• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Top-down characterization of histone H4 proteoforms with ProteinGoggle 2.0

    2016-12-14 07:02:19XIAOKaijieTIANZhixin
    色譜 2016年12期
    關(guān)鍵詞:變體乙?;?/a>甲基化

    XIAO Kaijie, TIAN Zhixin

    (School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment andSustainability, Tongji University, Shanghai 200092, China)

    ?

    Top-down characterization of histone H4 proteoforms with ProteinGoggle 2.0

    XIAO Kaijie, TIAN Zhixin*

    (SchoolofChemicalScience&Engineering,ShanghaiKeyLaboratoryofChemicalAssessmentandSustainability,TongjiUniversity,Shanghai200092,China)

    Top-down characterization of combinatorial and dense post-translational modifications (PTMs) on core histones has long been a big analytical challenge because of enormous putative proteoforms for identification and simultaneously enormous putative sites of each individual PTM for localization. ProteinGoggle 2.0, as implemented with the isotopic mass-to-charge ratio and envelope fingerprinting algorithm, has multiple unique strengths for top-down characterization of histone PTMs together with high-resolution tandem mass spectrometry. Here we report our database search and proteoform identification of HeLa core histone H4 using ProteinGoggle 2.0. The Theoretical database containing all putative proteoforms was created with shotgun annotation from the human H4 flat text downloaded from UniProt; information including the amino acid sequence, putative PTMs (methylation, di-methylation, tri-methylation, acetylation and phosphorylation) and amino acid variation (A77 to P) was adopted from the flat text file. A total of 426 proteoforms were confidently identified with a spectrum level false discovery rate of less than 1%, which represents the most comprehensive H4 proteoforms reported so far. Side-by-side comparison of these proteoforms with those identified by ProSightPC 2.0 was also made. By and large, ProteinGoggle 2.0 can be adopted for database search and proteoform identification of proteins with multiple combinatorial PTMs as well as amino acid variation.

    ProteinGoggle 2.0; top-down; histone H4; proteoform

    Histones, as chromatin proteins, play important roles not only in structural organization of DNA, but also in regulation of almost all DNA activities through post-translational modifications (PTMs) [1,2]. Aberrant histone PTMs lead to diseases and cancers [3,4]. These histone PTMs often cross-talk and function through combinatorial histone code [5], which necessitates intact molecular characterization. Modern ESI high-resolution tandem mass spectrometry together with various peripheral hyphenated techniques (especially high-performance liquid chromatography) has evolved into a state-of-the-art instrumental analytical tool for both qualitative and quantitative characterization of histone PTMs [6-20].

    Tian et al. [9] have so far done the most comprehensive top-down analysis of core histones. The four families (H4, H2B, H2A, and H3) of HeLa core histones were first fractionated offline by reversed-phase liquid chromatography; various proteoforms with combinatorial PTMs (such as acetylation, methylation, and phosphorylation) within each family fraction were then separated by pH-gradient weak cation exchange chromatography (WCX) which was coupled online throughn-ESI to an Orbitrap mass spectrometer. Five data-dependent datasets (one for H4, H2B, H2A, H3_1 and H3_2 each) using alternative collision-induced dissociation (CID) and electron-transfer dissociation (ETD) were acquired and deposited online (http://www.peptideatlas.org/). In total, 708 proteoforms (including 105 from the H4 family) identified with protein database search engine ProSightPC 2.0 were reported; ever since, the authors have developed a top-down intact protein database search engine ProteinGoggle 2.0 using distinctly alternative search algorithm, isotopic mass-to-charge ratio and envelope fingerprinting (iMEF) [21]. The iMEF algorithm interprets mass spectra and identifies both precursor and product ions by fingerprinting theoretical isotopic envelopes onto the corresponding experimental ones, which are measured directly by MS and thus pre-processing of de-isotoping as uniformly practiced in all the other search engines is avoided. The iMEF algorithm is a combination of isotopicm/zfingerprinting (iMF) and isotopic envelope fingerprinting (iEF). The former is used to fish out putative precursor or product ion candidates from the theoretical database with fingerprinting of the theoretically highest isotopic peak; while the latter is used to identify matching precursor or product ions with fingerprinting of all the isotopic peaks above a theoretical abundance threshold. This threshold is designated as isotopic peak abundance cutoff (IPACO); for a matching precursor or product ion, theoretical isotopic peaks with relative abundance above IPACO should be experimentally observed; also them/zdeviation and relative abundance deviation of these experimentally isotopic peaks should be within user-specified threshold values. These two parameters are designated as isotopic peakm/zdeviation (IPMD) and isotopic peak abundance deviation (IPAD). Passing through the search parameters of IPACO, IPMD and IPAD, every matching precursor or product ion has an ideal experimental isotopic envelope. This ensures confident protein identification as well as site localization of PTMs if any. The iMEF algorithm also has its intrinsic unique strength of resolution of extremely dense data in protein tandem mass spectra and distinct exclusion of non-ideal data [22]. The newest ProteinGoggle 2.0 with full capacity has been applied for both qualitative identification and quantitative analysis of differentially expressed proteins in hepatocellular carcinoma [23].

    Here we reported our database search and proteoforms identification of the aforementioned histone H4 using ProteinGoggle 2.0. A total of 426 proteoforms were confidently identified with a spectrum level false discovery rate (FDR) of less than 1%, which represents the most comprehensive H4 proteoforms reported so far. Side-by-side comparison of these proteoforms with those identified by ProSightPC 2.0 was also made.

