟女| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 搡老妇女老女人老熟妇| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 午夜福利成人在线免费观看| 亚洲av成人精品一区久久| 免费一级毛片在线播放高清视频| 一二三四在线观看免费中文在| 免费在线观看影片大全网站| 97人妻精品一区二区三区麻豆| 亚洲激情在线av| 亚洲熟妇中文字幕五十中出| 欧美日韩乱码在线| 给我免费播放毛片高清在线观看| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 又黄又粗又硬又大视频| 欧美成人午夜精品| 亚洲专区中文字幕在线| av在线播放免费不卡| 麻豆国产97在线/欧美 | а√天堂www在线а√下载| 男插女下体视频免费在线播放| 精品熟女少妇八av免费久了| 国产69精品久久久久777片 | 好男人在线观看高清免费视频| aaaaa片日本免费| 色综合欧美亚洲国产小说| 久久热在线av| 色老头精品视频在线观看| 我的老师免费观看完整版| 国产高清激情床上av| 免费看美女性在线毛片视频| www.www免费av| 欧美一级毛片孕妇| 欧美大码av| 亚洲成av人片在线播放无| 国产精品久久久久久久电影 | 亚洲精品粉嫩美女一区| 岛国在线免费视频观看| 一本久久中文字幕| x7x7x7水蜜桃| 最近最新中文字幕大全电影3| 午夜久久久久精精品| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 老汉色av国产亚洲站长工具| 搡老妇女老女人老熟妇| 免费人成视频x8x8入口观看| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 麻豆一二三区av精品| 成人国产综合亚洲| 欧美又色又爽又黄视频| 久久久水蜜桃国产精品网| 欧美性猛交╳xxx乱大交人| 久久天躁狠狠躁夜夜2o2o| 人人妻人人澡欧美一区二区| 午夜影院日韩av| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| www.精华液| 不卡av一区二区三区| 999久久久国产精品视频| 国产精品日韩av在线免费观看| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| netflix在线观看网站| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产| 少妇裸体淫交视频免费看高清 | 香蕉国产在线看| 亚洲国产精品久久男人天堂| 亚洲午夜精品一区,二区,三区| 97人妻精品一区二区三区麻豆| 床上黄色一级片| 欧美成人一区二区免费高清观看 | 亚洲五月婷婷丁香| 成熟少妇高潮喷水视频| 免费在线观看视频国产中文字幕亚洲| 神马国产精品三级电影在线观看 | 欧美在线黄色| avwww免费| 视频区欧美日本亚洲| 国产av又大| 九色国产91popny在线| 欧美日韩瑟瑟在线播放| 色噜噜av男人的天堂激情| 国产高清有码在线观看视频 | 成人三级做爰电影| 99久久99久久久精品蜜桃| 国产高清视频在线播放一区| 欧美黑人欧美精品刺激| 禁无遮挡网站| 亚洲人成网站高清观看| 老汉色∧v一级毛片| 免费高清视频大片| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 一二三四在线观看免费中文在| 无遮挡黄片免费观看| 亚洲性夜色夜夜综合| 久久久久九九精品影院| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 亚洲国产精品sss在线观看| 色综合站精品国产| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 日本黄色视频三级网站网址| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 制服人妻中文乱码| 国产99白浆流出| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| 性欧美人与动物交配| 亚洲成av人片在线播放无| 国产三级在线视频| 一夜夜www| 亚洲成a人片在线一区二区| 香蕉久久夜色| 国产精品久久久av美女十八| 国产一区二区在线av高清观看| 精品一区二区三区四区五区乱码| xxx96com| 久久香蕉精品热| 日韩欧美三级三区| 制服诱惑二区| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 五月玫瑰六月丁香| 制服诱惑二区| 男女那种视频在线观看| 一二三四在线观看免费中文在| 97人妻精品一区二区三区麻豆| 性色av乱码一区二区三区2| 成人三级做爰电影| 日韩精品中文字幕看吧| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 国产私拍福利视频在线观看| 99在线视频只有这里精品首页| 两个人看的免费小视频| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 国产精品 国内视频| 欧美3d第一页| 白带黄色成豆腐渣| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 男女那种视频在线观看| 999精品在线视频| 琪琪午夜伦伦电影理论片6080| 亚洲人与动物交配视频| 亚洲国产欧美网| 亚洲国产看品久久| 久久久久九九精品影院| 看免费av毛片| 国产一区在线观看成人免费| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| 最近最新免费中文字幕在线| 亚洲五月婷婷丁香| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇八av免费久了| 性欧美人与动物交配| 国产精品 欧美亚洲| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站高清观看| 