• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia

    2016-12-07 07:41:08JuanAOandJianqiSUN1NansenZhuInternationalResearchCenterInstituteofAtmosphericPhysicsChineseAcademyofSciencesBeijing100029
    Advances in Atmospheric Sciences 2016年5期

    Juan AOand Jianqi SUN?1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia

    Juan AO1,2and Jianqi SUN?1,2
    1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study.The results show that the SST anomalies(SSTAs)over the South Pacific Ocean(SPO)in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia.The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves.The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter,and then stimulates a meridional teleconnection pattern from the SH to the NH,resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter.As a major influencing factor,this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter.These observed physical processes are further confirmed in this study through numerical simulation.The evidence from this study,showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation,but also provides a potentially useful predictor for precipitation in the region.

    SST,boreal winter precipitation,dipolar pattern,atmospheric circulation,zonal wind

    1.Introduction

    East Asia is a region with a high density of arable agriculture and a large human population.Anomalous precipitation in boreal winter,accompanied by intense snowfall and freezing events,can result in severe disasters in the region. Some studies have shown that,recently,boreal winter precipitation in East Asia has increased,and extreme precipitation is occurring more frequently(Sun et al.,2009a,2010; Sun and Ao,2013;Wang and He,2013;Ao and Sun,2015a, 2015b);and in terms of the future,the IPCC AR5 projection shows increasing winter precipitation in East Asia,with relatively larger magnitude over northern East Asia(Collins et al.,2013).These results indicate that the impact of boreal winter precipitation is enhancing,and will continue to do so. Thus,exploring the factors that influence boreal winter precipitation,and improving our ability to predict it,are both highly relevant research topics.

    In previous research,a number of factors that impact upon the variability of boreal winter precipitation over East Asia havebeenrevealed.Forexample,dominantatmospheric circulation modes,such as the East Asian jet stream(Yang et al.,2002),East Asian boreal winter monsoon(Zhou and Wu,2010),and North Pacific oscillation(Wang et al.,2011), can produce anomalous boreal winter precipitation over East Asia.Snow cover is also considered a vital factor influencing borealwinter atmosphericcirculation and precipitation—revealed by both observation analyses and numerical simulations(Cohen and Entekhabi,1999,2001;Cohen et al.,2002, 2007,2014;Gong et al.,2002;Chen et al.,2003;Chen and Sun,2003).A numberof relativelyrecentstudieshaveshown that the impact of sea ice on boreal winter precipitation has become significant in recent years(Liu et al.,2012;Ma et al.,2012,Li and Wang,2013).In addition,variations in SST anomaly(SSTA)patterns,owing to their persistence and active role in air–sea interactions,have been highlighted as a key factor in diagnosing and predicting the variability in East Asian boreal winter precipitation(Bueh and Ji,1999;Jin and Tao,1999;Li and Bates,2007;Feng et al.,2010;Zhou et al., 2010;Zhou et al.,2010;Wang and He,2012;He et al.,2013; Zhang et al.,2014).

    However,most previous studies focused on the impact of SSTA modes over the tropics and NH;for example, ENSO,Atlantic multi-decadal oscillation,and western Pacific SSTAs.A recent study foundthat a tripole SSTA patternexisting in the South Pacific Ocean(SPO)during boreal winter could affect precipitationduring the followingspring over East China(Li et al.,2014).The result motivates us to ask whether SSTA patterns over the SPO,in particular during the preceding season,influence precipitation patterns over East Asia during boreal winter.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Therefore,this work focuses on the connection between boreal autumn SSTAs and boreal winter precipitation over East Asia,and the possible physical mechanisms involved in the connection.In addressing these issues,the intention is to deepen our understandingof boreal winter precipitation variability and improve its predictability.

    2.Data and methods

    MonthlyprecipitationdataoverEast Asiaona 2.5?×2.5?grid were obtained from the Global Precipitation Climatology Project(GPCP)(Adler et al.,2003).Before the analysis,the data were transformedinto boreal winter(December–February;DJF)average precipitation.The monthly atmospheric circulation reanalysis datasets on a 2.5?×2.5?grid were provided by the NCEP–NCAR(Kalnay et al.,1996). The monthly Extended Reconstructed Sea Surface Temperature(ERSST v3b)dataset,on a 2?×2?grid,was acquired from the NOAA ESRL(Smith and Reynolds,2003).The OLR data,also obtainedfromNOAA ESRL,are usedto infer tropical convection.The OLR data are available from June 1974,with a missing period between March and December 1978.

    According to the period of precipitation data and quality of the reanalysis data over the SH,the analysis period was confined to 1979–2010 in this study.To investigate the influences of the preceding boreal autumn SSTAs,numerical simulations were performed with CAM5,which is the atmospheric component of CESM1 0 5.The“F 2000”component set was selected for CESM1 0 5,which used a prescribed climatology for SST and sea ice and an active land model(CLM),coupled with CAM5.The atmospheric composition was kept constant,at year 2000 values;that is,the CO2concentration was at a constant 367.0 ppm during the simulations.The simulations used a 1.9?(lat)×2.5?(lon)finite volume grid,with 26 hybrid sigma pressure levels and a 30 minute integration time step(Gent et al.,2011).

    3.Results

    3.1.EOF2 of boreal winter precipitation over East Asia

    The EOF calculated by the covariance matrix is firstly used to identify the spatial and temporal patterns of boreal winter precipitation over East Asia.Previous studies have analyzed the variability of the leading mode of winter precipitation over East Asia and the possible mechanisms(Ao and Sun,2015a,2015b).The leading mode of winter precipitation over East Asia exhibits highly consistent variability (figure not shown),and relatively larger values mainly over the southern and middle regions of East Asia.The leading EOF mode explains 19.9%of the total precipitation variance. In this research,the second mode(EOF2)of boreal winter precipitation will be analyzed.