    1 Experimental

    The histone H4 dataset was downloaded from Peptide Atlas (http://www.peptideatlas.org/) with the dataset identifier as PASS00070. The dataset has been published online together with its database search results from ProSightPC 2.0. Originally, the dataset was acquired with WCX-tandem mass spectrometry (alternative CID and ETD) analysis of HeLa histone H4 family which was obtained from RPLC fractionation of HeLa core histones mixture. ProSightPC 2.0 search was conducted in the “absolute mass” mode, and the adopted mass tolerance of precursor and product ion were ±1 Da and 10 ppm (10×10-6), respectively. Methylation (mono-, di-, and tri-), acetylation, and phosphorylation were treated dynamically and all annotated in the customized database. With a spectrum-level FDR≤1% using the reverse database in the decoy search, 105 H4 proteoforms were identified with “Number of Best Hits=1”, i. e. all proteoforms were uniquely given their respective matching product ions and possible candidates annotated in the customized database.

    In database search of this dataset with ProteinGoggle 2.0, a flat text file of human histone H4 (P62805) containing amino acid sequence together with candidate PTMs was first downloaded from UniProt. The customized forward and random databases were created with mono-methylation (R4, K21), di-methylation (R4, K21), tri-methylation (K21), acetylation (S2, K6, K9, K13, K17, K32, K92), and phosphorylation (S2, S48, Y52, T81) as dynamic PTMs and max PTMs per proteoform were limited to 6. Initial methionine was either kept or removed; and mutation of A77 to P was also considered. With all these options taken into account, a total of 6 672 candidate proteoforms were annotated. Initial protein spectrum matches (PrSMs) search in both the forward and the random databases was carried out with the following tolerance parameters: IPACO, IPMD, IPAD for the precursor ions and product ions were 40%/15 ppm/100% and 20%/15 ppm/50%, respectively; percentage of matching product ions (PMPs)≥5; PTM score≥1 or Proteoform score≥1.

    Spectrum-level FDR control is achieved throughPScore cutoff of combined PrSMs from the target-decoy searches both forward and random databases.Pscore is used to evaluate the probability of a random proteoform match from a MS/MS spectrum and its scoring is built on Poison distribution. The exact computation ofPscore,Pf,n, is shown in Equations 1 and 2.

    (1)

    (2)

    In Equations 1 and 2, “x” is the random match probability of an isotopic peak in the MS/MS spectrum; “f”is the total number of isotopic peaks in the spectrum; “n” is the number of peaks hitting a theoretical peak for random; “NTheo” is the number of theoretical product ions of the matched proteoform; “2 000” is them/zscan range of the MS spectrum, which could be read in from the raw experimental data; “z” is the charge state of the corresponding precursor ion for the MS/MS spectrum; “IPMD” is the short name of isotopic peak mass-to-charge ratio deviation, and is the experimentalm/zdeviation of an isotopic peak relative to its theoretical value; and “M” is the relative molecular mass (in Da) of the proteoform.

    2 Results and discussion

    With database search of the H4 dataset using ProteinGoggle 2.0, 7 139 and 41 PrSMs were obtained from the forward and random searches, respectively. These PrSMs were combined and ranked byPscore from high to low; a cutoffPscore, 169.09 (negative log value), was then chosen to obtain forward PrSMs with a spectrum level FDR≤1. Above this cutoffPscore, there are 5 969 and 29 PrSMs from the forward and random searches, and the FDR=29×2×100%/(5 969+29)=0.97%. The 5 969 forward PrSMs were grouped with amino acid sequence and PTMs to remove duplicates and obtain the final 426 proteoforms. The detailed information (including spectrum index, retention time (min), isolationm/z, experimentalm/z, theoreticalm/z, IPMD (ppm),z, theoretical monoisotopic mass (Da), sequence, PTMs, number of matching product ions (MPs), number of non-MPs,Pscore, PTM score, and proteoform score) for each of the 426 proteoforms was provided in Supplemental Table S1.

    Statistically, these 426 proteoforms, with 84 unique molecular formulae, were identified from 244 precursor ions across 168 MS/MS spectra in an elution window of 52.69 minutes. Each MS/MS spectrum (10m/zisolation window, actually) may contain multiple precursor ions, and each of these precursor ions may contain multiple co-eluting isomeric proteoforms. As for the distribution of these proteoforms in terms of amino acid sequence, 254 proteoforms have the normal sequence (without initial methionine, no amino acid variation); 106 proteoforms have amino acid variation of A77→P (without initial methionine); 4 proteoforms have initial methionine (with or without A77→P), and the last proteoform has R79→C. It should be noted that mutation of this A77 to P was originally reported and reviewed in UniProt, and the identification here is supported by both precursor ion fingerprinting tolerance and fragmentation. About 70% of the 426 proteoforms have 3 or more PTMs each (Fig. S1); acetylated proteoforms elute in the order of decreasing acetylation number per proteoform (Supplemental Fig. S2). The more acetylation a proteoform has, the less proton charges it has, and thus be eluted earlier in this WCX separation. A total of 10 proteoforms (S1AcK12AcY88P, R3dMeK5AcY88P, R3dMeS47P, S1AcS47P, S1AcK20MeY88P, S1PK-20dMeS47PY51PY88P, S1AcK5AcY88P, S1AcK-20dMeS47P, K12AcK20dMeS47P, S1AcK20dMeY-88P) containing combinatorial PTMs beyond the N-terminal tail have been identified in this study. These proteoforms may not be identified by the alternative bottom-up approach where the enzymatic tail (SGRGKGGKGLGKGGAKRHRKVLR) was analyzed. As an example, the iEF map and graphical fragmentation map for the proteoform with S1AcK12AcY88P are shown in Fig. S3a and S3b, respectively.

