付妍琳,李國(guó)雷
(北京林業(yè)大學(xué) 省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,北京 100083)
磷肥與緩釋氮肥對(duì)長(zhǎng)白落葉松移植苗生長(zhǎng)和養(yǎng)分狀況的影響
付妍琳,李國(guó)雷
(北京林業(yè)大學(xué) 省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,北京 100083)
為探明長(zhǎng)白落葉松Larix olgensis移植苗木培育所需的緩釋氮肥及磷肥最佳用量,以長(zhǎng)白落葉松移植苗為研究對(duì)象,通過(guò)設(shè)置4個(gè)緩釋氮肥水平(0,6,12,18 g·m-2氮)與3個(gè)磷肥水平(0,21,42 g·m-2五氧化二磷)共計(jì)12個(gè)施肥處理組合,研究長(zhǎng)白落葉松移植苗木生長(zhǎng)狀況和養(yǎng)分積累對(duì)不同氮磷施肥量的響應(yīng)規(guī)律。結(jié)果表明:氮磷僅對(duì)葉片磷含量存在顯著交互作用(P=0.024),施肥對(duì)苗木生長(zhǎng)和養(yǎng)分狀況的影響是通過(guò)其主效應(yīng)引起的。緩釋氮肥對(duì)苗高、地徑、各器官生物量及莖、葉、整株的氮、磷含量影響顯著(P=0.001~0.026),其中6 g·m-2和12 g·m-2(氮)對(duì)苗木生長(zhǎng)和養(yǎng)分積累促進(jìn)作用較大,但2種施氮量水平間差異不顯著;磷肥對(duì)苗高、根生物量、葉氮、整株磷含量及葉磷質(zhì)量分?jǐn)?shù)影響顯著(P=0.009~0.040),21 g·m-2和42 g·m-2五氧化二磷均顯著高于對(duì)照,但2種磷肥施用水平間差異不顯著。與對(duì)照相比,6 g·m-2施氮量下苗高、地徑、整株生物量和氮含量分別增加 22.3%,12.9%,39.9%和48.3%;21 g·m-2五氧化二磷施用量下苗高、根生物量、葉氮、整株磷含量分別增加 13.3%,19.3%,17.8%,25.9%。綜合考慮施肥效果,緩釋氮肥對(duì)長(zhǎng)白落葉松苗木影響較磷肥大,長(zhǎng)白落葉松移植苗最佳施肥量為緩釋氮肥(氮)6 g·m-2,磷肥(五氧化二磷)21 g·m-2。圖5表2參26
森林培育學(xué);緩釋氮肥;長(zhǎng)白落葉松;移植苗培育;苗木質(zhì)量
造林初期,苗木從土壤中獲取養(yǎng)分的能力較差,主要依靠體內(nèi)儲(chǔ)存養(yǎng)分的內(nèi)轉(zhuǎn)移和再分配[1],因此苗圃階段如何合理施肥,增加苗木養(yǎng)分庫(kù)進(jìn)而提高苗木造林效果成為國(guó)內(nèi)外廣大學(xué)者共同關(guān)注的科學(xué)問(wèn)題[2-3]。在施肥元素類型與苗木質(zhì)量的關(guān)系中,氮肥的研究相對(duì)較多,內(nèi)容涵蓋氮肥形態(tài)(銨態(tài)氮與硝態(tài)氮)、樹(shù)種特性(落葉與闊葉、快速生長(zhǎng)與慢速生長(zhǎng)、先鋒樹(shù)種與頂極群落樹(shù)種)、氮儲(chǔ)存與再利用方式(休眠期與春季蛋白質(zhì)和氨基酸種類變化與轉(zhuǎn)移途徑的不同)以及土壤肥力(瘠薄與肥沃)、庫(kù)強(qiáng)(生長(zhǎng)點(diǎn)發(fā)育與氮轉(zhuǎn)移)等[4-7]。據(jù)不完全統(tǒng)計(jì),近5 a來(lái)發(fā)表在高水平學(xué)術(shù)期刊上的有關(guān)氮肥加載與養(yǎng)分再利用的綜述至少有4篇[2-3,6,8]。磷肥是植物生長(zhǎng)、發(fā)育不可缺少的基本元素,磷肥施用量對(duì)于苗木體內(nèi)磷的直接積累以及對(duì)其他元素的儲(chǔ)存均可能產(chǎn)生影響[9-10]。