国产又黄又爽又无遮挡在线| 美女扒开内裤让男人捅视频| 中文在线观看免费www的网站 | 校园春色视频在线观看| 国产单亲对白刺激| 又爽又黄无遮挡网站| 日韩欧美在线二视频| 亚洲 欧美一区二区三区| 超碰成人久久| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 日本黄大片高清| 美女高潮喷水抽搐中文字幕| 在线观看午夜福利视频| 看免费av毛片| 桃色一区二区三区在线观看| 精品一区二区三区视频在线观看免费| 色噜噜av男人的天堂激情| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 日韩三级视频一区二区三区| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 国产午夜福利久久久久久| www.999成人在线观看| 久久香蕉激情| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 两个人视频免费观看高清| 日韩欧美在线二视频| 久久精品人妻少妇| 听说在线观看完整版免费高清| 精品欧美一区二区三区在线| 日本成人三级电影网站| 九色成人免费人妻av| 久久草成人影院| 欧美三级亚洲精品| videosex国产| 成人三级做爰电影| 久久久久久人人人人人| 欧美在线一区亚洲| 黄色a级毛片大全视频| 男女午夜视频在线观看| 中国美女看黄片| 国产精品电影一区二区三区| 国产在线观看jvid| 久久久久国内视频| 看片在线看免费视频| 搡老岳熟女国产| 一级片免费观看大全| 国产av麻豆久久久久久久| 在线观看一区二区三区| 久99久视频精品免费| 亚洲午夜精品一区,二区,三区| 亚洲国产欧洲综合997久久,| e午夜精品久久久久久久| 亚洲专区国产一区二区| 色综合站精品国产| 日本在线视频免费播放| 波多野结衣高清无吗| 在线观看午夜福利视频| 在线国产一区二区在线| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| www日本在线高清视频| 欧美黑人欧美精品刺激| 久99久视频精品免费| 亚洲av五月六月丁香网| 国产精品免费一区二区三区在线| 亚洲欧美激情综合另类| av免费在线观看网站| 亚洲18禁久久av| 中文字幕精品亚洲无线码一区| 午夜激情av网站| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 国产爱豆传媒在线观看 | 久久久久久亚洲精品国产蜜桃av| 女同久久另类99精品国产91| 91av网站免费观看| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 99热6这里只有精品| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 国产精品永久免费网站| 最好的美女福利视频网| 国产真实乱freesex| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 亚洲人与动物交配视频| 久热爱精品视频在线9| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| 久久久国产成人精品二区| 99久久国产精品久久久| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 91大片在线观看| 美女午夜性视频免费| 可以在线观看的亚洲视频| 亚洲最大成人中文| a级毛片a级免费在线| 精品一区二区三区av网在线观看| 美女午夜性视频免费| 免费在线观看亚洲国产| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 美女免费视频网站| 在线观看免费午夜福利视频| 在线a可以看的网站| 欧美在线一区亚洲| 亚洲一区二区三区不卡视频| 国产成年人精品一区二区| 黄色丝袜av网址大全| 99久久精品热视频| www国产在线视频色| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 国产黄a三级三级三级人| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 夜夜夜夜夜久久久久| 男人舔女人的私密视频| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 在线国产一区二区在线| 日韩三级视频一区二区三区| 国产精品永久免费网站| 搡老岳熟女国产| 在线看三级毛片| 成人国产一区最新在线观看| 国产av又大| 亚洲熟女毛片儿| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 国产精品一及| 别揉我奶头~嗯~啊~动态视频| 窝窝影院91人妻| 国产真人三级小视频在线观看| 毛片女人毛片| 午夜日韩欧美国产| 久久亚洲精品不卡| 在线观看免费午夜福利视频| www日本在线高清视频| 亚洲激情在线av| 日韩有码中文字幕| 国产精品国产高清国产av| 亚洲精品久久成人aⅴ小说| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 国产在线观看jvid| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 国产午夜精品久久久久久| 国产亚洲欧美98| 日本免费一区二区三区高清不卡| 日韩av在线大香蕉| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 国产区一区二久久| 午夜福利18| 看免费av毛片| 亚洲av片天天在线观看| 18禁国产床啪视频网站| 91老司机精品| 亚洲精品美女久久av网站| 91老司机精品| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| or卡值多少钱| 在线国产一区二区在线| 久久久久久大精品| 看黄色毛片网站| 嫩草影院精品99| 欧美乱色亚洲激情| 日韩av在线大香蕉| 久久国产精品影院| 欧美成狂野欧美在线观看| 日本黄大片高清|