    For comparison of ProteinGoggle 2.0 and ProSightPC 2.0 in the database search of the H4 dataset, the results from the two search engines have a good proteoforms overlap (Fig. 1). However, the former has 327 unique proteoforms not identified by the latter; while it is 6 vice versa. Detailed side-by-side comparison of the two search engines in identification of the 6 proteoformsis provided in Table 1 and Fig. 2-4.

    Fig. 1 Overlap of H4 proteoforms identified by ProSightPC 2.0 and ProteinGoggle 2.0

    For ETD spectrum 1 320 with MS scan 1 310 (Table 1), ProSightPC 2.0 and ProteinGoggle 2.0 identified the proteoforms of S1AcK5AcK8AcK-12AcK16Ac and S1AcK5AcK8AcK12AcK16AcK-20dMe with 6 and 12 matching product ions, respectively. The precursor ion iEF maps of two proteoforms are shown in Fig. 2a and 2b. The theoretically highest isotopic peaks in the precursor ion isotopic envelopes are two peaks away from each other, i. e. the nominal mass difference between the two proteoforms is 2 Da. The graphical fragmentation map from ProteinGoggle 2.0 is shown in Fig. 2c, where all PTMs are uniquely localized.

    For CID spectrum 1 368 with MS scan 1 365 (Table 1), the identification difference between the two search engines is similar to that in spectrum 1 320. ProSightPC 2.0 identified H4 proteoform with K8AcK12AcK16AcK20MeY51p; whereas ProteinGoggle 2.0 identified two ambiguous proteoforms, S1AcR3MeK5AcK8AcK12AcK16Ac and R3dMeK5AcK8AcK12AcK16AcK20tMe, due to limited matching product ions. The precursor ion found by ProSightPC 2.0 is a relatively lower experimental isotopic envelope (Fig. 2d); whilethe precursor ion found by ProteinGoggle 2.0 is a relatively higher one (Fig. 2e). The two precursor ions are 4 Da (4 isotopic peaks) away from each other.

    Table 1 Side-by-side comparison of ProSightPC 2.0 with ProteinGoggle 2.0 in interpretation of the tandem mass spectra 1320, 1368, 1439, 1810, 2885 and 2919 in the H4 dataset

    *SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVY-ALKRQGRTLYGFGG; **K12AcK16AcK20Me, K8AcK16AcK20Me, K8AcK12AcK20Me, K5AcK16AcK20Me, K5AcK12AcK20Me, K5AcK8AcK20Me, R3MeK12AcK16Ac, R3MeK8AcK16Ac, R3MeK8AcK12Ac, R3MeK5AcK16Ac, R3MeK5AcK12Ac, R3MeK5AcK8Ac, S1AcK16AcK20Me, S1AcK12AcK20Me, S1AcK8AcK20Me, S1AcK5AcK20Me, S1AcR3MeK16Ac, S1AcR3MeK12Ac, or S1AcR3MeK5Ac.

    Fig. 2 (a, b) iEF maps for the two precursor ions identified for ETD spectrum 1320 by ProSightPC 2.0 and ProteinGoggle 2.0; (c) graphical fragmentation map for H4 proteoforms with PTMs of S1AcK5AcK8AcK12AcK16AcK20dMe identified from MS/MS spectra 1320 by ProteinGoggle 2.0; (d, e) iEF maps for the two precursor ions identified for CID spectrum 1368 by ProSightPC 2.0 and ProteinGoggle 2.0; (f) iEF map for the same precursor ions identified for CID spectrum 1810 by ProSightPC 2.0 and ProteinGoggle 2.0

    Fig. 3 (a, b) iEF maps for the two precursor ions identified for ETD spectrum 1439 by ProSightPC 2.0 and ProteinGoggle 2.0; (c, d) graphical fragmentation map for H4 proteoforms with PTMs of S1AcK8AcK12AcK16AcK20dMe and S1AcK5AcK12AcK16AcK20dMe identified from MS/MS spectra 1439 by ProteinGoggle 2.0

    Fig. 4 (a) Graphical fragmentation map for H4 proteoforms with PTMs of R3MeK12AcK16Ac identified from MS/MS spectra 1810 by ProteinGoggle 2.0; (b) iEF map for the product ion b101+ identified for CID spectrum 1810 by ProteinGoggle 2.0; (c, d) iEF maps for the two precursor ions identified for ETD spectrum 2885 by ProSightPC 2.0 and ProteinGoggle 2.0; (e) iEF map for the same precursor ion identified for CID Spectrum 2919 by ProSightPC 2.0 and ProteinGoggle 2.0; (f) graphical fragmentation map for H4 proteoforms with PTMs of S1AcR3MeK8Ac identified from MS/MS spectrum 2919 by ProteinGoggle 2.0

    For ETD spectrum 1 439 with MS scan 1 431 (Table 1), the two search engines identified proteoforms with nominal mass difference of 2 Da, i. e. the theoretically highest isotopic peaks in the precursor ion isotopic envelopes are two peaks away from each other. ProSightPC 2.0 identified proteoform S1AcK8AcK12AcK20tMe with A77 mutated to P; whereas ProteinGoggle 2.0 identified two co-eluting proteoforms (S1AcK8AcK12AcK16AcK20dMe and S1AcK5AcK-12AcK16AcK20dMe) of the normal sequence with high confidence localization of all PTMs (Fig. 3c and 3d). The latter proteoforms have much better precursor ion fingerprinting between the experimental and theoretical isotopic envelopes (Fig. 3b) as well as many more matching product ions than the former proteoform (Fig. 3a).