盡管作為植物必需的第二大元素,人們對(duì)苗木磷吸收與積累規(guī)律的研究相對(duì)較少,對(duì)磷肥的探討往往是依據(jù)不同氮肥量對(duì)同一施磷量苗木磷吸收變化的表述上,磷肥對(duì)其他元素影響方面的研究則更為少見(jiàn)[11-12],氮肥和磷肥如何調(diào)控苗木質(zhì)量尚不完全清楚。相對(duì)于速溶肥,緩釋肥可以在苗圃整地時(shí)機(jī)械施入并依靠自身的包膜逐漸釋放養(yǎng)分以供給苗木生長(zhǎng),由于節(jié)省的勞動(dòng)力成本遠(yuǎn)遠(yuǎn)大于肥料本身的價(jià)格而受苗木生產(chǎn)者青睞[13]。緩釋肥釋放肥料的速度除與包膜材料和技術(shù)、氣候、施肥方法等相關(guān)外,還取決于樹(shù)種特性、苗木規(guī)格或苗齡甚至其所施肥料種類[14-16]。相對(duì)于速溶肥,目前對(duì)緩釋肥作用規(guī)律方面的研究較少[17]。因此,針對(duì)特定樹(shù)種的某一規(guī)格的苗木開(kāi)展緩釋肥對(duì)其生長(zhǎng)和養(yǎng)分積累的影響彰顯必要。長(zhǎng)白落葉松Larix olgensis作為分布在中國(guó)東北地區(qū)的主要速生樹(shù)種之一,因適應(yīng)性強(qiáng)、生長(zhǎng)快、用途廣、材質(zhì)優(yōu)良,在中國(guó)用材樹(shù)種發(fā)展中發(fā)揮重要作用,其苗木培育技術(shù)得到廣泛關(guān)注[18-21]。根據(jù)國(guó)家標(biāo)準(zhǔn)(全國(guó)森林培育技術(shù)標(biāo)準(zhǔn)匯編:種子苗木卷 GB 6000-1999)所規(guī)定的生產(chǎn)規(guī)程,長(zhǎng)白落葉松苗木需要經(jīng)過(guò)播種培育1 a,然后換床移植1 a[22]。我們的前期研究發(fā)現(xiàn),落葉松播種苗和移植苗對(duì)于磷肥和速溶氮肥的響應(yīng)規(guī)律存在很大差異[23]。祝燕等[17]、魏紅旭等[24]分別對(duì)長(zhǎng)白落葉松大田播種苗、容器苗進(jìn)行了緩釋氮肥研究。因此,進(jìn)一步研究磷肥和緩釋氮肥對(duì)長(zhǎng)白落葉松移植苗生長(zhǎng)和養(yǎng)分積累的影響對(duì)于指導(dǎo)苗木生產(chǎn)具有現(xiàn)實(shí)意義。
1.1 試驗(yàn)地概況和供試材料
試驗(yàn)地點(diǎn)位于吉林市龍?zhí)秴^(qū)江密峰苗圃(43°45′N,126°45′E)。實(shí)驗(yàn)地區(qū)為溫帶大陸性季風(fēng)氣候,全年平均氣溫為3.0~5.0℃,1月平均氣溫-20.0~-18.0℃,7月平均氣溫21.0~23.0℃;全區(qū)年降水量為650.0~750.0 mm,≥10℃年有效積溫2 400.0~3 000.0℃,日照時(shí)數(shù)2 400.0~2 600.0 h。土壤為暗棕壤,0~20 cm土層全氮質(zhì)量分?jǐn)?shù)為1.94 g·kg-1,速效磷質(zhì)量分?jǐn)?shù)226.17 mg·kg-1,pH 6.17。
供試材料為2013年該苗圃培育的規(guī)格均一的1年生長(zhǎng)白落葉松播種苗(種子產(chǎn)地:吉林省小北湖),試驗(yàn)所用緩釋氮肥選用樹(shù)脂包衣尿素(北京首創(chuàng)科技有限公司),釋放期為90 d,氮含量比例為42%。磷肥為常規(guī)肥料過(guò)磷酸鈣。
1.2 試驗(yàn)布設(shè)
