• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Paradoxes in Linear Regression Analysis

    2016-12-09 08:30:48GeFENGJingPENGDongkeTUJuliaZHENGChangyongFENG
    上海精神醫(yī)學 2016年6期
    關鍵詞:醫(yī)學期刊生物醫(yī)學悖論

    Ge FENG, Jing PENG, Dongke TU, Julia Z. ZHENG, Changyong FENG,3*

    ?Biostatistics in psychiatry (36)?

    Two Paradoxes in Linear Regression Analysis

    Ge FENG1, Jing PENG2, Dongke TU4, Julia Z. ZHENG5, Changyong FENG2,3*

    Forward selection, backward elimination, univariate regression; multiple regression

    1. Introduction

    Linear regression is the most widely used statistical model in data analysis.[1]Wide availability and ease of use of statistical software packages, such as SAS, SPSS and R make the linear regression accessible to people without any formal statistical training. Although wise use of statistical methods such as linear regression helps us, even novices, develop a better understand of data and guide our decisions, it also causes confusion in interpretation of results and paradoxical findings.For example, we are often asked by our biomedical collaborators questions like “When I run the univariate regression of Y on the predictor , the p-value is very small. However, if I add some other predictors in the model, is not signif i cant anymore. Why?” The same problem also occurs in logistic regression for binary outcome[2], log-linear regression for counting data[2],and Cox proportional hazards regression for survival data.[3]

    A simple answer to this question is the different assumptions between the univariate and multiple regression models. However, this is not so meaningful for non-statisticians. This is discussed in Section 2.

    In many medical studies, regression analysis involves a large of number of independent variables,or predictors. Model selection is required to find the predictors that are signif i cantly associated with an outcome, or dependent variable, of interest. Here is how the model selection was done in a recent paper published in JAMA Surgery[4]:

    “The administrative database was then evaluated by means of univariate and multivariate logistic regression. First we identified variables that were associated (P < .20) with readmission, the dependent variable. These potential confounders were then entered in multivariate stepwise (backward elimination) logistic regression, with readmission as the dependent variable.A logistic regression model was constructed to identify patient factors associated with readmission.”

    This forward selection procedure as the fi rst step to weed out “non-signif i cant” predictors has been become almost the gold standard for variable selection and has been used in many papers published in top medical journals.[5-24]The key idea of this method is fi rst to run a univariate regression on each predictor. If the p-value is less than some pre-specif i ed level, for example 0.1,then the predictor is used in the multiple regression.Otherwise, the predictor is assumed to have no signif i cant effect on the outcome. This method seems quite logical and intuitively meaningful. Indeed, it has been used and is still being used by the biomedical and other research communities. Is this a valid procedure?

    In this paper we use linear regression analysis to show two paradoxes in regression analysis. In Section 2 we use some very basic theory to show how the univariate regression and multiple regression make different assumptions on the models. We use examples and simulation studies to show two paradoxes in regression analysis in Section 3. Section 4 brief l y discusses the transitivity of correlation. Our results clearly invalidate the model selection procedure widely used in biomedical research.

    2. Basic theory

    Let (Y, X1, ..., Xp) be a random vector, where X1, ..., Xpare called the covariates (independent variables),and Y is called the outcome (dependent variables).The regression of Y on (X1, ..., Xp) is the conditional expectation of Y given (X1, ..., Xp), denoted by E[Y|X1, ...,Xp] which is a measurable function of (X1, ..., Xp). Denote the function by g(X1, ..., Xp). Without knowing the joint distribution of (X1, ..., Xp, Y ), in general, the form of g(X1, ..., Xp) is unknown. In statistical analysis, we usually assume some mathematically tractable forms of g(X1, ..., Xp). For example, the linear regression analysis[1]assumes that

    In the logistic regression analysis with 0-1 outcome[2],we assume that

    In this paper we assume the outcome Y is continuous.Let

    It is obvious that E[Y|X1, ..., Xp] = 0. We consider a stronger form of the liner regression model

    and assume that given X1, ..., Xp, the variance of ε

    which does not depend on (X1, ..., Xp). This assumption is also used in most statistical literature on linear model.[1]We further assume that Xk, k = 1, . . . , p, have finite second moments.