    The spatial pattern of boreal winter precipitation over East Asia,depicted by the EOF2 mode,exhibits a meridional dipolar pattern,and it explains 16.4%of the total variance in precipitation(Fig.1a).The corresponding time series,of the EOF2 mode,indicates a strong linear trend and also interannual variability of boreal winter precipitation(figure not shown).The detrended and standardized time series of the EOF2 mode(dPC2)eliminates the impact of the linear trend, showing the interannual variability of the second EOF mode of boreal winter precipitation over East Asia(Fig.1b).The dPC2isusedtoanalyzetherelationshipsofborealwinterprecipitation with atmospheric circulation and preceding boreal autumn SSTAs in the following sections.

    Fig.1.The second EOFmode of standardized winter(DJF)precipitation over East Asia:(a)spatial distribution; (b)detrended and standardized time series(dPC2).

    3.2.Boreal winter atmospheric circulation anomaliesand boreal autumn SSTAs associated with the EOF2 mode of boreal winter precipitation over East Asia

    The regressed simultaneous geopotentialheight and wind at 500 hPa,vertical motion at 500 hPa,and vertically integrated water vapor flux,associated with the dPC2 of boreal winter precipitation reveals that there is a meridional dipole circulation pattern over East Asia(Fig.2).An anomalous cyclonic circulation is centered over the Lake Baikal region (Fig.2a),which leads to anomalous ascending motion over northern East Asia(Fig.2b)and also enhances the water vapor transportation to northern East Asia by westerly flow and fromthe Pacific(Fig.2c),ultimately favoringmoreprecipitation over northern East Asia.In contrast,an anomalous anticyclonecovers southernChina,extendingto the Middle East, which results in anomalous descendingmotion over southern East Asia and also weakens the transportation of warm and moist air from the low latitudes,consequently leading to less precipitation over southern East Asia.This dipolar pattern is the most important circulation factor responsible for the variability of the dipole pattern of boreal winter precipitation over East Asia.

    In order to investigate the relationship between the East Asian boreal winter precipitation dipole pattern and the SPO SST variability,the regressed precedingautumn SSTAs associated with the dPC2 of boreal winter precipitation over East Asia is calculated.The significant SSTAs show a tripole pattern over the SPO,with a remarkable negative SSTA present mainly over the southern SPO and significant positive SSTAs over the northeastern and northwestern SPO(Fig.3).Moreover,this boreal autumn SSTA pattern still exists in the following boreal wintertime(figure not shown,similar to Fig. 3).These results show that the tripole pattern of SSTAs overthe SPO has a relationship with the second mode of boreal winter precipitation over East Asia.

    Fig.2.Linear regressions of boreal winter(a)geopotential height(gpm)and wind (m s-1)at 500 hPa,(b)vertical motion(10-3Pa s-1)at 500 hPa,and(c)vertically integrated water vapor flux(kg m-1s-1),against dPC2.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    To further quantify the relationship of the tripole pattern of SSTAs over the SPO and the second mode of boreal winter precipitation over East Asia,an SSTA index(SSTI)is defined as the difference between the standardized averaged SSTs over the positive SSTA regions(P;the black solid rectangle in Fig.3)and the negative SSTA region(N;the black dashed rectangle in Fig.3),based on the formula:SSTI= (1/4Pwest+1/4Peast)–1/2N(Pwest/Peast;the west/east solid rectangle in Fig.3).The correlation coefficient of the detrended boreal autumn SSTI and the dPC2 of boreal winter precipitation is 0.72,significant at the 99%confidence level; this means that the tripolar pattern of boreal autumn SSTAs overthe SPO does have a goodrelationshipwith the variation of the dipolar mode of boreal winter precipitation over East Asia.

    3.3.How dothe borealautumn SSTAs overthe SPO affect the boreal winter atmospheric circulation and precipitation over East Asia?

    3.3.1.Observational analysis

    The previous section showed that the boreal autumn tripole pattern of SSTAs over the SPO is connected to the second mode of boreal winter precipitation over East Asia. Here,the possible mechanismresponsiblefor this connection isexplored.GiventhattheSSTAs generallyhavegoodpersistence,we deduce that the seasonal persistence of the SSTAs could be a possible mechanism to memorize and transport the signal of the boreal autumn SSTAs into the following boreal winter,and then impact upon the atmospheric circulation and precipitation.Therefore,the SSTI in boreal winter is also computed,and the correlation coefficient of the SSTIs in boreal autumn and winter is 0.72,significant at the 99% confidence level.After removing the SSTI trend(Fig.4),the two SSTIs also co-very well,with a correlation coefficient of 0.70.These results indicate that the SSTA signal over the SPO does have good persistence from boreal autumnthrough to boreal winter.

    Fig.3.Linear regressions of boreal autumn SSTAs(?C)against dPC2.Dotted areas are significant at the 95%confidence level.

    To further understand how the SPO SSTAs persist from the boreal autumn to winter,the evolution of the anomalous SSTs andsurfacewindsovertheSPO fromtheborealautumn to winter are analyzed(Fig.5).The anomalousSSTs and surface winds are calculated by compositing the corresponding SST and surface winds in the abnormal years of the boreal winter precipitation dipole pattern;the abnormal years are definedas occurringwhenthe detrendedandnormalizedtime series of the boreal winter precipitation’s second EOF mode are greater than 1,or less than-1.It is found that the SPO SSTAs in boreal autumn correspond to an anomalous anticyclone in the midlatitudes,and a cyclone in the high latitudes, of the SPO.On the one hand,northerly anomalies of the anticyclone can bring warmer water from the low latitudes to the midlatitudes,leading to the SST warming over the northernSPO;whileon theotherhand,the midlatitudeanticyclone correspondsto sunnyweather,which favors more solar radiation being received by the sea surface,and also contributes to the SST warmingoverthe northernSPO.However,thesouthwesterly anomalies between the anticyclone and cyclone will bring colderwater from the high latitudes to the midlatitudes, leading to SST cooling over the southern SPO.Additionally, the distribution of anomalous warm SST over the northern SPO and cold SST over the southern SPO can enlarge the meridional temperature gradient over the SPO region.Accordingtothermalwindtheory,theenhancedmeridionaltemperature gradient can enhance the zonal wind between the warm and cold SSTAs over the SPO.The enhanced west-erly can then enhance the anomalous cyclone over the southern SPO and anticyclone over the northern SPO.Thus,there is a positive feedback mechanism between ocean and atmosphere,which leads to the persistence of the autumn SPO SSTAs to winter.