2014年5月,起壟式構(gòu)建寬度為1 m的苗床,為防止肥料和水分相互干擾,小區(qū)之間埋入深30 cm的雙層塑料布。同時(shí),為避免水分和養(yǎng)分在苗床、步行道間發(fā)生轉(zhuǎn)移,苗床四周起壟,兩側(cè)埋入深40 cm的雙層塑料布。5月3日進(jìn)行移植,開(kāi)溝深度為20 cm,將計(jì)算稱量好的過(guò)磷酸鈣、緩釋氮肥和適量苗圃土壤充分混合后,均勻撒入溝中,覆土5 cm,然后移植苗木。苗木株距為5 cm,行距為10 cm,密度為200株·m-2。苗木規(guī)格為苗高(9.39±0.35)cm,地徑(0.13±0.04)cm。根據(jù)土壤墑情和苗木生長(zhǎng)狀況,進(jìn)行合理灌溉,人工進(jìn)行除草。
1.3 試驗(yàn)設(shè)計(jì)
試驗(yàn)采用裂區(qū)試驗(yàn)設(shè)計(jì),設(shè)置氮(N)(A)和五氧化二磷(P2O5)(B)2個(gè)施肥因素。4個(gè)施氮水平分別為A1(0 g·m-2),A2(6 g·m-2),A3(12 g·m-2),A4(18 g·m-2),對(duì)應(yīng)緩釋氮肥量分別為 0,14.29,28.57,42.86 g·m-2;五氧化二磷3個(gè)水平分別為B1(0 g·m-2),B2(21 g·m-2),B3(42 g·m-2),即對(duì)應(yīng)過(guò)磷酸鈣分別為0,131.25,262.50 g·m-2。試驗(yàn)設(shè)置3個(gè)區(qū)組,各區(qū)組包括全部12個(gè)處理組合。
1.4 取樣及指標(biāo)測(cè)定
9月28日,在每個(gè)小區(qū)苗床中央?yún)^(qū)域隨機(jī)選取10株苗木,測(cè)量苗高和地徑后,將苗木連根挖取,用清水沖洗干凈,再用去離子水潤(rùn)洗,按根、莖、葉3個(gè)部分分別剪下,放入烘箱內(nèi)在68℃下烘48 h后稱量根、莖、葉生物量,再將烘干樣品混合,粉碎,過(guò)0.25 mm篩,采用硫酸-過(guò)氧化氫法消煮,采用凱氏定氮法測(cè)定氮質(zhì)量分?jǐn)?shù),鉬銻抗比色法測(cè)定磷質(zhì)量分?jǐn)?shù)。苗高、地徑、生物量以10株苗木測(cè)量值的平均值計(jì)算,氮、磷質(zhì)量分?jǐn)?shù)以混合樣品的測(cè)定值計(jì)算。
1.5 數(shù)據(jù)分析
應(yīng)用SPSS 16.0軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行雙因素方差分析,如處理間差異顯著,則用Duncan法在0.05水平上進(jìn)行多重比較。應(yīng)用Excel 2007軟件進(jìn)行繪圖。
2.1 不同氮磷施肥處理下長(zhǎng)白落葉松移植苗的生長(zhǎng)表現(xiàn)
施磷與施氮量交互效應(yīng)對(duì)苗高、地徑、生物量、根莖比等生長(zhǎng)指標(biāo)均無(wú)顯著影響(P=0.450~0.949)(表1)。主效應(yīng)方面,除根莖比外,施氮量對(duì)生長(zhǎng)指標(biāo)影響均達(dá)到顯著水平 (P=0.001~0.026)(表1)。當(dāng)施氮量為A2(6 g·m-2)時(shí),苗高和地徑比對(duì)照分別增加了22.3%和12.9%,施氮量為A3(12 g·m-2)時(shí),苗高和地徑均達(dá)到最大值,分別為26.41 cm和0.53 cm,但與A2(6 g·m-2)和A4(18 g·m-2)處理間差異不顯著(圖1)。與苗高、地徑相似的是,A2,A3,A4苗木整株生物量及各器官生物量處理間無(wú)顯著差異,其峰值也均出現(xiàn)在A3(12 g·m-2)上;不同的是,A4處理的苗木根、莖生物量較A3有了較大下降(圖2)。
磷肥對(duì)苗木生長(zhǎng)影響的主效應(yīng)小于氮肥,施磷量?jī)H對(duì)苗高、根系生物量有顯著影響(P=0.011~0.017)(表1)。施磷處理B2(21 g·m-2),B3(42 g·m-2)的苗高和根系生物量均顯著高于對(duì)照,其中苗高分別較對(duì)照增加13.3%,16.2%(圖1),根系生物量分別較對(duì)照增加了19.3%,27.1%(圖2)。