    From (1) we have

    Let Zk= E[Xk|X1] , k = 1, . . . , p. (It is clear that Zk= Xk).Then the regression of Y on X1is

    which still has a linear form. Let Then

    Although (3) has the same form as (1), they are fundamentally different in the error terms. Note that E[η|X1] = 0, Cov( Zk, η) = 0, k = 1, . . . , p. However, the conditional variance of η given X1is

    Therefore, the conditional variance of η given X1is no longer a constant. This violates the fundamental assumption used in linear regression model.[1]

    The univariate linear regression of on assumes the following form of the model

    From (3) we know that generall

    Suppose (Y, Xi1, ..., Xip), i = 1, . . . , n, is a random sample from (1). Let Letbe the least square estimate of the univariate regression of Yion X1iin (4). Then

    and

    3. Two paradoxes in linear regression analysis

    In this section we show why the estimates of the coefficient of some covariates in the univariate regression and in the multiple regression do not match.More specif i cally, we show that in some cases, the estimate from the univariate regression is signif i cant,but the result from the multiple regression is not. On the other hand, in some cases, the result is signif i cant for the multiple regression but not for the univariate regression.

    Suppose (1) is the true multiple regression model.The univariate regression model uses model (4) by assuming that= 0. This assumption is generally wrong unless E[Xk|X1] is a constant (k = 2, . . . , p). Hence,with a correct multiple regression model, the estimate of the univariate analysis is based on a wrong model.This is the reason why the results from univariate regression and multiple regression do not match.Furthermore, result (5) shows that there is no clear interpretation of the estimate in the univariate analysis.

    We discuss two paradoxes related to univariate and multiple regressions through both theoretical derivations and simulation studies.

    3.1 Signif i cant covariate effect in multiple regression but not in univariate regression

    Let X2, X3, X4and ε be independent random variables with standard normal distributions. Consider the following model

    which is 0 if and only if

    From (5) we know that if (7) is true, the least square estimatorof the coefficient of the univariate regression of Y on X1will not be signif i cant, even though X1is necessary in specifying model (6).

    Example 1.Let α1= -3/5, α2= 3, α3= 4, β1= 1, β2= 2 in (6).The true model is

    Table 1 shows the simulation result of the estimates and standard deviations of the coefficient of X1in both univariate and multiple regressions after 10,000 replications. For a wide range of sample sizes, the least square estimator of the coefficient of X1in the multiple regression is very close to the true value, and the standard deviation decreases signif i cantly with the sample size. However, the estimate of coefficient in the univariate analysis is very close to 0 in all cases.

    According to the practice in medical publications[4-24], X1will not enter the multiple regression. Table 2 shows the result of the least square estimates of the coefficients of X2and X3after X1is removed in (8). It is easy to see that the estimate of the coefficient of X2is dramatically biased in the multiple regression after X1is removed due to the univariate analysis.

    3.2 Signif i cant covariate effect in univariate regression but not in multiple regression

    Suppose X1, X2, X3and ε are independent standard normal random variables, and X4= β1X1+β2X2,where

    Table 1. Estimate of the regression coefficientof X1

    Table 2. Estimates of the regression coefficients of X2 and X3 with X1 being removed

    Consider the following true model is

    If (9) is expanded to include X4and the expanded model still satisf i es the conditions of the linear regression, then the regression equation becomes

    From (9) and (10) we have

    or

    Example 2.Let α0= 0, α1= 1, α2= 2 in (9) and β1= β2=1, Table 3 shows the least square estimates of the coefficient of X4in both univariate and multiple linear regressions after 10,000 replications. For all sample sizes, the univariate regression shows that X4has very signif i cant effect on Y. However, in the multiple regression, the effect is not signif i cant.

    4. Transitivity of correlation

    Another issue around the regression analysis is the transitivity of the correlation in the interpretation.For example, some people may say like that: “Since factor A is highly correlated with outcome Y, and factor A and factor B are highly correlated, then B should be correlated with Y.” It seems very intuitive and reasonable that correlation is transitive. Unfortunately,this is not true. Here is a theoretical example. Suppose X and Z are independent standard normal random variables and Y=X+Z. It’s clear that the correlation between X and Y, and between Y and Z are both 0.707.However, the correlation between X and Z is 0.

    Table 3. Estimate of the regression coefficient of X4

    In our Example 2, the correlations between X4and X1and Y are 0.707 and 0.408, respectively. However,we proved in Section 3.2 shows that X4has no role in the multiple regression if X1and X2are in the model although X4is not a linear combination of X1and X2.