    Fig.4.Detrended and standardized SPO SSTIs in boreal autumn(1979–2009)and winter(1980–2010).Theformer year of x-axis corresponds toautumn(SON),and thelatter year corresponds to winter(DJF).

    Fig.5.Evolution of anomalous SSTs(?C)and surface winds(m s-1)over the SPO from September to the following February. Dotted areas are significant at the 95%confidence level.

    Further,the atmospheric circulation patterns associated with the SSTAs over the SPO are investigated.A regression of the boreal winter zonal winds associated with the detrended boreal winter SSTI indicates that the SPO SSTA pattern is related to two meridional teleconnection patterns of zonal wind(Fig.6a).One is over the eastern Pacific,and the other is over the Eastern Hemisphere.The teleconnection pattern of the zonal wind from the SH to the NH over the Eastern Hemisphere leads to a dipole pattern of geopotential height over East Asia(Fig.6b);this pattern is quite similar to the atmosphericpattern associated with the dPC2 of boreal winter precipitation over East Asia(Fig.2a).

    The atmospheric circulation associated with the detrended SSTI in boreal autumn(Fig.7)shows a quite similar but weaker atmospheric circulation pattern to the regression of the boreal winter zonal winds associated with the detrended boreal winter SSTI(Fig.6).Because the variability of the SPO SSTAs in boreal autumn and winter is highlyconsistent,the two SSTIs are related to a similar atmospheric circulation pattern in boreal winter.

    From an observational analysis viewpoint,the above results providegood evidenceof the persistence of SPO SSTAs as the connection between the boreal autumn SPO SSTA pattern and the East Asian winter precipitation.

    3.3.2.Numerical simulation

    The observational data indicate that interhemispheric meridional teleconnection patterns could be responsible for the connection between the SPO SSTAs and the East Asian winter circulation and precipitation.In this section,a numerical simulation is used to investigate whether or not these interhemispheric meridional teleconnection patterns are induced by the SPO SSTAs.

    Fig.6.Linear regressions of boreal winter(a)zonal wind(m s-1)and(b)geopotential height (gpm)and wind(m s-1)at 500 hPa,against the detrended and standardized boreal winter SSTI over the SPO.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.7.As in Fig.6 but for boreal autumn SSTI.

    Fig.8.SSTAs(?C)over the SPO in boreal(a)autumn and(b)winter,imposed in the numerical simulation.

    To simulate SSTs as realistically as possible,we impose observed boreal autumn SSTAs(Fig.8a)from August to November(August as the spin-up time),and boreal winter SSTAs(Fig.8b)from December to February,over the SPO in the numerical simulations.The boreal autumn and boreal winter SSTAs are calculated separately by compositing the corresponding SSTAs in the abnormal years of the boreal winter precipitation dipole pattern;the abnormal years are definedas occurringwhen thedetrendedandnormalizedtime series of the boreal winter precipitation’s second EOF mode are greater than 1,or less than-1.To eliminate the strong SST gradients over the four borders of the SSTA regions,the SSTAs are linearly decreased to 0?C across five points.A 30-year run with the model’s climatological SST and sea-ice boundary conditions is performed;the average for the last 20 years is defined as the control run(EXP0).The sensitivityexperiment(EXP1)is similar to EXP0,but with the SSTAs imposed over the SPO region in boreal autumn and boreal winter;the averagefor the last 20 years of EXP1 is compared with EXP0.

    Fig.9.Differences of boreal winter(a)zonal wind at 500 hPa(m s-1),(b)geopotential height(gpm)and wind(m s-1)at 500 hPa,and(c)precipitation(mm month-1) over East Asia,between EXP1 and EXP0.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.10.Differences of the boreal winter geopotential height(gpm)at 500 hPa between EXP1 and EXP0 and the related wave activity flux(m2s-2).The dark(light)shaded areas are significant at the 95%(90%)level.

    Anomalies of 500 hPa zonal wind(Fig.9a),geopotential height and winds over Eurasia(Fig.9b),and total precipitation over East Asia(Fig.9c)in the simulation forced by the SPO SSTA pattern are similar to the observation.These results provide a possible mechanism for the SPO SSTAs affectingatmosphericcirculationsandwinterprecipitationover East Asia.The distribution of anomalous warm SST over the northern SPO and cold SST over the southern SPO can enlarge the meridional temperature gradient over the SPO region.Accordingto thermalwind theory,the enhancedmeridional temperature gradient can enhance the zonal wind between the warm and cold SSTA over the SPO.The enhanced westerly can then lead to an anomalous cyclone over the southern SPO and anticyclone over the northern SPO.Such changes of the atmospheric circulation enhance the eastward Rossby wave propagation reflected by the Rossby wave activity flux(Fig.10),which further causes anomalous atmospheric circulations over the Eastern Hemisphere.The study of Ambrizzi et al.(1995)indicated that the southern Indian Ocean is an arc-like route of equatorward Rossby wave propagation.Thus,along this route,the SPO SSTA-related wave train propagates equatorward over the southern Indian Ocean,resulting in anomalous tropical climate.Accordingly, in the anomalous SPO SST years,the tropical convectionhas changed(Fig.11).The simulated OLR features are similar to the observation,although the observed signal is stronger than the simulated.As shown in Fig.12,in response to the SPO SSTA,the convection is enhanced over the western tropical Pacific Ocean and depressed over the western tropical Indian Ocean.Such a dipole convective pattern indicates changes in the Walker-like zonal circulation over the tropical Indian Ocean.An OLR index is defined as the difference between the regional means of OLR over the two rectangular regions in Fig.12.Table 1 shows the quantitative relationship between the SPO SSTI and the OLR index.The table suggests that there is a close relationship between the SPO SSTA and tropical convection.Figure 12 also implies a strong ENSO signal in the tropical convection.To further investigate the relationship between the SPO SSTA and tropical convection, the ENSO signal is removed from the OLR index based on the linear regression method using the Ni?no3.4 index,and the new correlation coefficient is also listed in Table 1.The result still shows a close relationship between the SPO SSTA and tropical convection.