2.2 不同氮磷施肥處理下長(zhǎng)白落葉松移植苗氮、磷含量
施磷與氮量交互效應(yīng)對(duì)葉磷含量影響顯著(P=0.024)(表2),在不施氮肥A1(0 g·m-2)或者施較高氮肥A4(18 g·m-2)時(shí),磷肥施用量對(duì)葉磷積累沒(méi)有顯著影響;而在施氮量A2(6 g·m-2),A3(12 g·m-2)下,磷肥施用量對(duì)葉磷積累有顯著影響,葉片磷含量最高的處理組合為A2B3,即施入6 g·m-2(氮)和42 g· m-2(五氧化二磷)能使苗木葉片磷含量達(dá)到最大(圖3)。
主效應(yīng)方面,施氮量除對(duì)根系氮、磷含量沒(méi)有顯著影響外(P=0.056~0.136),對(duì)其他器官或整株氮和磷儲(chǔ)存均有顯著影響(P=0.001~0.021)(表2)。與對(duì)照相比,施入氮肥均可提高苗木莖、葉和整株氮含量,而氮施入量之間對(duì)氮吸收促進(jìn)作用無(wú)顯著差異。施入氮肥可以提高苗木莖、整株磷含量,但苗木整株磷含量在A2(6 g·m-2)時(shí)達(dá)到最大,施氮量增加至A3(12 g·m-2)時(shí)整株磷含量略微下降,而施氮量增加至A4(18 g·m-2)時(shí),整株磷含量顯著下降(圖4)。
施磷量?jī)H對(duì)葉氮含量、整株磷含量有顯著影響(P=0.009~0.028)(表2),隨施磷量的增大,葉氮含量
和整株磷含量均呈上升趨勢(shì),其中B2(21 g·m-2),B3(42 g·m-2)葉氮含量較對(duì)照分別增加17.8%和30.5%,整株磷含量分別增加25.9%和37.1%(圖4)。
表1 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松苗木形態(tài)指標(biāo)主效應(yīng)和交互效應(yīng)方差分析F值Table 1 F values derived from ANOVA of the main effects N (A),P2O5(B)and of their interaction effect (A×B)on morphological attributes of Larix olgensis seedlings
圖1 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松苗木苗高、地徑Figure 1 Main effects of N(A)and P2O5(B)on height and diameter of Larix olgensis seedlings
圖2 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松苗木生物量及根莖比Figure 2 Main effects of N(A)and P2O5(B)on tissue dry mass and root/shoot of Larix olgensis seedlings
表2 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松各部位及整株氮、磷含量的主效應(yīng)和交互效應(yīng)方差分析F值Table 2 F values derived from ANOVA of the main effects N(A),P2O5(B)and of their interaction effect(A×B)on tissue N and P content of Larix olgensis seedlings
2.3 不同氮磷施肥處理下長(zhǎng)白落葉松移植苗氮、磷質(zhì)量分?jǐn)?shù)
氮磷交互效應(yīng)對(duì)苗木器官和整株氮、磷質(zhì)量分?jǐn)?shù)均無(wú)顯著影響(P=0.121~0.754)。施氮量主效應(yīng)對(duì)苗