    5. Discussion

    Regression analysis in medical research usually involves many predictors (independent variables). The model selection is needed to pick covariates having signif i cant effect on the outcome. A widely used method in medical publications[4-24]is first to screen those covariates through univariate analysis. If a covariate is not significant in the univariate regression analysis,it will not enter the multiple regression analysis. The underlying assumption of this method is that is a covariate is significant in the multiple regression only if it is significant in the univariate regression analysis.Our results indicate that this assumption is wrong.A covariate may be very signif i cant in the univariate regression but has no role in the multiple regression (see Example 2 in Section 3). On the other hand, a covariate is a necessary part of a multiple regression but may be not correlated with the outcome (see Example 1 in Section 3). The initial univariate screening method totally ignores the correlation among covariates.There is no theoretical work to support this method.Our simulation results clearly show that the multiple regression results after the univariate screening may be dramatically biased and misleading. The biomedical community should stop using this procedure in their research and publications.

    Funding

    None

    Conflict of interest statement

    The authors report no conflict of interest related to this manuscript.

    Author’s contribution

    Ge Feng and Changyong Feng: theoretical derivation and revision

    Jing Peng, Dongke Tu, and Julia Z. Zheng: Simulation and manuscript drafting

    1. Seber GAF, Lee AJ. Linear regression analysis (2nd ed).Hoboken, NJ: Wiley; 2003

    2. Agresti A. Categorical data analysis (2nd ed). Hoboken, NJ:Wiley; 2002

    3. Cox DR. Regression models and life-tables (with discussion).J R STAT SOC. 1972; B. 34:187-220. doi: http://dx.doi.org/10.2307/2985181

    4. McIntyre LK, Arbabi S, Robinson EF, Maier RV. Analysis of Risk Factors for Patient Readmission 30 Days Following Discharge From General Surgery. JAMA Surgery. 2016; (Epub ahead of print). doi: http://dx.doi.org/10.1001/jamasurg.2016.1258

    5. Bardia A, Sood A, Mahmood F, Orhurhu V, Mueller A,Montealegre-Gallegos M, et al. Combined epiduralgeneral anesthesia vs general anesthesia alone for elective abdominal aortic aneurysm repair. JAMA Surgery. 2016;(Epub ahead of print). doi: http://dx.doi.org/10.1001/jamasurg.2016.2733

    6. Barlesi F, Mazieres J, Merlio JP, Debieuvre D, Mosser J, Lena H,et al. Routine molecular prof i ling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup(IFCT). Lancet. 2016; 387: 1415-1426. doi: http://dx.doi.org/10.1016/S0140-6736(16)00004-0

    7. Brooks GA, Kansagra AJ, Rao SR, Weitzman JI, Linden EA,Jacobson JO. A clinical prediction model to assess risk for chemotherapy-related hospitalization in patients initiating palliative chemotherapy. JAMA Oncology. 2015; 1(4): 441-447; doi: http://dx.doi.org/10.1001/jamaoncol.2015.0828

    8. Cronin PR, DeCoste L, Kimball AB. A multivariate analysis of dermatology missed appointment predictors. JAMA Dermatology. 2013; 149(12): 1435-1437. doi: http://dx.doi.org/10.1001/jamadermatol.2013.5771

    9. Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Wouters PJ,Vanhorebeek I, et al. Early versus late parenteral nutrition in critically Ill children. N Engl J Med. 2016; 374(12): 1111-1122. doi: http://dx.doi.org/10.1056/NEJMoa1514762

    10. Geng E, Kreiswirth B, Burzynski J, Schluger NW. Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA.2005; 293(22): 2740-2745. doi: http://dx.doi.org/10.1001/jama.293.22.2740

    11. Hole J, Hirsch M, Ball E, Meads C. Music as an aid for postoperative recovery in adults: a systematic review and meta-analysis. Lancet. 2015; 386: 1659-1671. doi: http://dx.doi.org/10.1016/S0140-6736(15)60169-6

    12. International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncology. 2016; 17(6): 779-790. doi: http://dx.doi.org/10.1016/S1470-2045(16)30029-8

    13. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG,Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med.2016; 374(17): 1609-1620. doi: http://dx.doi.org/10.1056/NEJMoa1514616

    14. Li Y, Stocchi L, Cherla D, Liu X, Remzi FH. Association of preoperative narcotic use with postoperative complications and prolonged length of hospital stay in patients with crohn disease. JAMA Surgery. 2016; 151(8): 726-734. doi: http://dx.doi.org/10.1001/jamasurg.2015.5558