    According to traditional wave theories,Rossby waves cannot move across the equator to the other hemispheredue to prevailing easterlies(e.g.,Ambrizzi et al.,1995); meanwhile,the tropical climate associated with the Rossby wave can connect the climate overthe other hemisphere(e.g., Matthews and Kiladis,2000;Sun et al.,2009b).Thus in this study,the SPO SSTA-related tropical convection can transport the SPO SSTA influence to East Asia.The regression of geopotential height at 500 hPa against the OLR index after removing the ENSO signal is shown in Fig.13.Over the SH, the anomalous circulation shows a wave train pattern,propagating equatorward over the southern Indian Ocean,similar to the SPO SSTA-related circulation over the region(Figs. 6a and 9a).Over East Asia,the atmospheric circulation pattern is similar to the regressed pattern against dPC2(Fig.2a), with anomalous cyclonic circulation centered over the northern part of East Asia and an anticyclone covering southern China and extending to the Middle East,showing a meridional dipole circulation pattern over East Asia.Some previous studies have shown that the tropical convection can stimulate a wave train pattern over East Asia(Nitta,1987;Huang and Sun,1994).Thus,the tropical convection can excite the atmospheric circulation over East Asia,which further results in anomalous winter precipitation over the region.Table 1 also confirms the relationship between the tropical convection and East Asian winter precipitation,showing significant correlations between the two indices.

    Table 1.Correlation coefficients of the detrended and standardized OLR index with the SPO SSTI and dPC2 in boreal winter are shown in first row.Correlation coefficients after removing the ENSOsignal are shown in second row.

    Fig.11.Differences of OLR(W m-2)between EXP1 and EXP0 in boreal winter.The dark(light)shaded areas are significant at the 95%(90%)confidence level.

    Fig.12.Linear regressions of OLR(W m-2)against the detrended and standardized SSTI over SPO in boreal winter.The dark(light)shaded areas are significant at the 95%(90%)confidence level.The rectangles indicate the two key OLR regions.

    Fig.13.Linear regressions of 500 hPa geopotential height(gpm)against the detrended and standardized OLR index after removing ENSO signal in boreal winter.The dark (light)shaded areas are significant at the 95%(90%)confidence level.The rectangles indicate the two key OLR regions.

    There are similarities over the Eastern Hemisphere between observations and simulations(see Figs.6a and 9a);but incontrast,therearelargedifferencesovertheWesternHemisphere.There is an interhemispheric teleconnection pattern over the Western Hemisphere accordingto observations(Fig. 6a);however,in the simulation(Fig.9a),the meridional teleconnection is confined to the tropical and southern areas of the East Pacific.This difference could be related to the absence of the ENSO signal in the simulation.In the observation,there is a high correlation between the SPO SSTIs and the ENSO index,and the ENSO-related circulation pattern shows a similar interhemisphericteleconnectionoverthe East Pacific.However,in the numericalsimulation,the atmospheric circulation pattern is only related to the SPO SSTAs. Thus,compared to the observational analysis,the existence of the interhemispheric teleconnection pattern over the Eastern Hemisphere and absence of the interhemispherictelecon-nection pattern over the Western Hemisphere(i.e.,the East Pacific)in the numerical simulation,indicates that the interhemispheric teleconnection pattern over the Eastern Hemisphere is a physical way to transport the influence of the SPO SSTAs to East Asia.

    Our study indicates that the signal of boreal autumn SSTAs over the SPO can be kept to the following winter owing to the persistence of the SSTA,and then the boreal winter SSTAs over the SPO can stimulate the interhemispheric teleconnectionpattern to affect winter precipitationover East Asia.On the other hand,the SPO SSTAs exist in the boreal autumn.The sole impact of the SPO SSTA should therefore also be investigated,to improve our understanding of the influencing mechanism.Thus,we also ran the experiments usingonlytheSSTAs inborealautumn.Theresultsshowedthat the anomalies of atmospheric circulation and precipitation still appear in the numerical simulation(figure not shown); however,the signals are much weaker compared with the simulation including both autumn and winter SSTAs.These results indicate that the circulation anomalies induced solely by the SPO SSTAs in boreal autumn contribute weakly to the winter precipitation over East Asia.The persistence of the SSTA signal from boreal autumn to winter could play a more important role in the connection between the boreal autumn SPO SSTA and winter East Asian precipitation.

    The numerical simulation further confirms that the SPO SSTA mode is an influencing factor for boreal winter precipitation over East Asia;within this process,the seasonal persistence of the SPO SSTAs and the interhemispheric teleconnection pattern play an important role.

    4.Summary and conclusions

    This paper investigates the spatial and temporal features of the second EOF mode of boreal winter precipitation over East Asia during the period 1979–2010,and further explores the possible influencing factors.The second EOF mode shows a meridional dipole pattern,which explains 16.4%of the totalvarianceandexhibitsa stronginterannualvariability. Circulationanalysisindicatesthattheatmosphericcirculation associatedwith the EOF2 modeof borealwinterprecipitation over East Asia is a dipole pattern:there is one center over the Lake Baikal region and another over southern China.This meridional dipole pattern is the dominant pattern impacting upon the dipole pattern of precipitation over East Asia.

    After diagnosing the relationship between the East Asian winter precipitation EOF2 mode and SST variability,the influence of the SPO SSTAs in boreal autumn on the boreal winter precipitation dipole mode over East Asia was revealed.The possible main mechanism,through which the SPO SSTAs in the boreal autumnaffect the East Asian boreal winter precipitation,is considered to be the SSTA’s seasonal persistence.The persistence of the SPO SSTAs means that the signal is memorized and transported from boreal autumn through to winter,and then stimulates the interhemispheric teleconnectionpatternovertheEast Hemisphere.Thismeridional teleconnection pattern plays an important role in the influence of the SPO SSTAs on the atmospheric circulation over East Asia,resulting in a dipole pattern.This dipole pattern is the dominant factor influencing the variability of the dipole pattern of boreal winter precipitation over East Asia.These results were further confirmed through a numerical simulation.Therefore,the SPO SSTA pattern revealed in this study is valuable in terms of our understanding of the variability in East Asian winter precipitation and improving predictions in the future.