木各器官及整株氮、磷質(zhì)量分?jǐn)?shù)均無(wú)顯著影響(P=0.108~0.937)。施磷量主效應(yīng)僅對(duì)葉磷質(zhì)量分?jǐn)?shù)有顯著影響(P=0.040)。施磷量為B1(0 g·m-2),B2(21 g·m-2),B3(42 g·m-2)的葉片磷質(zhì)量分?jǐn)?shù)分別為0.21%,0.25%和0.27%,B2和B3分別較B1提高了19.0%和28.6%(圖5)。
與1年生長(zhǎng)白落葉松播種苗,氮磷交互作用對(duì)于各器官氮、磷含量均無(wú)顯著影響不同[23],2年生長(zhǎng)白落葉松移植苗氮磷的交互作用對(duì)于葉磷含量產(chǎn)生顯著影響。長(zhǎng)白落葉松為落葉樹(shù)種,葉片凋落到苗圃,磷元素返還給苗圃土壤而增加土壤肥力,翌年春季苗木造林后,直接與周圍環(huán)境產(chǎn)生作用關(guān)系的為根系和莖,其作為養(yǎng)分庫(kù)向根莖尖及新萌葉等生長(zhǎng)點(diǎn)提供磷元素。因此,氮磷交互效應(yīng)對(duì)于長(zhǎng)白落葉松翌年造林后的養(yǎng)分內(nèi)循環(huán)并不發(fā)揮實(shí)際的生理意義。
除葉片磷含量外,氮磷交互效應(yīng)并未對(duì)其他指標(biāo)產(chǎn)生顯著影響,但從主效應(yīng)仍可以看出,氮磷配施對(duì)于提高苗木生長(zhǎng)及養(yǎng)分狀況均有一定促進(jìn)作用。這與杉木Cunninghamia lanceolata氮磷配施研究結(jié)果相似[25],可見(jiàn),氮磷配施對(duì)苗木發(fā)育促進(jìn)作用主要是通過(guò)肥料自身的影響引起的,并無(wú)疊加作用。本試驗(yàn)還發(fā)現(xiàn):施氮對(duì)苗木質(zhì)量的提高更加明顯,施用緩釋氮肥可以顯著促進(jìn)長(zhǎng)白落葉松移植苗苗高、地徑、各器官及整株生物量及氮、磷含量的增長(zhǎng)。與A1(對(duì)照)相比,A2(6 g·m-2)施氮量下整株生物量及氮、磷含量分別增加39.9%,48.3%,48.1%。從組織部位看,A2(6 g·m-2)增加的生物量分配給莖的比例最高(46.2%),增加的氮含量分配部位與生物量規(guī)律相似,在莖中高達(dá)56.2%,而增加的磷含量則更多地分配到葉當(dāng)中(58.3%)。由此可見(jiàn),施氮使得更多的生物
量及氮含量分配到莖中,使得更多的磷分配到葉中。本實(shí)驗(yàn)中,施磷對(duì)苗高、根生物量、葉氮、整株磷含量及葉磷質(zhì)量分?jǐn)?shù)均有顯著提高。初始規(guī)格(苗高、根生物量)相對(duì)大的苗木造林后,不僅可以提高苗木與雜草的競(jìng)爭(zhēng)力,還可以增加木質(zhì)部水分的運(yùn)輸能力[26]。苗木磷質(zhì)量分?jǐn)?shù)在造林中的作用同樣重要,如在地中海地區(qū)開(kāi)展的造林試驗(yàn)表明:磷質(zhì)量分?jǐn)?shù)影響苗木的成活率和生長(zhǎng)[16]。因此,施磷對(duì)落葉松生長(zhǎng)和養(yǎng)分狀況的提高是否有利于造林效果,需進(jìn)一步驗(yàn)證。
圖3 氮(A)×五氧化二磷(B)交互作用下長(zhǎng)白落葉松苗木葉磷含量Figure 3 Interaction of N(A)and P2O5(B)on foliage P content of Larix olgensis seedlings
圖4 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松苗木各部位及整株氮和磷含量Figure 4 Main effects of N(A)and P2O5(B)on tissue N and P content of Larix olgensis seedlings
