• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of trotting controller for the position-controlled quadruped robot①

    2016-12-05 06:39:03ZhangGuoteng張國騰LiuJinchangRongXuewenLiYibinChaiHuiLiBinZhangHuiZhangShuaishuai
    High Technology Letters 2016年3期

    Zhang Guoteng (張國騰):Liu Jinchang,Rong Xuewen:Li Yibin:Chai Hui,Li Bin:Zhang Hui:Zhang Shuaishuai

    (*School of Control Science and Engineering:Shandong University:Jinan 250061:P.R.China)(**High Technology Research Development Center:Ministry of Science and Technology of the People’s Republic of China:Beijing 100044:P.R.China)

    ?

    Design of trotting controller for the position-controlled quadruped robot①

    Zhang Guoteng (張國騰)*:Liu Jinchang*To whom correspondence should be addressed.E-mail:liujc@htrdc.comReceived on Apr.1,2015**,Rong Xuewen*:Li Yibin*:Chai Hui*,Li Bin*:Zhang Hui*:Zhang Shuaishuai*

    (*School of Control Science and Engineering:Shandong University:Jinan 250061:P.R.China)(**High Technology Research Development Center:Ministry of Science and Technology of the People’s Republic of China:Beijing 100044:P.R.China)

    This work presents a controller designed for position-controlled quadrupedal dynamic locomotion:aiming at simple and robust trotting control.The controller takes the torso attitude angles and velocities into planning foot trajectories.Firstly design of the servo motor actuated quadruped robot is introduced and the kinematic equations are deduced.Then a scheme is presented for controlling the robot torso attitude based on the virtual leg model.Furthermore:it demonstrates the design of the controller which enables the robot to have a wide range of trotting gaits and omni-directional motions.Finally:results of robust trotting in various speeds:path tracking and push recovery in simulation are reported:and results of trotting on real quadruped robots will be studied.

    quadruped robot:position control:torso attitude:foot trajectory:trotting locomotion

    0 Introduction

    Legged robots have shown great superiority in terms of agility and versatility compared to their wheeled or tracked counterparts.They are able to navigate on much more uneven and rough terrains.These capabilities of legged robots have made it a new hot spot in robots research.Nevertheless:legged robots are more complicated in structure and difficult to control than wheeled or tracked robots.The theories concerned with legged robots are still in the development stage[1].

    Legged animals in nature could keep balance during motions even after they suffer from unexpected disturbances.To date:lots of research have been made towards bridging the gap between locomotivity and balancing skills of legged robotic systems and that of real animals.The most well-known intuitive method for controlling legged robots is the three part locomotion algorithms developed by Raibert[2,3].The most famous quadruped robots built by Boston Dynamics:BigDog[4]and LS3[5]are believed being developed by Raibert’s three-part locomotion algorithms[6]though no details about the control methods have been published.Besides:quadruped robots like TITAN-VIII[7]or LittleDog[8]took the ZMP (zero moment point) method in their locomotion control.The CPG-based neural network with reflex feedbacks and interconnections qualified the Tekken robot with impressive trotting skills[9].The robot HyQ was controlled by a reactive controller consisting of a CPG-based trajectory generator and an attitude controller[10].And the Autonomous Systems Laboratory combined with virtual model control:PD controller and virtual forces in controlling their quadruped robot StarlETH[11].

    Though some achievements have been got in the locomotion and balance control of legged robots:there is still a long way to go.The algorithms mentioned above generally need precise sensors:sophisticated computing:advanced actuators and possess force-control sections.These qualifications are unavailable for the ”civilian-style” robots.

    In 2012:Center for Robotics of Shandong University developed a servo motor actuated small mammal bionic quadruped robot called LittleCalf.The robot was designed to serve as a platform to study not only its gaits and joint action:the generate and switch of gaits as well as the ability to keep balance:but also the bionic kinematics.

    Owning to the limitation of the servo motors in LittleCalf:only position control is available for the robot joints.Traditional position-controlled quadruped robots introduce foot trajectory planning in controlling the motion of the robots.Refs[1,12-15] show some kinds of control strategies for position-controlled quadruped robots.Yet those works paid great attention on the motion of the robot feet instead of the overall attitude.And the robust of the robots to external disturbances are not verified.

    In this study:considering the peculiarity of the LittleCalf platform:a novel trotting controller for position-controlled quadruped robots is demonstrated.The controller takes the attitude angles and velocities of the torso into planning the foot trajectories and drive the robot to move with trotting gait as well as to maintain the torso attitude.