    Acknowledgements.This work was jointly supported by the Special Fund for Public Welfare Industry(meteorology)(Grant No. GYHY201306026)and the National Natural Science Foundation of China(Grant Nos.41421004 and 41522503).

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The Version-2 global precipitation climatology project(GPCP)monthly precipitation analysis(1979–Present).Journal of Hydrometeorology,4,1147–1167.

    Ambrizzi,T.,B.J.Hoskins,and H.H.Hsu,1995:Rossby wave propagation and teleconnection patterns in the austral winter. J.Atmos.Sci.,52,3661–3672.

    Ao,J.,and J.Q.Sun,2015a:Decadal change in factors affecting winter precipitation over eastern China.Climate Dyn.,doi: 10.1007/s00382-015-2572-7.

    Ao,J.,and J.Q.Sun,2015b:Connection between November snow cover over Eastern Europe and winter precipitation over East Asia.Int.J.Climatol.,doi:10.1002/joc.4484.

    Bueh,C.,and L.R.Ji,1999:Anomalous activity of East Asian winter monsoon and the tropical Pacific SSTA.Chinese Science Bulletin,44,890–898.

    Cohen,J.,and D.Entekhabi,1999:Eurasian snow cover variability and northern hemisphere climate predictability.Geophys. Res.Lett.,26,345–348.

    Cohen,J.,and D.Entekhabi,2001:The influence of snow cover on northern hemisphere climate variability.Atmos.–Ocean,39, 35–53.

    Cohen,J.,D.Salstein,and K.Saito,2002:A dynamical framework to understand and predict the major Northern Hemisphere mode.Geophys.Res.Lett.,29(10),51–54.

    Chen,H.S.,and Z.B.Sun,2003:The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part I.observational studies.Chinese J.Atmos.Sci.,27,304–316. (in Chinese)

    Chen,H.S.,Z.B.Sun,and W.J.Zhu,2003:The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part II.Model simulation.Chinese J.Atmos.Sci., 27,847–860.(in Chinese)

    Cohen,J.,M.Barlow,P.J.Kushner,and K.Saito,2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability.J.Climate,20,5335–5343.

    Cohen,J.,J.C.Furtado,J.Jones,M.Barlow,D.Whittleston,and D.Entekhabi,2014:Linking Siberian snow cover to precursors of stratospheric variability.J.Climate,27,5422–5432.

    Collins,M.,and Coauthors,2013:Long-term climate change: projections,commitments and irreversibility.ClimateChange 2013:The Physical Science Basis.Contribution of WorkingGroup I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T.F.Stocker et al.,Eds., Cambridge University Press,1029–1136.

    Feng,J.,L.Wang,W.Chen,S.K.Fong,and K.C.Leong,2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter.J.Geophys. Res.,115,D24122.

    Gent,P.R.,and Coauthors,2011:The community climate system model Version 4.J.Climate,24,4973–4991.

    Gong,G.,D.Entekhabi,and J.Cohen,2002:A large-ensemble model study of the wintertime AO–NAO and the role of interannual snow perturbations.J.Climate,15,3488–3499.

    He,S.P.,H.J.Wang,and J.P.Liu,2013:Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation.J.Climate,26,3377–3393.

    Huang,R.H.,and F.Y.Sun,1994:Impacts of the thermal state and the convective activities in the tropical western warm pool on thesummer climateanomalies inEast Asia.Chinese J.Atmos. Sci.,18,141–151.(in Chinese)

    Jin,Z.H.,and S.Y.Tao,1999:A study on the relationships between ENSO cycle and rainfalls during summer and winter in Eastern China.Chinese J.Atmos.Sci.,23,663–672.(in Chinese)

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–470.

    Li,S.L.,and G.T.Bates,2007:Influence of the Atlantic multi–decadal oscillation on the winter climate of East China.Adv. Atmos.Sci.,24,126–135,doi:10.1007/s00376-007-0126-6.

    Li,F.,and H.J.Wang,2013:Autumn Sea Ice cover,winter northern hemisphere annular mode,and winter precipitation in Eurasia.J.Climate,26,3968–3981.

    Li,G.,C.Y.Li,Y.K.Tan,and X.Wang,2014:Observed relationship of boreal winter South PacificTripoleSSTAwithEastern China rainfall during the following boreal spring.J.Climate, 27,8094–8106.

    Liu,J.P.,J.A.Curry,H.J.Wang,M.R.Song,and R.M.Horton, 2012:Impact of declining Arctic sea ice on winter snowfall. Proc.Natl.Acad.Sci.,109,4074–4079.

    Ma,J.H.,H.J.Wang,and Y.Zhang,2012:Will boreal winter precipitation over China increase in the future?An AGCM simulation under summer“ice-free Arctic”conditions.Chinese Science Bulletin,57,921–926.

    Matthews,A.J.,and G.N.Kiladis,2000:A model of Rossby waves linked to submonthly convection over the eastern Tropical Pacific.J.Atmos.Sci.,57,3785–3798.

    Nitta,T.,1987:Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation.J.Meteor.Soc.Japan,65,373–390.

    Smith,T.M.,and R.W.Reynolds,2003:Extended reconstructionof global Seasurface temperatures based on COADSdata (1854–1997).J.Climate,16,1495–1510.

    Sun,J.Q.,and J.Ao,2013:Changes in precipitation and extreme precipitation in a warming environment in China.Chinese Science Bulletin,58,1395–1401.

    Sun,J.Q.,H.J.Wang,and W.Yuan,2009a:A preliminary investigation on causes of the catastrophic snowstorm in March, 2007 in the northeastern parts of China.Acta Meteorologica Sinica,67,469–477.(in Chinese)

    Sun,J.Q.,H.J.Wang,and W.Yuan,2009b:A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall.Int.J. Climatol.,29,1276–1284,doi:10.1002/joc.1773.

    Sun,J.Q.,H.J.Wang,W.Yuan,and H.P.Chen,2010:Spatialtemporal featuresofintensesnowfall eventsinChinaandtheir possible change.J.Geophys.Res.,115,D16110.

    Wang,H.J.,and S.P.He,2012:Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s.Chinese Science Bulletin,57,3535–3540.