圖5 不同氮(A)和五氧化二磷(B)施用量下長(zhǎng)白落葉松苗木各部位及整株氮、磷質(zhì)量分?jǐn)?shù)Figure 5 Main effects of N(A)and P2O5(B)on tissue N and P concentration of Larix olgensis seedlings
本試驗(yàn)結(jié)果顯示:2年生長(zhǎng)白落葉松移植苗最佳緩釋氮肥氮施用量為A2(6 g·m-2),即30 mg·株-1,與魏紅旭等[24]建議長(zhǎng)白落葉松播種容器苗提供氮18.18 mg·株-1的緩釋肥并配施1.82 g雞糞有機(jī)肥(相當(dāng)于氮9.99 mg)的氮施用總量基本相近。不同的是,本試驗(yàn)中氮對(duì)苗高、地徑、生物量均有顯著影響,這可能與肥料類型及施肥方式不同有關(guān)。在同一苗圃試驗(yàn)條件下,2年生移植苗對(duì)氮需求量較1年生播種苗小,1年生播種苗設(shè)置12,24,36 g·m-23個(gè)施氮水平,在施氮量為36 g·m-2時(shí),苗高、各器官生物量均達(dá)到最大,而施氮量為24 g·m-2時(shí)苗木體內(nèi)氮含量最高[17]。本試驗(yàn)中,苗高、地徑、各器官生物量、葉、莖及整株氮含量峰值均出現(xiàn)在12 g·m-2。2年生移植苗和1年生播種苗對(duì)施氮響應(yīng)規(guī)律的不同驗(yàn)證了施肥研究需重視苗木類別的差異,長(zhǎng)白落葉松播種苗與移植苗規(guī)格以及根系結(jié)構(gòu)的差異性等[19]均可能導(dǎo)致需肥規(guī)律的不同。與不施氮磷肥相比,移植后磷肥和緩釋氮肥配施可以顯著促進(jìn)長(zhǎng)白落葉松移植苗的生長(zhǎng)和養(yǎng)分積累,當(dāng)施肥量成倍增施,即施氮量由A2(6 g·m-2)提高到A3(12 g·m-2),五氧化二磷由B2(21 g·m-2)提高到B3(42 g·m-2)時(shí),苗木生長(zhǎng)表現(xiàn)及養(yǎng)分含量總體有所提高,但增施效果與A2和B2相比差異并不顯著。因此,該實(shí)驗(yàn)條件下2年生長(zhǎng)白落葉松移植苗最佳施肥用量為6 g·m-2的氮,配施21 g·m-2的五氧化二磷,即實(shí)際生產(chǎn)中為14.29 g·m-2的緩釋氮肥,配施131.25 g·m-2的過(guò)磷酸鈣。
[1] TIMMER V R,ARMSTRONG G.Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions[J].Can J For Res,1987,17(7):644-647.
[2] OLIET J A,PUE′RTOLAS J,PLANELLES R,et al.Nutrient loading of forest tree seedlings to promote stress resistance and field performance:a Mediterranean perspective[J].New For,2013,44(44):649-669.
[3] VILLAR-SALVADOR P,USCOLA M,JACOBS D F,et al.The role of stored carbohydrates and nitrogen in the growth
and stress tolerance of planted forest trees[J].New For,2015,46(5/6):813-839
[4] SILLA F,ESCUDERO A.Uptake,demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species[J].Oecologia,2003,136(1):28-36.