    For CID spectrum 1 810 with MS scan 1 805 (Table 1), the same experimental isotopic envelope was matched for the same precursor ion by the two search engines to give two proteoforms with PTMs of S1AcR3MeK16Ac and R3MeK12AcK16Ac, respectively. The iEF map of the precursor ion is shown in Fig. 2f. For the H4 proteoform R3MeK12AcK16Ac identified by ProteinGoggle 2.0, matching product ion b101+(iEF map shown in Fig. 4b) containing only R3Me proves that S1 does not have acetylation; and all the three PTMs are uniquely localized with sufficient sit-determining product ions as illustrated in the graphical fragmentation map (Fig. 4a). When spectrum 1 810 is searched by ProteinGoggle 2.0 to fit the CID spectrum to the proteoform S1AcR3MeK16Ac as identified by ProSightPC 2.0, no matching product ion is found between S1 and K12 to unambiguously localize the acetylation on either of the two sites, which excludes co-elution possibility of this proteoform and also proves that identification by ProSightPC 2.0 is not right.

    For ETD spectrum 2 885 with MS Scan 2 883 (Table 1), ProSightPC 2.0 identified proteoform of S1AcY88p (also A77→P) with the correspondingprecursor ion iEF map shown in Fig. 4c; while ProteinGoggle 2.0 identified three candidate proteoforms (S1AcK20dMeY88P, S1AcK20dMeY51P, and S1AcK20dMeS47P) sharing the same precursor ion with the corresponding iEF map shown in Fig. 4d. The nominal mass difference between the two different precursor ions is 2 Da; the precursor ion identified by ProteinGoggle 2.0 clearly has a much better fingerprinting between the theoretical and the experimental isotopic envelopes.

    For CID spectrum 2 919 with MS Scan 2 916 (Table 1), the same experimental isotopic envelope was found for the same precursor ion by the two search engines, and the corresponding iEF map is shown in Fig. 4e. From the CID spectrum, ProSightPC 2.0 identified H4 proteoform with S1AcR3MeK8Ac exclusively; however, the graphical fragmentation map for this proteoform from ProteinGoggle 2.0 (Fig. 4f) clearly shows that location of methylation and acetylation (except the one on S1) could not be uniquely localized with the existing experimental data, and there should be as many as 20 putative proteoforms.

    3 Conclusions

    Different deconvolution algorithms often report shifted monoisotopic masses, which compromise the confidence of identification. Protein database search with iMEF and ProteinGoggle 2.0 not only removes uncertainties in deisotoping, but also possesses unique intrinsic capabilities of efficient resolution of overlapping iEs and unambiguous separation of confident product ions with ideal experimental iEs from ambiguous product ions with non-ideal experimental iEs. Confidence of PTM location assignment is leveraged by enforcement of both PTM score and Proteoform score. With the inherent strengths of iMEF, ProteinGoggle 2.0 displays superior performance in the database search of challenging histone H4; 426 proteoforms with unique localization of each PTM were confidently identified. ProteinGoggle 2.0 could be adopted for qualitative identification of any intact protein or proteome without size limitation. ProteinGoggle 2.0 is currently freely available at http://proteingoggle.#edu.cn/.

    Supplementary Information Supplemental information including three figures and detailed tabular information for the identified proteoforms (20 pages in total) are provided at http://www.Chrom-china.com/UserFiles/File/1609012SupportingInfo(2).pdf.

    [1] Venkatesh S, Workman J L. Nat Rev Mol Cell Bio, 2015, 16(3): 178

    [2] Tessarz P, Kouzarides T. Nat Rev Mol Cell Bio, 2014, 15(11): 703

    [3] Falkenberg K J, Johnstone R W. Nat Rev Drug Discov, 2014, 13(9): 673

    [4] Hojfeldt J W, Agger K, Helin K. Nat Rev Drug Discov, 2013, 12(12): 917

    [5] Jenuwein T, Allis C D. Science, 2001, 293(5532): 1074

    [6] Zheng Y P, Fornelli L, Compton P D, et al. Mol Cell Proteomics, 2016, 15(3): 776

    [7] Kwak H G, Dohmae N. Biosci Trends, 2016, doi: 10.5582/bst.2016.01090

    [8] Moradian A, Kalli A, Sweredoski M J, et al. Proteomics, 2014, 14(4/5): 489

    [9] Tian Z X, Tolic N, Zhao R, et al. Genome Biol, 2012, 13(10): R86

    [10] Bonet-Costa C, Vilaseca M, Diema C, et al. J Proteomics, 2012, 75(13): 4124

    [11] Han J, Borchers C H. Proteomics, 2010, 10(20): 3621

    [12] Pesavento J J, Bullock C R, LeDuc R D, et al. J Biol Chem, 2008, 283(22): 14927