    Wang,H.J.,and S.P.He,2013:The increase of snowfall in Northeast China after the mid-1980s.Chinese Science Bulletin,58, 1350–1354.

    Wang,L.,W.Chen,R.Q.Feng,andJ.J.Liang,2011:Theseasonal march of the North PacificOscillationand itsassociation with the interannual variations of China’s climate in boreal winter and spring.Chinese J.Atmos.Sci.,35,393–402.(in Chinese)

    Yang,S.,K.-M.Lau,and K.-M.Kim,2002:Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies.J.Climate,15,306–325.

    Zhang,L.,X.H.Zhu,K.Fraedrich,F.Sielmann,and X.F. Zhi,2014:Interdecadal variability of winter precipitation in Southeast China.Climate Dyn.,43,2239–2248.

    Zhou,L.T.,and R.G.Wu,2010:Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China. J.Geophys.Res.,115,D02107.

    Zhou,L.T.,C.Y.Tam,W.Zhou,and J.C.L.Chan,2010:Influence of South China Sea SST and the ENSO on winter rainfall over South China.Adv.Atmos.Sci.,27(4),832–844,doi: 10.1007/s00376-009-9102-7.

    Ao,J.,and J.Q.Sun,2016:The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia.Adv.Atmos.Sci.,33(5),644–655,

    10.1007/s00376-015-5067-x.