[5] SALIFU K F,ISLAM M A,JACOBS D F.Retranslocation,plant and soil recovery of nitrogen-15 applied to bareroot black walnut seedlings[J].Commun Soil Sci Plant Anal,2009,40(9):1408-1417.
[6] MILLARD P,GRELET G.Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world[J].Tree Physiol,2010,30(9):1083-1095.
[7] USCOLA M,OLIET J A,VILLAR-SALVADOR P,et al.Nitrogen form and concentration interact to affect the performance of two ecologically distinct Mediterranean forest trees[J].Eur J For Res,2014,133(2):235-246.
[8] VILLAR-SALVADOR P,PU?RTOLAS J,CUESTA B,et al.Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations.Insights from an ecophysiological conceptual model of plant survival[J].New For,2012,43(5-6):755-770.
[9] DANIELS T G,SIMPSON D G.Seedling production and processing:bareroot[M]//LAVENDER D P,PARISH R,JOHNSON C M,et al.Regenerating British Columbia’s Forests.Victoria:T D Mock and Associates Inc,1990:229.
[10] LOK E H,DELL B.Phosphorus requirements for containerized Pterocarpus indicus seedlings[J].J For Res,2015, 26(3):657-662.
[11] JACOBS D F,LANDIS T D.Nursery manual for native plants:a guide for tribal nurseries:Fertilization[M]//DUMROESE R K,LUNA T,LANDIS T D,et al.Nursery Management.Washington D C:USDA Forest Service,2009:302.
[12] ISAAC M E,HARMAND J M,DREVON J J.Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions[J].J Plant Physiol,2011,168(8):776-781.
[13] JACOBS D F,TIMMER V R.Fertilizer induced changes in rhizosphere electrical conductivity:Relation to forest tree seedling root system growth and function[J].New For,2005,30(2-3):147-166.
[14] HAASE D L,ROSE R,TROBAUGH J.Field performance of three stock size of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium[J].New For,2006,31(1):1-24.
[15] OLIET J A,PLANELLES R,SEGURA M L,et al.Mineral nutrition and growth of containerized Pinus halepensis seedings under controlled-release fertilizer[J].Sci Hortic,2004,103(1):113-129.
[16] OLIET J A,PLANELLES R,ARTERO F,et al.Field performance of Pinus hale Pensis planted in Mediterranean arid conditions:relative influence of seedling morphology and mineral nutrition[J].New For,2009,37(3):313-331.
[17] 祝燕,馬履一,劉勇,等.控釋氮肥對(duì)長(zhǎng)白落葉松苗木生長(zhǎng)的影響[J].南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2011,35(10):24-28.
ZHU Yan,MA Lüyi,LIU Yong,et al.Application of controlled-release fertilizer in the cultivation of Larix olgensis seedling[J].J Nanjing For Univ Nat Sci Ed,2011,35(10):24-28.
[18] LI Guolei,LIU Yong,ZHU Yan,et al.Influence of initial age and size on the field performance of Larix olgensis seedlings[J].New For,2011,42(2):215-226.
[19] LI Guolei,ZHU Yan,LIU Yong,et al.Effect of nursery nitrogen application of bare-root Larix olgensis seedlings on growth,nitrogen uptake and initial field performance[J].J Environ Biol,2012,34(1):79-85.
[20] LI Guolei,LIU Yong,ZHU Yan,et al.Effect of fall-applied nitrogen on growth,nitrogen storage,and frost hardiness of bareroot Larix olgensis seedlings[J].Silv Fenn,2012,46(3):345-354.
[21] ZHU Y,DUMROESE R K,PINTO J R,et al.Fall fertilization enhanced nitrogen storage and translocation in Larix olgensis seedlings[J].New For,2013,44(6):849-861.
[22] 國(guó)家林業(yè)局.GB 6000-1999全國(guó)森林培育技術(shù)標(biāo)準(zhǔn)匯編:種子苗木卷[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2003.
[23] 康瑤瑤,劉勇,馬履一,等.施肥對(duì)長(zhǎng)白落葉松苗木養(yǎng)分庫(kù)氮磷吸收利用的影響[J].北京林業(yè)大學(xué)學(xué)報(bào),2011, 33(2):31-36.