    15. Lorant V, Deli?ge D, Eaton W, Robert A, Philippot P, Ansseau M. Socioeconomic Inequalities in Depression: A Meta-Analysis. Am J Epidemiol. 2003; 157(2): 98-112. doi: http://dx.doi.org/10.1093/aje/kwf182

    16. van der Meer AJ, Veldt BJ, Feld JJ, Wedemeyer H, Dufour JF,Lammert F, et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fi brosis. JAMA.2012; 308(24): 2584-2593. doi: http://dx.doi.org/10.1001/jama.2012.144878

    17. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatricmetabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre,randomized controlled trial. Lancet. 2015; 386: 964-973. doi:http://dx.doi.org/10.1016/S0140-6736(15)00075-6

    18. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy:I. univariate analysis of risks. Am J Dis Child. 1985;139(10): 1031-1038. doi: http://dx.doi.org/10.1001/archpedi.1985.02140120077032

    19. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy:Multivariate analysis of risk. N Engl J Med. 1986; 315(2): 81-86. doi: http://dx.doi.org/10.1056/NEJM198607103150202

    20. NICE-SUGAR Study Investigators. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012; 367(12):1108-1118. doi: http://dx.doi.org/10.1056/NEJMoa1204942

    21. Pag?s F, Berger A, Camus M, Sanchez-Cabo F, Costes A,Molidor R, et al. Effector memory T cells, early metastasis,and survival in colorectal cancer. N Engl J Med. 2005;353(25): 2654-2666. doi: http://dx.doi.org/10.1056/NEJMoa051424

    22. Schwed AC, Boggs MM, Pham XD, Watanabe DM,Bermudez MC, Kaji AH, et al. Association of admission laboratory values and the timing of endoscopic retrograde cholangiopancreatography with clinical outcomes in acute cholangitis. JAMA Surgery. 2016; (Epub ahead of print). doi:http://dx.doi.org/10.1001/jamasurg.2016.2329

    23. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med.2015; 373(10): 929-938. doi: http://dx.doi.org/10.1056/NEJMoa1406761

    24. Wood GC, Benotti PN, Lee CJ, Mirshahi T, Still CD, Gerhard GS, Lent MR. Evaluation of the association between preoperative clinical factors and long-term weight loss after roux-en-y gastric bypass. JAMA Surgery. 2016;(Epub ahead of print). doi: http://dx.doi.org/10.1001/jamasurg.2016.2334

    Ge Feng is a graduate student in the School of Geophysics and Oil Resources at Yangtze University,Wuhan, Hubei, China. His research interest includes statistical analysis in rock physics.

    線性回歸分析中的兩個悖論

    Feng G, Peng J, Dongke TU, Zheng JZ, Feng C

    向前選擇,向后消除,單變量回歸,多元回歸

    Regression is one of the favorite tools in applied statistics. However, misuse and misinterpreta-tion of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection.

    [Shanghai Arch Psychiatry. 2016; 28(6): 355-360.

    http://dx.doi.org/10.11919/j.issn.1002-0829.216084]

    1School of Geophysics and Oil Resource, Yangtze University, Wuhan, China

    2Department of Biostatistics & Computational Biology, University of Rochester, Rochester, NY, USA

    3Department of Anesthesiology, University of Rochester, Rochester, NY, USA

    4School of Philosophy, Wuhan University, Wuhan, China

    5Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada

    *correspondence: Dr. Changyong Feng. Mailing address: Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Ave., Box 630, Rochester, NY, USA. Postcode: NY 14642. E-mail: Changyong_feng@urmc.rochester.edu

    概述:回歸是應用統(tǒng)計學中最受歡迎的工具之一。然而,回歸分析結果的誤用和誤解在生物醫(yī)學研究中是常見的。本文運用統(tǒng)計理論和模擬研究來說明有關這種普遍使用的統(tǒng)計方法的一些悖論。我們還特別指出在頂級醫(yī)學期刊發(fā)表的很多文章中廣泛使用的模型選擇程序事實上是錯誤的。模型選擇使用哪一種步驟化程序需基于可靠的統(tǒng)計理論。