    12 March 2015;revised 21 September 2015;accepted 5 November 2015)

    ?Jianqi SUN

    Email:sunjq@mail.iap.ac.cn

    高清毛片免费观看视频网站| 国产高清激情床上av| 91在线观看av| svipshipincom国产片| 青草久久国产| 国产亚洲欧美在线一区二区| 巨乳人妻的诱惑在线观看| 亚洲午夜精品一区,二区,三区| 成人18禁高潮啪啪吃奶动态图| 三级毛片av免费| 搡老妇女老女人老熟妇| 人成视频在线观看免费观看| 久久精品人人爽人人爽视色| 嫩草影视91久久| 中文字幕久久专区| 99在线视频只有这里精品首页| 免费高清视频大片| 麻豆久久精品国产亚洲av| 午夜久久久久精精品| 色播亚洲综合网| 啦啦啦免费观看视频1| 曰老女人黄片| 日本三级黄在线观看| 视频在线观看一区二区三区| 亚洲国产看品久久| 成人国产综合亚洲| 91麻豆av在线| 嫩草影院精品99| 波多野结衣高清无吗| 日韩免费av在线播放| 免费无遮挡裸体视频| 亚洲中文字幕日韩| www日本在线高清视频| 丝袜美足系列| 一区二区三区国产精品乱码| 中文字幕最新亚洲高清| 婷婷丁香在线五月| 久久久精品国产亚洲av高清涩受| 最近最新免费中文字幕在线| 精品久久久久久久毛片微露脸| 神马国产精品三级电影在线观看 | 一区二区三区激情视频| 午夜福利影视在线免费观看| 91精品国产国语对白视频| 国产在线精品亚洲第一网站| 高清在线国产一区| www.精华液| 十八禁人妻一区二区| 免费高清在线观看日韩| 韩国精品一区二区三区| 黄色 视频免费看| 亚洲成人免费电影在线观看| 国产乱人伦免费视频| 免费在线观看视频国产中文字幕亚洲| 午夜日韩欧美国产| 欧美大码av| www.熟女人妻精品国产| 精品午夜福利视频在线观看一区| 夜夜夜夜夜久久久久| 欧美中文综合在线视频| 91老司机精品| av电影中文网址| 国产1区2区3区精品| 黑人欧美特级aaaaaa片| 免费在线观看日本一区| 91大片在线观看| 熟女少妇亚洲综合色aaa.| 欧美色欧美亚洲另类二区 | 不卡av一区二区三区| 啦啦啦观看免费观看视频高清 | 美女免费视频网站| 一区二区三区激情视频| 亚洲欧美精品综合一区二区三区| 可以在线观看毛片的网站| 亚洲精品国产色婷婷电影| 国产成人欧美在线观看| 操出白浆在线播放| www.www免费av| 欧美成人性av电影在线观看| 久久久国产精品麻豆| 国产精品二区激情视频| 在线观看免费视频网站a站| 国产高清激情床上av| 99re在线观看精品视频| 波多野结衣高清无吗| 丝袜在线中文字幕| 日韩中文字幕欧美一区二区| 手机成人av网站| 国产伦一二天堂av在线观看| 啦啦啦韩国在线观看视频| 黄色a级毛片大全视频| 欧美中文日本在线观看视频| 日日干狠狠操夜夜爽| 少妇裸体淫交视频免费看高清 | 亚洲精品久久国产高清桃花| 国产成人精品无人区| 亚洲九九香蕉| 亚洲中文av在线| 19禁男女啪啪无遮挡网站| 亚洲成av片中文字幕在线观看| 久久精品aⅴ一区二区三区四区| 欧美av亚洲av综合av国产av| 91成人精品电影| 此物有八面人人有两片| 18禁观看日本| 女人被躁到高潮嗷嗷叫费观| 丝袜在线中文字幕| 免费在线观看影片大全网站| 麻豆久久精品国产亚洲av| 黄色 视频免费看| 丝袜在线中文字幕| 悠悠久久av| 老汉色∧v一级毛片| 动漫黄色视频在线观看| 亚洲电影在线观看av| 亚洲五月色婷婷综合| 激情在线观看视频在线高清| 免费在线观看视频国产中文字幕亚洲| 亚洲一区二区三区不卡视频| 欧美日本视频| 国产熟女xx| 国产免费男女视频| 日韩国内少妇激情av| 在线十欧美十亚洲十日本专区| 在线十欧美十亚洲十日本专区| 91在线观看av| 欧美日韩瑟瑟在线播放| 亚洲一区中文字幕在线| 岛国在线观看网站| 欧美日韩瑟瑟在线播放| 免费在线观看黄色视频的| 久久欧美精品欧美久久欧美| 妹子高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 看免费av毛片| 国产片内射在线| 午夜福利成人在线免费观看| 免费看十八禁软件| 欧美成人性av电影在线观看| 成在线人永久免费视频| 国产一卡二卡三卡精品| 男人舔女人下体高潮全视频| 精品电影一区二区在线| 久久精品亚洲熟妇少妇任你| 脱女人内裤的视频| 在线播放国产精品三级| 国产精品美女特级片免费视频播放器 | 大香蕉久久成人网| 久久亚洲真实| 99在线视频只有这里精品首页| 精品一区二区三区四区五区乱码| 夜夜夜夜夜久久久久| 法律面前人人平等表现在哪些方面| 正在播放国产对白刺激| 亚洲欧美日韩高清在线视频| 99久久99久久久精品蜜桃| 免费在线观看视频国产中文字幕亚洲| 久久国产精品影院| 18禁观看日本| 男女下面进入的视频免费午夜 | 岛国在线观看网站| 妹子高潮喷水视频| 欧美日本亚洲视频在线播放| 在线观看一区二区三区| 亚洲成av片中文字幕在线观看| or卡值多少钱| 亚洲一码二码三码区别大吗| 亚洲成av人片免费观看| 操美女的视频在线观看| 国内久久婷婷六月综合欲色啪| 国产在线精品亚洲第一网站| 咕卡用的链子| 在线观看66精品国产| 91字幕亚洲| 国产成人系列免费观看| 天堂动漫精品| a级毛片在线看网站| 日韩有码中文字幕| 女人被狂操c到高潮| 在线av久久热| 精品第一国产精品| 亚洲午夜精品一区,二区,三区| 嫩草影视91久久| 久久精品影院6| 久久精品国产亚洲av高清一级| 搡老妇女老女人老熟妇| 日本 欧美在线| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 欧美另类亚洲清纯唯美| 精品久久久久久久久久免费视频| 免费一级毛片在线播放高清视频 | 国产真人三级小视频在线观看| 久久精品国产清高在天天线| 美女高潮到喷水免费观看| 午夜亚洲福利在线播放| 日韩高清综合在线| 久久久久九九精品影院| 日韩有码中文字幕| 在线av久久热| 亚洲天堂国产精品一区在线| 日日夜夜操网爽| 香蕉久久夜色| 久久香蕉精品热| 大型黄色视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 国产精品免费一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区 | av在线播放免费不卡| 国产精品一区二区三区四区久久 | 乱人伦中国视频| 国产精品影院久久| 国产亚洲精品第一综合不卡| 久久精品aⅴ一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线av高清观看| 天天添夜夜摸| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| www国产在线视频色| 人人澡人人妻人| 国产熟女xx| 日本黄色视频三级网站网址| 国产精品影院久久| 国产精品,欧美在线| 黄色女人牲交| 18禁国产床啪视频网站| www.999成人在线观看| 久久久精品国产亚洲av高清涩受| 18禁黄网站禁片午夜丰满| 国产区一区二久久| 午夜久久久在线观看| www.熟女人妻精品国产| 久久久久久久久免费视频了| 人妻丰满熟妇av一区二区三区| 日日爽夜夜爽网站| 91在线观看av| 欧美性长视频在线观看| 男人舔女人的私密视频| ponron亚洲| 日本欧美视频一区| 身体一侧抽搐| 亚洲精品一区av在线观看| 亚洲第一青青草原| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 国产片内射在线| 色婷婷久久久亚洲欧美| 97碰自拍视频| 99国产精品免费福利视频| 亚洲aⅴ乱码一区二区在线播放 | 女人被躁到高潮嗷嗷叫费观| 久热这里只有精品99| 午夜亚洲福利在线播放| 国产成人av教育| 欧美一级a爱片免费观看看 | 久久天躁狠狠躁夜夜2o2o| 在线av久久热| 久久久久久久久中文| 欧美亚洲日本最大视频资源| 一a级毛片在线观看| 国产精品自产拍在线观看55亚洲| 亚洲色图 男人天堂 中文字幕| 欧美另类亚洲清纯唯美| 香蕉久久夜色| 伊人久久大香线蕉亚洲五| 精品乱码久久久久久99久播| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 人人澡人人妻人| 好看av亚洲va欧美ⅴa在| 又紧又爽又黄一区二区| 91成人精品电影| 国产欧美日韩一区二区三| 91av网站免费观看| 黄片大片在线免费观看| 亚洲成国产人片在线观看| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 久久人人97超碰香蕉20202| 午夜福利一区二区在线看| 成年人黄色毛片网站| 国产片内射在线| 亚洲国产精品合色在线| 天天躁夜夜躁狠狠躁躁| 亚洲成人国产一区在线观看| 欧美激情高清一区二区三区| 在线观看日韩欧美| 欧美久久黑人一区二区| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看 | 美女扒开内裤让男人捅视频| 国产亚洲精品av在线| 女人被躁到高潮嗷嗷叫费观| 免费av毛片视频| 69av精品久久久久久| e午夜精品久久久久久久| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 国产又色又爽无遮挡免费看| 国产成人精品在线电影| 午夜福利视频1000在线观看 | 乱人伦中国视频| 