KANG Yaoyao,LIU Yong,MA Lüyi,et al.Effects of fertilization on uptake and availability of N and P nutrient pool of Larix olgensis seedlings[J].J Beijing For Univ,2011,33(2):31-36.
[24] 魏紅旭,徐程揚(yáng),馬履一,等.緩釋肥和有機(jī)肥對(duì)長(zhǎng)白落葉松容器苗養(yǎng)分庫(kù)構(gòu)建的影響[J].應(yīng)用生態(tài)學(xué)報(bào), 2011,22(7):1731-1736.
WEI Hongxu,XU Chengyang,MA Lüyi,et al.Effects of controlled-release fertilizer and organic amendment on the
construction of nutrients reserves in Larix olgensis container seedlings[J].Chin J Appl Ecol,2011,22(7):1731-1736.
[25] 于欽民,徐福利,王渭玲.氮磷肥對(duì)杉木幼苗生物量及養(yǎng)分分配的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(1):118-128.
YU Qinmin,XU Fuli,WANG Weiling.Effect of nitrogen and phosphorus fertilization on nutrient distribution of Cunninghamia lanceolata seedlings[J].J Plant Nut Fert,2014,20(1):118-128.
[26] VILLAR-SALVADOR P,VALLADARES F,DOMíNGUEZ-LERENA S,et al.Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa:insights from a provenance,fertilization, and rhizobial inoculation study[J].Environ Exper Bot,2008,64(2):145-154.
Combined effects of phosphorus and controlled-release nitrogen on growth and nutrient status of transplanted Larix olgensis seedlings
FU Yanlin,LI Guolei
(Key Laboratory for Silviculture and Conservation,Ministry of Education,Beijing Forestry University,Beijing 100083, China)
To confirm the optimum rates of controlled-release nitrogen fertilizer (CRNF)and phosphorus in transplanted Larix olgensis seedling cultivation.A filed experiment was conducted to study the combined effects of controlled-release nitrogen fertilizer (CRNF)and phosphorus on the growth and nutrient storage of transplanted Larix olgensis seedlings at 0,6,12,18 g·m-2(N)rate and 0,21,42 g·m-2(P2O5)rate.Results showed that CRNF and phosphorus did not significantly interact either attribute except for foliage P content(P=0.024), indicating that seedling quality was dominantly influenced by their main effects individually.CRNF exerted significant effects on height,diameter,organ dry mass as well as N and P content in stems,foliage and whole plant(P=0.001-0.026);6 g·m-2and 12 g·m-2(N)rate were more effective on promoting seedling growth and nutrient accumulation,while the difference between them were not significant;phosphorus significantly affected height,root dry mass,foliage N content,whole plant P content and foliage P concentration(P=0.009-0.040),21 g·m-2and 42 g·m-2(P2O5)were significantly higher than that of control,but no significant difference between this two treatments.Compared with control,the seedling height,collar diameter,whole plant dry mass and N content of 6 g·m-2(N)rate increased 22.3%,12.9%,39.9%and 48.3%respectively;the seedling height,root
silviculture;controlled-release nitrogen;Larix olgensis;transplanted seeedlings;seedling quality
S718.4
A
2095-0756(2016)06-0976-08
2015-12-30;
2016-01-22
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(TD2011-08)
付妍琳,從事林木種苗培育理論與技術(shù)研究。E-mail:bjfu_fu@163.com。通信作者:李國(guó)雷,副教授,從事林木種苗培育理論與技術(shù)研究。E-mail:glli226@163.com
10.11833/j.issn.2095-0756.2016.06.008
dry mass,needle N and whole plant P content of 21 g·m-2(P2O5)rate increased 13.3%,19.3%,17.8%and 25.9%respectively.Collective consideration the seedling response,CRNF yielded more prominent role on manipulating seedling quality,6 g·m-2(N)and 21 g·m-2(P2O5)was recommended for the production of transplanted Larix olgensis seedlings.[Ch,5 fig.2 tab.26 ref.]