    [13] Pesavento J J, Kim Y B, Taylor G K, et al. J Am Chem Soc, 2004, 126(11): 3386

    [14] Garcia B A, Shabanowitz J, Hunt D F. Curr Opin Chem Biol, 2007, 11(1): 66

    [15] Britton L M, Gonzales-Cope M, Zee B M, et al. Expert Rev Proteomics, 2011, 8(5): 631

    [16] Sidoli S, Cheng L, Jensen O N. J Proteomics, 2012, 75(12): 3419

    [17] Bonaldi T, Noberini R. Expert Rev Proteomics, 2016, 13(3): 245

    [18] Onder O, Sidoli S, Carroll M, et al. Expert Rev Proteomics, 2015, 12(5): 499

    [19] Liu Z W, Zhu M R, Zhai L H, et al. Chinese Journal of Chromatography, 2016, 34(9): 825

    [20] Wang G J, Zhang K, He X W, et al. Chinese Journal of Chromatography, 2013, 31(6): 514

    [21] Li L, Tian Z X. Rapid Commun Mass Spectrom, 2013, 27(11): 1267

    [22] Xiao K J, Yu F, Fang H Q, et al. Sci Rep, 2015, 5: 14755

    [23] Fang H Q, Xiao K J, Li Y H, et al. Anal Chem, 2016, 88(14): 7198

    基于ProteinGoggle 2.0的組蛋白H4蛋白質(zhì)變體的自上而下表征

    肖開捷, 田志新*

    (同濟(jì)大學(xué)化學(xué)科學(xué)與工程學(xué)院, 上海市化學(xué)品分析、風(fēng)險(xiǎn)評估與控制重點(diǎn)實(shí)驗(yàn)室, 上海 200092)

    由于大量可能蛋白質(zhì)變體以及每一個(gè)翻譯后修飾大量可能位點(diǎn)的存在,核心組蛋白上密集的組合式翻譯后修飾的自上而下表征一直是一個(gè)巨大的分析挑戰(zhàn)。結(jié)合高分辨串級質(zhì)譜,基于同位素質(zhì)荷比和輪廓指紋比對的整體蛋白質(zhì)數(shù)據(jù)庫搜索引擎ProteinGoggle 2.0在組蛋白翻譯后修飾的自上而下鑒定方面擁有諸多獨(dú)特的優(yōu)勢。該文報(bào)道ProteinGoggle 2.0對HeLa核心組蛋白H4的數(shù)據(jù)庫搜索及蛋白質(zhì)變體的鑒定結(jié)果?;趶腢niProt網(wǎng)站下載的人類核心組蛋白H4的純文本文件和“鳥槍法”注釋,ProteinGoggle 2.0首先創(chuàng)建包含所有可能蛋白質(zhì)變體的理論數(shù)據(jù)庫;從純文本文件中提取的信息主要是氨基酸序列、可能的翻譯后修飾(單甲基化、二甲基化、三甲基化、乙?;土姿峄?及氨基酸變異(A77→P)。在控制質(zhì)譜水平假陽性率低于1%的前提下,共鑒定到426個(gè)蛋白質(zhì)變體,這是目前為止H4蛋白質(zhì)變體的最全報(bào)道。這些ProteinGoggle 2.0鑒定到的H4蛋白質(zhì)變體也與之前報(bào)道的ProSightPC 2.0的鑒定結(jié)果進(jìn)行了肩并肩比較??偠灾?ProteinGoggle 2.0可以對具有復(fù)雜組合修飾及氨基酸變異的蛋白質(zhì)組進(jìn)行數(shù)據(jù)庫搜索和蛋白質(zhì)變體鑒定。

    ProteinGoggle 2.0;自上而下;組蛋白H4;蛋白質(zhì)變體

    10.3724/SP.J.1123.2016.09012

    Foundation item: National Natural Science Foundation of China (No. 21575104); China State Key Basic Research Program (No. 2013CB911203); Shanghai Science and Technology Commission (No. 14DZ2261100).

    O658 Document code: A Article IC:1000-8713(2016)12-1254-09

    Special issue for commemorating Professor ZOU Hanfa (Ⅰ)·Article

    * Received date: 2016-09-04

    * Corresponding author. Tel: +86-21-65986992, E-mail: zhixintian@#edu.cn.