    This paper is organized as follows:Section 1 gives an overview about the LittleCalf robot.Kinematics of the robot are deduced in Section 2.Section 3 gives the torso attitude control algorithm.Section 4 demonstrates the trotting controller designed for the LittleCalf robotic platform and Section 5 reports the experimental results obtained from simulation as well as the physical prototype.Finally:Section 6 contains the conclusions and further work.

    1 Overview of LittleCalf

    1.1 Mechanism design

    As shown in Fig.1:the robot consists of one torso and four legs.Each leg has a rolling rotary joint in the hip:a pitching rotary joint in the hip and a pitching rotary joint in the knee:which allows the foot to move in a three dimensional workspace around the hip.This reduces the complexity of the quadruped machine:but still enables static walking over rough terrain:robot balance and robust dynamic gaits[16].The joints are configurated to be centrosymmetric with knees of the front and hind legs pointing to each other:since Zhang et al.have concluded that this kind of configuration is beneficial for slipping-inhibition:and can improve the stability of motion[17].

    The joints topology is shown in Fig.2.

    Fig.1 Three dimensional prototype of LittleCalf

    Fig.2 Joints topology and D-H coordinate frames of LittleCalf

    1.2 Control system

    Servo motor MG995 is chosen as the actuator of the robot’s joint.This kind of servo motor has the advantage of high torque:short response time:light weight and easy to control.A high capacity lithium-ion battery is fixed under the torso to supply the whole system.Onboard control circuit is based on the single chip computer (SCM) MC9S12XS128 from Freescale:coupled with the power management module:motor drive module:environmental perception module (IMU to detect attitude of the torso:and foot switch to detect whether the foot touches the ground) and communication module.

    Fig.3 Block diagram of control system

    SpecificationsValuesWeight(withbattery)1.6kgDimensions(fullystretchedlegs)230mm×160mm×190mm(Length×Width×Height)Torsosize2l=200mm2w=110mmh=10mmLegLengtha0=30mma1=50mma2=60mmDOFsperleg3active(rotary)Jointrangeofmotion90degreesMaxrotatespeedofjoint0.13s/60degreesMaxtorqueofjoint1.3N·m

    Block diagram of the control system is shown in Fig.3.Table 1 shows the major technical specifications of LittleCalf.

    2 Kinematic equations

    2.1 D-H coordinate frames and link parameters

    As shown in Fig.2:the origin of the body fixed coordinate frame {Ob} locates in the geometric center of the torso:andxbpoints to the forward direction:zbpoints opposite to the gravity direction.Andybaxis is confirmed using right-hand rule.There are four coordinate frames noted as {Oi0}(i=0:1:2:3) fixed on the four corners of the torso respectively.The coordinate frames fixed on linkknoted as {Oik} of four legs are established according to D-H rules[14].Fig.2 shows coordinate frames of leg 0.Coordinate frames of the other three legs are establish accordingly.Since the mechanical configurations of the four legs are extremely identical:the coordinate frames and transformation matrices of four legs are identical too.The only difference is the posture between fore legs and rear legs.The link parameters of LittleCalf are illustrated in Fig.2 and listed in Table 2.

    Table 2 Link parameters of LittleCalf

    2.2 Forward kinematic equations

    Since the four legs of LittleCalf have the same D-H coordinate frames and link parameters:they have same forward kinematic equations from {Oi4} to {Oi0}.The transformations from {Oi0} to {Ob} for four legs can be expressed by the following transformation matrix with different values ofδandλ:

    (1)

    wherel:wandhare geometry parameters of the torso specified in Fig.2:δandλare sign flags which are defined as

    (2)

    (3)

    The coordinates of one foot with respect to {Oi0} corresponding to the same leg can be obtained easily through homogeneous transformations.It is given by

    (4)

    whereck=cosθik:sk=sinθik:s12=sin(θi1+θi2):c12=cos(θi1+θi2).