    猜你喜歡
    醫(yī)學期刊生物醫(yī)學悖論
    芻議“生物醫(yī)學作為文化”的研究進路——兼論《作為文化的生物醫(yī)學》
    科學與社會(2022年4期)2023-01-17 01:20:04
    視神經炎的悖論
    山西醫(yī)學期刊社簡介
    全科護理(2022年19期)2022-07-09 05:42:08
    山西醫(yī)學期刊社簡介
    全科護理(2022年16期)2022-06-09 07:24:38
    山西醫(yī)學期刊社簡介
    全科護理(2022年10期)2022-04-07 11:14:00
    山西醫(yī)學期刊社簡介
    全科護理(2022年8期)2022-03-23 01:00:22
    靈長類生物醫(yī)學前沿探索中的倫理思考
    科學與社會(2021年4期)2022-01-19 03:29:50
    海島悖論
    “帽子悖論”
    當代陜西(2019年9期)2019-05-20 09:47:10
    國外生物醫(yī)學文獻獲取的技術工具:述評與啟示
    圖書館建設(2018年5期)2018-07-10 09:46:44
    97在线视频观看| 在线免费观看不下载黄p国产| 日本av手机在线免费观看| 18禁裸乳无遮挡免费网站照片| 日本欧美国产在线视频| 日韩欧美精品免费久久| 成年人午夜在线观看视频 | 国产精品三级大全| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区视频9| 少妇被粗大猛烈的视频| 亚洲国产精品专区欧美| av免费观看日本| 久久这里只有精品中国| 日韩大片免费观看网站| 亚洲av福利一区| 少妇的逼好多水| 激情 狠狠 欧美| 色播亚洲综合网| 久久久久网色| 午夜免费观看性视频| 成年女人看的毛片在线观看| 国产精品一及| 2021少妇久久久久久久久久久| 色尼玛亚洲综合影院| 色综合色国产| 久久精品久久久久久噜噜老黄| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 日韩制服骚丝袜av| 插阴视频在线观看视频| 成人美女网站在线观看视频| 日本黄大片高清| 最近最新中文字幕免费大全7| av卡一久久| 久久久久久久大尺度免费视频| av在线亚洲专区| 亚洲av中文av极速乱| 色哟哟·www| 成年人午夜在线观看视频 | 亚洲精品日韩av片在线观看| 免费观看无遮挡的男女| 中文字幕制服av| 国产成人freesex在线| 国产精品无大码| 少妇裸体淫交视频免费看高清| 美女高潮的动态| av在线亚洲专区| 亚洲乱码一区二区免费版| 亚洲最大成人av| 欧美xxxx性猛交bbbb| 成年女人在线观看亚洲视频 | 少妇的逼好多水| 亚洲国产色片| 成人一区二区视频在线观看| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美人成| 在线免费观看不下载黄p国产| 人人妻人人看人人澡| 日韩精品青青久久久久久| 97在线视频观看| 在线免费观看不下载黄p国产| 人人妻人人看人人澡| 国产精品国产三级专区第一集| av一本久久久久| 久久精品国产亚洲网站| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 国内精品一区二区在线观看| 亚洲av男天堂| 午夜免费激情av| videos熟女内射| 99视频精品全部免费 在线| 亚洲综合色惰| 好男人在线观看高清免费视频| 日韩视频在线欧美| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 色综合色国产| 天堂√8在线中文| 亚洲国产色片| 麻豆成人av视频| 哪个播放器可以免费观看大片| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 成年版毛片免费区| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 99久久精品一区二区三区| 日韩精品青青久久久久久| 美女xxoo啪啪120秒动态图| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 亚洲伊人久久精品综合| 一本一本综合久久| 日韩成人伦理影院| 国产精品av视频在线免费观看| 久久午夜福利片| 男女那种视频在线观看| 久久久亚洲精品成人影院| 国国产精品蜜臀av免费| 韩国高清视频一区二区三区| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 久99久视频精品免费| 欧美潮喷喷水| 国产三级在线视频| 国模一区二区三区四区视频| 日韩电影二区| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 国内精品宾馆在线| 黄色欧美视频在线观看| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 