亚洲av成人av| 久久久久国内视频| 88av欧美| 后天国语完整版免费观看| 两人在一起打扑克的视频| 午夜成年电影在线免费观看| 亚洲午夜理论影院| 动漫黄色视频在线观看| 日韩 欧美 亚洲 中文字幕| 美女高潮到喷水免费观看| 中国美女看黄片| 桃色一区二区三区在线观看| 天堂影院成人在线观看| 欧美另类亚洲清纯唯美| 国产成人av激情在线播放| 好看av亚洲va欧美ⅴa在| 久久国产精品影院| 色老头精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产黄a三级三级三级人| 大型av网站在线播放| 国产欧美日韩一区二区精品| 校园春色视频在线观看| 精品高清国产在线一区| 亚洲人成网站在线播放欧美日韩| 国产成人系列免费观看| 亚洲五月婷婷丁香| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 亚洲av成人av| 久久性视频一级片| 国产精品一区二区在线不卡| 一级a爱视频在线免费观看| 两个人免费观看高清视频| a级毛片在线看网站| 日本在线视频免费播放| 一级黄色大片毛片| 91麻豆精品激情在线观看国产| 99riav亚洲国产免费| 久久人人爽av亚洲精品天堂| 麻豆久久精品国产亚洲av| 亚洲av成人av| 日韩有码中文字幕| 成人欧美大片| 波多野结衣高清无吗| 极品教师在线免费播放| 欧美色欧美亚洲另类二区 | 91精品三级在线观看| 好男人在线观看高清免费视频 | 欧美成人免费av一区二区三区| 欧美日韩瑟瑟在线播放| 日本 av在线| 18禁美女被吸乳视频| 日本三级黄在线观看| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 亚洲人成伊人成综合网2020| 9热在线视频观看99| 国产91精品成人一区二区三区| 久久亚洲真实| 天堂影院成人在线观看| 亚洲精品中文字幕在线视频| 亚洲中文av在线| 两人在一起打扑克的视频| 香蕉久久夜色| 久久精品国产清高在天天线| 禁无遮挡网站| 91精品国产国语对白视频| 亚洲少妇的诱惑av| 俄罗斯特黄特色一大片| 欧美色欧美亚洲另类二区 | 日本 av在线| av网站免费在线观看视频| 人人澡人人妻人| av天堂在线播放| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 麻豆成人av在线观看| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 天堂动漫精品| 人人妻人人澡人人看| 精品久久久精品久久久| 亚洲成人精品中文字幕电影| 国产成人精品无人区| 高清在线国产一区| 久久久久久免费高清国产稀缺| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| av天堂在线播放| 两个人视频免费观看高清| 欧美日韩亚洲国产一区二区在线观看| 777久久人妻少妇嫩草av网站| 亚洲第一青青草原| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 午夜免费鲁丝| av天堂在线播放| 人成视频在线观看免费观看| 国产高清videossex| 国产99白浆流出| 一个人免费在线观看的高清视频| 久久草成人影院| 国产视频一区二区在线看| 亚洲熟妇熟女久久| 十分钟在线观看高清视频www| 免费无遮挡裸体视频| 99re在线观看精品视频| 亚洲国产精品成人综合色| 午夜成年电影在线免费观看| 亚洲一区二区三区色噜噜| 亚洲性夜色夜夜综合| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 欧美黄色淫秽网站| 精品福利观看| 欧美日本中文国产一区发布| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 极品教师在线免费播放| 久久久国产成人免费| 国产精品亚洲美女久久久| 精品一品国产午夜福利视频| 如日韩欧美国产精品一区二区三区| 日日爽夜夜爽网站| 国产一区在线观看成人免费| www.www免费av| 中文字幕久久专区| 丁香欧美五月| 午夜福利视频1000在线观看 | 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 又黄又粗又硬又大视频| 国产精品,欧美在线| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品,欧美在线| 99香蕉大伊视频| 国产精品国产高清国产av| 99re在线观看精品视频| 国产成人精品久久二区二区91| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 久久久久九九精品影院| 极品人妻少妇av视频| 亚洲最大成人中文| 亚洲第一青青草原| 久99久视频精品免费| 91在线观看av| 在线观看一区二区三区| 亚洲人成电影观看| 中文字幕av电影在线播放| 亚洲美女黄片视频| 免费搜索国产男女视频| 高潮久久久久久久久久久不卡| 纯流量卡能插随身wifi吗| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说| 中文字幕av电影在线播放| 亚洲欧美日韩无卡精品| 1024视频免费在线观看| 久久热在线av| 亚洲片人在线观看| 午夜老司机福利片| 精品少妇一区二区三区视频日本电影| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 一夜夜www| 可以在线观看毛片的网站| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 精品久久久久久,| 欧美色视频一区免费| 一级a爱视频在线免费观看| 黄色视频,在线免费观看| 精品一区二区三区av网在线观看| 美女午夜性视频免费| 国产麻豆69| 亚洲熟女毛片儿| 满18在线观看网站| 色综合婷婷激情| 深夜精品福利| 成人三级做爰电影| 日本免费一区二区三区高清不卡 | 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 91成人精品电影| 真人一进一出gif抽搐免费| 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址 | 精品日产1卡2卡| 97碰自拍视频| 如日韩欧美国产精品一区二区三区| 9热在线视频观看99| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 久久香蕉激情| 在线观看www视频免费| cao死你这个sao货| 亚洲专区字幕在线| or卡值多少钱| 99精品在免费线老司机午夜| 亚洲视频免费观看视频| 熟女少妇亚洲综合色aaa.| 精品久久久久久,| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| 夜夜爽天天搞| 美女国产高潮福利片在线看| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 婷婷丁香在线五月| 婷婷六月久久综合丁香| 国产精品一区二区在线不卡| 亚洲激情在线av| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 日本vs欧美在线观看视频| 亚洲三区欧美一区| 日韩高清综合在线| 一二三四在线观看免费中文在| 69av精品久久久久久| 国产精品乱码一区二三区的特点 | 脱女人内裤的视频| 十八禁网站免费在线| 亚洲情色 制服丝袜| 久久中文看片网| 久久午夜综合久久蜜桃| 久热这里只有精品99| 亚洲国产中文字幕在线视频| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 亚洲精品在线观看二区| 热99re8久久精品国产| 自线自在国产av| 99久久国产精品久久久| 亚洲熟女毛片儿| 久久亚洲真实| 成年版毛片免费区| 一个人观看的视频www高清免费观看 | 国产成人精品在线电影| 精品高清国产在线一区| 亚洲无线在线观看| 久久青草综合色| 国产黄a三级三级三级人| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 国产一区二区在线av高清观看| 中文字幕av电影在线播放| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 黄色视频不卡| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站 | 99久久国产精品久久久| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 国产激情欧美一区二区| 久久精品影院6| 脱女人内裤的视频| 91麻豆精品激情在线观看国产| www.熟女人妻精品国产| 久久婷婷人人爽人人干人人爱 | 婷婷精品国产亚洲av在线| 久久久精品国产亚洲av高清涩受| 精品电影一区二区在线| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| tocl精华| 身体一侧抽搐| 99香蕉大伊视频| 18禁观看日本| 久久久国产成人精品二区| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 亚洲第一青青草原| 脱女人内裤的视频| 国产成人精品在线电影| 国产精品亚洲美女久久久|