    猜你喜歡
    變體乙?;?/a>甲基化
    抑癌蛋白p53乙酰化修飾的調(diào)控網(wǎng)絡(luò)
    基于DDPG算法的變體飛行器自主變形決策
    非仿射參數(shù)依賴LPV模型的變體飛行器H∞控制
    慢性支氣管哮喘小鼠肺組織中組蛋白H3乙?;揎椩鰪?qiáng)
    耀變體噴流高能電子譜的形成機(jī)制
    組蛋白去乙酰化酶抑制劑的研究進(jìn)展
    鼻咽癌組織中SYK基因啟動(dòng)子區(qū)的甲基化分析
    胃癌DNA甲基化研究進(jìn)展
    中國傳統(tǒng)文學(xué)的換形變體——論“詩化小說”的興起與傳承
    基因組DNA甲基化及組蛋白甲基化
    遺傳(2014年3期)2014-02-28 20:58:49
    国产主播在线观看一区二区| 久久精品综合一区二区三区| 嫩草影院精品99| 偷拍熟女少妇极品色| 最近最新中文字幕大全免费视频| 19禁男女啪啪无遮挡网站| 99国产综合亚洲精品| 国产精品久久久人人做人人爽| 少妇丰满av| 草草在线视频免费看| 97超视频在线观看视频| 舔av片在线| 日韩av在线大香蕉| 国产亚洲欧美98| 午夜精品久久久久久毛片777| 老鸭窝网址在线观看| 亚洲黑人精品在线| 国产精华一区二区三区| 亚洲avbb在线观看| 亚洲午夜理论影院| 成人av一区二区三区在线看| avwww免费| 十八禁网站免费在线| 日韩欧美免费精品| 制服丝袜大香蕉在线| 免费人成视频x8x8入口观看| 黄色片一级片一级黄色片| 最近最新免费中文字幕在线| 欧美中文日本在线观看视频| 免费在线观看日本一区| 国产精品1区2区在线观看.| 观看免费一级毛片| 韩国av一区二区三区四区| 一级黄色大片毛片| 亚洲乱码一区二区免费版| 1024香蕉在线观看| 中亚洲国语对白在线视频| 女警被强在线播放| 国产高清videossex| 精品久久久久久久久久免费视频| 99国产精品99久久久久| 亚洲成人免费电影在线观看| 国产av在哪里看| 婷婷六月久久综合丁香| 欧美日韩乱码在线| 成人性生交大片免费视频hd| 国产成人影院久久av| 99久国产av精品| 丁香六月欧美| 日韩欧美国产一区二区入口| 偷拍熟女少妇极品色| 国产成人av教育| 99久久精品一区二区三区| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品中文字幕一二三四区| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| avwww免费| 老鸭窝网址在线观看| 国产精品永久免费网站| 国产一级毛片七仙女欲春2| 日本精品一区二区三区蜜桃| 亚洲国产色片| 久久精品国产综合久久久| 国产精品影院久久| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久,| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 综合色av麻豆| 特大巨黑吊av在线直播| 99视频精品全部免费 在线 | 日本在线视频免费播放| 老汉色∧v一级毛片| 深夜精品福利| 国产成人aa在线观看| 亚洲av中文字字幕乱码综合| 人人妻,人人澡人人爽秒播| 精品久久久久久久毛片微露脸| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 村上凉子中文字幕在线| 亚洲九九香蕉| 欧美日韩亚洲国产一区二区在线观看| 夜夜看夜夜爽夜夜摸| 88av欧美| 黄色片一级片一级黄色片| netflix在线观看网站| av天堂在线播放| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 亚洲欧美精品综合一区二区三区| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 午夜日韩欧美国产| 99re在线观看精品视频| 国产亚洲精品久久久com| 在线观看66精品国产| 美女午夜性视频免费| 免费搜索国产男女视频| 窝窝影院91人妻| 91字幕亚洲| 我要搜黄色片| 中文字幕最新亚洲高清| 精品福利观看| 搡老岳熟女国产| 亚洲九九香蕉| 男女那种视频在线观看| 此物有八面人人有两片| 91久久精品国产一区二区成人 | 亚洲av电影不卡..在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产伦精品一区二区三区视频9 | 欧美黄色淫秽网站| 又黄又爽又免费观看的视频| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 国产成人精品久久二区二区免费| 久久精品夜夜夜夜夜久久蜜豆| 成人无遮挡网站| 精品一区二区三区av网在线观看| 少妇人妻一区二区三区视频| 久久性视频一级片| 免费观看精品视频网站| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在 | 欧美日本视频| 久久99热这里只有精品18| 日韩高清综合在线| 小蜜桃在线观看免费完整版高清| 最新中文字幕久久久久 | 国产伦精品一区二区三区四那| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 亚洲av电影不卡..在线观看| 日韩免费av在线播放| 久久中文字幕人妻熟女| 观看免费一级毛片| 日韩欧美精品v在线| 91在线精品国自产拍蜜月 | h日本视频在线播放| 亚洲,欧美精品.| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 日韩 欧美 亚洲 中文字幕| 91久久精品国产一区二区成人 | 国产成人精品久久二区二区免费| 午夜免费观看网址| 最新在线观看一区二区三区| 久久精品91蜜桃| 久久久久久大精品| 亚洲第一电影网av| av中文乱码字幕在线| 国产成人精品无人区| 国产又黄又爽又无遮挡在线| 国产乱人视频| 91在线精品国自产拍蜜月 | 亚洲中文字幕日韩| 日本免费a在线| 欧美中文综合在线视频| 国产极品精品免费视频能看的| 亚洲精品国产精品久久久不卡| 色视频www国产| 婷婷亚洲欧美| 舔av片在线| 国内久久婷婷六月综合欲色啪| 日本黄大片高清| 久久久久久大精品| 法律面前人人平等表现在哪些方面| 日本黄色视频三级网站网址| 舔av片在线| 国产成人啪精品午夜网站| 小说图片视频综合网站| 精品国产乱码久久久久久男人| svipshipincom国产片| 黄色 视频免费看| 免费大片18禁| 日本在线视频免费播放| 午夜福利18| 免费看十八禁软件| 国产成+人综合+亚洲专区| 九九久久精品国产亚洲av麻豆 | 白带黄色成豆腐渣| 久久久久久国产a免费观看| 中出人妻视频一区二区| 男人舔女人的私密视频| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 18禁国产床啪视频网站| 