欧美97在线视频| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 成人鲁丝片一二三区免费| 日本熟妇午夜| 七月丁香在线播放| 韩国av在线不卡| 久久精品国产亚洲av涩爱| 欧美bdsm另类| av国产久精品久网站免费入址| 免费黄频网站在线观看国产| 日韩av在线免费看完整版不卡| 乱人视频在线观看| 丝瓜视频免费看黄片| 亚洲国产高清在线一区二区三| av又黄又爽大尺度在线免费看| 简卡轻食公司| 99re6热这里在线精品视频| 日韩伦理黄色片| 欧美成人一区二区免费高清观看| 成人午夜精彩视频在线观看| 看非洲黑人一级黄片| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 国产极品天堂在线| 少妇猛男粗大的猛烈进出视频 | 欧美xxⅹ黑人| 久久久精品欧美日韩精品| 狠狠精品人妻久久久久久综合| 在线a可以看的网站| 国产欧美另类精品又又久久亚洲欧美| 麻豆av噜噜一区二区三区| 国产成人精品福利久久| 2018国产大陆天天弄谢| 国产精品伦人一区二区| 寂寞人妻少妇视频99o| 男女国产视频网站| 亚洲国产精品国产精品| 1000部很黄的大片| 一夜夜www| 国产 一区 欧美 日韩| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 晚上一个人看的免费电影| 插逼视频在线观看| 色综合站精品国产| 蜜桃久久精品国产亚洲av| 免费观看在线日韩| 偷拍熟女少妇极品色| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| av线在线观看网站| av在线观看视频网站免费| 国产免费视频播放在线视频 | 99九九线精品视频在线观看视频| 国产精品麻豆人妻色哟哟久久 | 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | av在线天堂中文字幕| 国产久久久一区二区三区| 大话2 男鬼变身卡| 嫩草影院新地址| 乱码一卡2卡4卡精品| 久久热精品热| 一区二区三区免费毛片| 国产精品99久久久久久久久| xxx大片免费视频| 国产精品国产三级国产专区5o| 国产黄片美女视频| 国产精品精品国产色婷婷| 日日啪夜夜爽| 国产黄频视频在线观看| 成年人午夜在线观看视频 | 狂野欧美激情性xxxx在线观看| 成人亚洲精品av一区二区| 成年女人看的毛片在线观看| 久久6这里有精品| 国产日韩欧美在线精品| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 搞女人的毛片| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 天堂中文最新版在线下载 | videossex国产| 日韩欧美一区视频在线观看 | 啦啦啦韩国在线观看视频| 国产真实伦视频高清在线观看| 丰满少妇做爰视频| 国产一区二区三区综合在线观看 | 日本wwww免费看| 成人av在线播放网站| 欧美不卡视频在线免费观看| 成人特级av手机在线观看| 成年av动漫网址| 国产精品综合久久久久久久免费| av卡一久久| 久久久欧美国产精品| 久久这里只有精品中国| 一级黄片播放器| 成人亚洲欧美一区二区av| 亚洲av电影在线观看一区二区三区 | 国产探花在线观看一区二区| 日韩不卡一区二区三区视频在线| 免费在线观看成人毛片| 免费无遮挡裸体视频| 男女啪啪激烈高潮av片| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 只有这里有精品99| 国产高清国产精品国产三级 | 国产视频内射| 欧美人与善性xxx| 亚洲自拍偷在线| 久久97久久精品| 国产在线一区二区三区精| 白带黄色成豆腐渣| 精品一区二区免费观看| 久久韩国三级中文字幕| 91精品国产九色| 小蜜桃在线观看免费完整版高清| 美女主播在线视频| 搡老妇女老女人老熟妇| 国产老妇伦熟女老妇高清| 欧美97在线视频| 身体一侧抽搐| 18禁在线无遮挡免费观看视频| 天堂影院成人在线观看| 伦理电影大哥的女人| 成人国产麻豆网| 日本免费a在线| 国产精品一二三区在线看| 久久久欧美国产精品| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| 在线 av 中文字幕| 久久久a久久爽久久v久久| 男人舔奶头视频| 大片免费播放器 马上看| 日韩欧美一区视频在线观看 | 免费看美女性在线毛片视频| 午夜精品国产一区二区电影 | 国产毛片a区久久久久| 亚洲av.av天堂| 久久人人爽人人片av| 九九在线视频观看精品| 久久综合国产亚洲精品| videos熟女内射| 男人舔奶头视频| 两个人视频免费观看高清| 亚洲图色成人| av在线蜜桃| 天美传媒精品一区二区| 国产一区有黄有色的免费视频 | 欧美zozozo另类| 国产免费又黄又爽又色| 亚洲激情五月婷婷啪啪| 日日干狠狠操夜夜爽| 国产成人精品一,二区| 神马国产精品三级电影在线观看| 舔av片在线| 亚洲不卡免费看| 