性欧美人与动物交配| 欧美三级亚洲精品| 91在线精品国自产拍蜜月 | 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 国产高清三级在线| 国产成人系列免费观看| 亚洲人成电影免费在线| 搞女人的毛片| 色吧在线观看| 国产69精品久久久久777片 | 亚洲欧美激情综合另类| 手机成人av网站| 免费电影在线观看免费观看| 久久这里只有精品19| 又黄又爽又免费观看的视频| 一个人免费在线观看的高清视频| av黄色大香蕉| 国产成人系列免费观看| 亚洲人与动物交配视频| 国产亚洲av高清不卡| 舔av片在线| 久久热在线av| 日本 av在线| 丝袜人妻中文字幕| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 日本三级黄在线观看| 男人舔女人的私密视频| 久久性视频一级片| 国产精品99久久99久久久不卡| 亚洲熟妇熟女久久| 午夜成年电影在线免费观看| 午夜影院日韩av| 男插女下体视频免费在线播放| 在线国产一区二区在线| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 国产野战对白在线观看| 午夜激情福利司机影院| 亚洲 欧美 日韩 在线 免费| 国产成人精品久久二区二区91| 欧美最黄视频在线播放免费| 久久婷婷人人爽人人干人人爱| av女优亚洲男人天堂 | 99久久无色码亚洲精品果冻| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 性欧美人与动物交配| 欧美三级亚洲精品| 精品久久久久久久末码| 国产亚洲精品av在线| 亚洲激情在线av| 午夜激情欧美在线| 日本黄色视频三级网站网址| 69av精品久久久久久| 99re在线观看精品视频| 免费在线观看亚洲国产| 三级国产精品欧美在线观看 | 欧美三级亚洲精品| av视频在线观看入口| 欧美一级a爱片免费观看看| 丁香欧美五月| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 亚洲国产欧美网| 在线免费观看的www视频| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 成人午夜高清在线视频| 欧美乱码精品一区二区三区| 深夜精品福利| xxx96com| 国产精品av视频在线免费观看| 在线看三级毛片| 国产亚洲精品久久久久久毛片| 偷拍熟女少妇极品色| 国产欧美日韩精品一区二区| 精品乱码久久久久久99久播| 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 757午夜福利合集在线观看| 天堂√8在线中文| 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | 精品国内亚洲2022精品成人| 在线观看一区二区三区| av片东京热男人的天堂| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 亚洲 欧美 日韩 在线 免费| a级毛片在线看网站| 好看av亚洲va欧美ⅴa在| 成年女人永久免费观看视频| 国产成人av激情在线播放| 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 三级国产精品欧美在线观看 | 人妻夜夜爽99麻豆av| 色播亚洲综合网| 又黄又粗又硬又大视频| av在线天堂中文字幕| 久久久久久久久免费视频了| 免费电影在线观看免费观看| 国产精品永久免费网站| 久久亚洲精品不卡| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费| 亚洲五月婷婷丁香| 国产乱人伦免费视频| 91av网站免费观看| 久久久久久久久中文| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 亚洲片人在线观看| 欧美成人免费av一区二区三区| 97碰自拍视频| 在线看三级毛片| 日韩免费av在线播放| 两性夫妻黄色片| 国产毛片a区久久久久| 嫩草影院精品99| 一级毛片高清免费大全| 亚洲国产欧洲综合997久久,| 两个人看的免费小视频| 国产免费av片在线观看野外av| 国产单亲对白刺激| 日韩欧美精品v在线| 一进一出抽搐动态| 我的老师免费观看完整版| 亚洲国产欧美一区二区综合| 婷婷亚洲欧美| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 免费看美女性在线毛片视频| 黑人操中国人逼视频| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 久久久成人免费电影| 精品日产1卡2卡| 国产三级在线视频| 老司机午夜福利在线观看视频| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 亚洲成人久久性| 午夜免费激情av| 国产视频一区二区在线看| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 丰满的人妻完整版| 日本一本二区三区精品| 五月玫瑰六月丁香| 淫妇啪啪啪对白视频| 国产欧美日韩一区二区三| 国产69精品久久久久777片 | 久久伊人香网站| 免费看a级黄色片| 免费观看的影片在线观看| 一二三四在线观看免费中文在| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 亚洲av熟女| 国产熟女xx| 午夜福利免费观看在线| 天堂av国产一区二区熟女人妻| 亚洲精品美女久久av网站| 一本精品99久久精品77| 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 中文字幕人成人乱码亚洲影| 熟女少妇亚洲综合色aaa.| 亚洲国产精品sss在线观看| 色视频www国产| 午夜福利在线在线| 女人被狂操c到高潮| 1000部很黄的大片| 在线观看日韩欧美| 精品电影一区二区在线| 美女 人体艺术 gogo| 国产三级中文精品| 久久这里只有精品19| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 亚洲av成人不卡在线观看播放网| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 99久久国产精品久久久| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 亚洲精品在线观看二区| 日本黄色片子视频| 最新中文字幕久久久久 | 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 男人舔奶头视频| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 无人区码免费观看不卡| av天堂在线播放| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 香蕉久久夜色| 欧美zozozo另类| www日本在线高清视频| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| 母亲3免费完整高清在线观看| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看 | 美女午夜性视频免费| 婷婷丁香在线五月| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 99精品欧美一区二区三区四区| 午夜成年电影在线免费观看| 老鸭窝网址在线观看| 亚洲欧美日韩东京热| 制服丝袜大香蕉在线| 亚洲自偷自拍图片 自拍| 久久亚洲真实| 三级男女做爰猛烈吃奶摸视频| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 欧美3d第一页| 日本五十路高清| 国产69精品久久久久777片 | 亚洲中文日韩欧美视频| 嫩草影院精品99| 亚洲国产精品合色在线| 俺也久久电影网| 中文亚洲av片在线观看爽| a在线观看视频网站| 欧美不卡视频在线免费观看| 国产成人影院久久av| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 免费看a级黄色片| 欧美一级毛片孕妇| 婷婷六月久久综合丁香| 午夜精品一区二区三区免费看| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 日本免费a在线| 国产乱人伦免费视频| 给我免费播放毛片高清在线观看| 日韩欧美 国产精品| 久久久久性生活片| 国产精品香港三级国产av潘金莲| 级片在线观看| 国产av不卡久久| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 美女大奶头视频| 老司机午夜福利在线观看视频| 国产不卡一卡二| 99热这里只有精品一区 | 美女 人体艺术 gogo| 日韩欧美精品v在线| 校园春色视频在线观看| 日韩欧美一区二区三区在线观看| 99热精品在线国产| 九九热线精品视视频播放| 9191精品国产免费久久| 免费人成视频x8x8入口观看| 两个人的视频大全免费| 在线看三级毛片| 一级a爱片免费观看的视频| 午夜久久久久精精品| 免费高清视频大片| 日韩欧美国产在线观看| 哪里可以看免费的av片| 天天一区二区日本电影三级| 欧美黑人巨大hd| 九九在线视频观看精品| 99热6这里只有精品| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| 岛国视频午夜一区免费看| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| 黄色日韩在线| 国产成人av教育| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| av中文乱码字幕在线| 亚洲avbb在线观看| 久久精品影院6| 亚洲成av人片在线播放无| 日韩av在线大香蕉| 午夜视频精品福利| 久久久久国产一级毛片高清牌| 欧美午夜高清在线| 一区二区三区国产精品乱码| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕一区二区三区有码在线看 | 日本黄色视频三级网站网址| 热99re8久久精品国产| 成人三级黄色视频| xxx96com| 欧美性猛交╳xxx乱大交人| 国产精品一区二区精品视频观看| 成人av在线播放网站| 欧美日本亚洲视频在线播放| 国产又黄又爽又无遮挡在线| 亚洲狠狠婷婷综合久久图片| 黑人巨大精品欧美一区二区mp4| 99在线视频只有这里精品首页| 午夜福利18| 真实男女啪啪啪动态图| 嫩草影院精品99| 国产亚洲av高清不卡| 国产成人一区二区三区免费视频网站| 男人舔女人下体高潮全视频| 国内精品久久久久精免费| 日韩三级视频一区二区三区| 窝窝影院91人妻| 露出奶头的视频| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 午夜视频精品福利| 亚洲人与动物交配视频| 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品欧美在线观看 | 97超视频在线观看视频| 久久久久免费精品人妻一区二区| 日本一二三区视频观看| av天堂在线播放| 国产又黄又爽又无遮挡在线| 听说在线观看完整版免费高清| 黄色日韩在线| 在线免费观看不下载黄p国产 | 亚洲在线观看片| 偷拍熟女少妇极品色| 久久精品91蜜桃| 欧美黄色淫秽网站| 亚洲熟妇中文字幕五十中出| 欧美精品啪啪一区二区三区| 操出白浆在线播放| www日本黄色视频网| 国产综合懂色| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 日本黄色片子视频| 岛国视频午夜一区免费看| 无限看片的www在线观看| 精品欧美国产一区二区三| 在线视频色国产色| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 18禁观看日本| 天堂影院成人在线观看| 极品教师在线免费播放| 亚洲国产高清在线一区二区三| 久久精品国产99精品国产亚洲性色| 亚洲av成人av| 亚洲国产精品合色在线| 国产成人一区二区三区免费视频网站| 久久精品国产清高在天天线| 欧美日韩国产亚洲二区| 两性夫妻黄色片| 美女免费视频网站| 精品国产乱子伦一区二区三区| 日韩av在线大香蕉| www.自偷自拍.com| 两个人看的免费小视频| 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 亚洲国产中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品美女特级片免费视频播放器 | 免费在线观看亚洲国产| 18禁国产床啪视频网站| 天天一区二区日本电影三级| 亚洲人成电影免费在线| 99久久精品热视频| 又黄又粗又硬又大视频| 麻豆国产av国片精品| 少妇丰满av| 国产成人精品久久二区二区免费| 午夜福利视频1000在线观看| 18禁黄网站禁片免费观看直播| 看片在线看免费视频| 男女视频在线观看网站免费| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| 91在线精品国自产拍蜜月 | 午夜福利免费观看在线| 九九在线视频观看精品| 91麻豆av在线| 久久久水蜜桃国产精品网| 亚洲欧美精品综合一区二区三区| 欧美色视频一区免费| 久久99热这里只有精品18| 国产亚洲精品一区二区www| 成年人黄色毛片网站| 在线观看一区二区三区| 在线观看舔阴道视频| 久久久色成人| 国产精品久久久久久精品电影| 成人永久免费在线观看视频|