麻豆久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 国产亚洲一区二区精品| 黄色配什么色好看| 国产精品一区二区三区四区久久| 免费黄色在线免费观看| 大香蕉久久网| 国产成人福利小说| 亚洲美女搞黄在线观看| 亚洲av国产av综合av卡| videossex国产| 国产又色又爽无遮挡免| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 欧美高清成人免费视频www| 最近最新中文字幕免费大全7| 人妻系列 视频| 精品国产一区二区三区久久久樱花 | 日日干狠狠操夜夜爽| 99热这里只有是精品50| 日韩人妻高清精品专区| 国精品久久久久久国模美| 免费少妇av软件| 91av网一区二区| 亚洲精品国产av成人精品| 特级一级黄色大片| 日韩大片免费观看网站| 超碰97精品在线观看| 亚洲成色77777| av又黄又爽大尺度在线免费看| 美女高潮的动态| 成人亚洲精品一区在线观看 | 天堂俺去俺来也www色官网 | 日韩制服骚丝袜av| 能在线免费观看的黄片| 特级一级黄色大片| 亚洲av福利一区| 特大巨黑吊av在线直播| 日本免费在线观看一区| 国产精品女同一区二区软件| 中文字幕制服av| 国产高潮美女av| 中国国产av一级| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 少妇的逼好多水| 日本黄色片子视频| 国内精品一区二区在线观看| 久久久国产一区二区| 国产中年淑女户外野战色| 岛国毛片在线播放| 国产亚洲91精品色在线| 99热这里只有是精品在线观看| 夫妻性生交免费视频一级片| 色综合站精品国产| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | 少妇熟女欧美另类| 国产一区二区三区综合在线观看 | 国产男人的电影天堂91| 中文字幕久久专区| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 久久久久久久久久黄片| 观看免费一级毛片| 中文精品一卡2卡3卡4更新| 十八禁国产超污无遮挡网站| 又粗又硬又长又爽又黄的视频| 国产成人a区在线观看| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 国产不卡一卡二| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 别揉我奶头 嗯啊视频| 亚洲国产av新网站| 国产在线一区二区三区精| 日韩不卡一区二区三区视频在线| 极品少妇高潮喷水抽搐| 国产欧美另类精品又又久久亚洲欧美| 国产探花在线观看一区二区| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 成人欧美大片| 亚洲内射少妇av| 久久精品熟女亚洲av麻豆精品 | 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 亚洲在线观看片| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 97在线视频观看| 国产又色又爽无遮挡免| 日韩成人av中文字幕在线观看| 日韩国内少妇激情av| 视频中文字幕在线观看| 岛国毛片在线播放| 午夜老司机福利剧场| 老司机影院毛片| 亚洲综合精品二区| 国产一级毛片七仙女欲春2| 在线免费十八禁| 国产免费福利视频在线观看| 久久久久精品性色| 国产av在哪里看| 韩国av在线不卡| av播播在线观看一区| 国产69精品久久久久777片| 亚洲国产精品sss在线观看| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费又黄又爽又色| 亚洲精品国产成人久久av| 中文资源天堂在线| 嫩草影院新地址| 少妇高潮的动态图| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 中文乱码字字幕精品一区二区三区 | 一个人观看的视频www高清免费观看| 欧美不卡视频在线免费观看| 婷婷色综合www| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 亚洲av.av天堂| 精品久久久噜噜| 少妇的逼好多水| 国产精品人妻久久久久久| 一个人免费在线观看电影| 日韩,欧美,国产一区二区三区| 欧美激情在线99| 一个人看的www免费观看视频| 午夜福利在线观看吧| 午夜福利在线观看免费完整高清在| 简卡轻食公司| 午夜福利高清视频| 在现免费观看毛片| 欧美日韩综合久久久久久| av卡一久久| 日本熟妇午夜| 国产精品国产三级国产av玫瑰| 亚洲久久久久久中文字幕| 午夜福利网站1000一区二区三区| av卡一久久| 搞女人的毛片| 综合色av麻豆| 成年女人在线观看亚洲视频 | 午夜激情久久久久久久| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 国产精品.久久久| 69人妻影院| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 中文天堂在线官网| 国产单亲对白刺激| 久久久久久伊人网av| 日韩电影二区| 午夜亚洲福利在线播放| 黄色日韩在线| 五月天丁香电影| 免费高清在线观看视频在线观看| 国产91av在线免费观看| 久久久久久久久久黄片| 91精品一卡2卡3卡4卡| 国产黄片视频在线免费观看| 国产白丝娇喘喷水9色精品| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 午夜精品国产一区二区电影 | 国产精品日韩av在线免费观看| 欧美人与善性xxx| 精品久久久久久久末码| 久久久久久九九精品二区国产| 久久精品久久久久久久性| 草草在线视频免费看| 亚洲三级黄色毛片| av在线天堂中文字幕| 一个人看的www免费观看视频| 老司机影院成人| 免费看a级黄色片| 亚洲图色成人| 夫妻午夜视频| 色综合色国产| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 高清毛片免费看| 在线免费观看的www视频| 日韩欧美一区视频在线观看 | 身体一侧抽搐| 男人狂女人下面高潮的视频| 在线免费观看的www视频| 亚洲精华国产精华液的使用体验| 欧美zozozo另类| 身体一侧抽搐| 亚洲精品456在线播放app| 色综合亚洲欧美另类图片| 日韩电影二区| 亚洲欧美日韩卡通动漫| 国产免费一级a男人的天堂| 超碰97精品在线观看| 七月丁香在线播放| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 天天躁夜夜躁狠狠久久av| 如何舔出高潮| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 久久国内精品自在自线图片| 91aial.com中文字幕在线观看| 亚洲av在线观看美女高潮| 2018国产大陆天天弄谢| 欧美激情久久久久久爽电影| 亚洲国产精品成人久久小说| 黄片wwwwww| 一级爰片在线观看| 深爱激情五月婷婷| 国产男女超爽视频在线观看| 最近2019中文字幕mv第一页| 26uuu在线亚洲综合色| 国产成人a区在线观看| 青青草视频在线视频观看| 在线a可以看的网站| 非洲黑人性xxxx精品又粗又长| 久久这里只有精品中国| 看黄色毛片网站| 美女内射精品一级片tv| 国产永久视频网站| 久久精品国产亚洲av天美| 少妇的逼好多水| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区 | 五月天丁香电影| 日本色播在线视频| 中文字幕久久专区| 69av精品久久久久久| av网站免费在线观看视频 | 亚洲乱码一区二区免费版| 在线观看人妻少妇| 超碰av人人做人人爽久久| 肉色欧美久久久久久久蜜桃 | www.av在线官网国产| av女优亚洲男人天堂| av国产免费在线观看| 亚洲av成人精品一区久久| 日本免费a在线| 亚洲欧美一区二区三区黑人 | xxx大片免费视频| 日本熟妇午夜| 国产人妻一区二区三区在| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦韩国在线观看视频| 丝袜美腿在线中文| 亚洲精品乱码久久久久久按摩| 欧美高清性xxxxhd video| av一本久久久久| 欧美日韩综合久久久久久| 青春草国产在线视频| 99热网站在线观看| 欧美日本视频| 亚洲精品国产av成人精品| 久久精品人妻少妇| 国产69精品久久久久777片| 亚洲自拍偷在线| 亚洲美女搞黄在线观看| 免费电影在线观看免费观看| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 可以在线观看毛片的网站| 一级二级三级毛片免费看| 天天一区二区日本电影三级| 18禁在线无遮挡免费观看视频| 三级男女做爰猛烈吃奶摸视频| 自拍偷自拍亚洲精品老妇| 麻豆av噜噜一区二区三区| 亚洲欧洲国产日韩| 国产大屁股一区二区在线视频| 少妇的逼好多水| 人妻一区二区av| 欧美zozozo另类| 一级毛片黄色毛片免费观看视频| 亚洲欧美中文字幕日韩二区| 亚洲乱码一区二区免费版| 欧美成人午夜免费资源| 亚洲精品色激情综合| 美女被艹到高潮喷水动态| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 老师上课跳d突然被开到最大视频| 高清av免费在线| 黄色一级大片看看| 久久人人爽人人片av| 亚洲自偷自拍三级| 看十八女毛片水多多多| 三级毛片av免费| 国产精品一及| 久久精品国产亚洲av涩爱| 亚洲欧美一区二区三区国产| 丰满人妻一区二区三区视频av| 久久久久国产网址| 乱系列少妇在线播放| 精品久久久久久电影网| 亚洲无线观看免费| 在现免费观看毛片| 婷婷六月久久综合丁香| 欧美日本视频| 亚洲国产色片| 亚洲国产av新网站| 不卡视频在线观看欧美| 97精品久久久久久久久久精品| 国产欧美另类精品又又久久亚洲欧美| 国产精品.久久久| 麻豆av噜噜一区二区三区|