    Eq.(4) is the forward kinematic equation for four legs.The coordinates of four feet in {Oi0} can be solved respectively from it.Furthermore:the coordinates of four feet in {Ob} can be obtained by premultiplying transformation matrixi0Ti4withbTi0respectively.And the coordinate {xi:yi:zi}Tof one foot in {Ob} can be gained by

    (5)

    And the jacobian matrix for the leg is

    (6)

    2.3 Inverse kinematic equations

    The inverse kinematic analysis is necessary for motion planning and controlling.Although the forward kinematic equations for four legs from {Oi4} to {Oi0} are identical:the inverse kinematic equations of joint variablesθi1andθi2are not the same since the fore legs and the rear legs are indifferent postures.The feet of LittleCalf are simplified to four points in this paper.If given the coordinates of one foot with {xi:yi:zi}Tin {Ob}:the corresponding joint variablesθikcan be resolved from the inverse kinematic equations.Moreover:its coordinates in other frames can be obtained by forward and inverse homogenous transformation.Ref.[18] gives the detailed derivation for inverse kinematic equations of a quadruped robot.This study gives the results directly as

    (7)

    Among them

    (8)

    (9)

    2.4 Workspace of the foot

    Given the mechanical parameters of LittleCalf and rotation range of the joints:using Eq.(5):the foot workspaces of the robot could be got.The workspace can help us in the motion planning of each foot.Take leg 0 as example:the foot workspace could be got show in Fig.4.And the trajectory of left front foot in this workspace could be planned.

    Fig.4 Workspace of the foot of leg 0 with respect to torso fixed frame {Ob}:(a):(b) and (c) show the projection of the workspace on thex-yplane:x-zplane andy-zplane:(d) shows foot workspace in 3D view

    Point {x0:ini:y0:ini:z0:ini}T={100:55:-130}Tis chosen as the initial foot position of leg 0:since there are rather big space for the foot to move near this point.Initial position of the other three feet are confirmed similarly.

    3 Control torso attitude

    In nature:quadruped animals employ different kinds of gaits to move.The trotting is the kind of gait that the diagonal legs move together:which exhibits good energy efficiency over a wide range of running speed:showing no significant pitch or roll motion during each stride and therefore is often seen in nature[19].Many famous quadruped robots such as HyQ[20]:BigDog[4]:LS3[5]:have selected trotting gait as their primary gait.Thus this work majors in controlling the trotting gait of the robot.

    The trot is a kind of dynamic gait and in support phase the diagonal standing legs synchronously support the body.Thus the torso would easily rotate about the body diagonal line in trotting.And attention must be paid on controlling the torso attitude.

    The concept of the virtual leg is invoked to simplify the control algorithms of the quadruped running.Since the trotting gait pairs their diagonal legs:and the diagonal feet will move almost the same way from their hips and exert equal forces on the ground:their behavior is precisely equivalent to the behavior of the virtual leg[3,21].

    Fig.5 shows the correspondences between the trot gait and the equivalent virtual model.The motion of the trotting quadruped robot can be simplified to a virtual biped one and further to the one with single leg.Then the motion of one-leg model are furthers simplified to the two-dimensional plane.Fig.6 shows the planar graph of the simplified robot model and the coordinate system built.All the model variables in Fig.6 are defined in Table 3.

    Since LittleCalf is a position-controlled robot:the joint torques can not be directly regulated to control the torso attitude.But the foot velocity can be programmed so as to make the hip exert equivalent torque.

    Fig.6 Planar graph of the simplified robot model

    VariablesDescriptionsOgcoordinateframeattachedtothegroundObcoordinateframeattachedtotheCOMofthetorsoggravitationalaccelerationMtorsomassItorsoinertiaθleganglew.r.t.vertical?torsoattitudeangle?ddesiredtorsoattitudeanglehheightbetweenthetorsoCOMandthehiprleglengthτtorqueexertedbythehipFt,FnforcesactingatthehipbetweenthelegandtorsoFtactstangenttotheleg,andFnactsperpendiculartotheleg(gxh,gzh)hippositioninframeOg(gxm,gzm)positionofthetorsoCOMinframeOg(bxs,bzs)positionofthesupportfootinframeOb

    This model makes the simplifying assumptions of negligible frictional losses:zero leg mass:and a total center of mass (COM) located at the torso.Dynamic equations for the model are derived as

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    τ=-Fnr

    (17)

    Assume the controller could maintain the robot torso relatively level andφis closed to 0.The simplification that sinφ≈0:cosφ≈1:sin(φ-θ)≈sin(-θ) and cos(φ-θ)≈cos(-θ) can be got.Then Eqs(12) (13) and (16) can translate to

    (18)

    (19)

    (20)

    (21)

    (22)

    Since Eq.(22) is a nonlinear differential equation:it is difficult to obtain the universal analytic solutions.But the qualitative analysis of it can be taken.Integrate Eq.(22) with respect to time:yields:

    (23)

    where subscribe 0 indicates the initial value:and

    (24)

    (25)

    Note thatAis always positive.So if given the desired torso attitude angleφdand

    (26)

    Under the assumption of negligible frictional losses:the feet do not move with respect to the ground during the stance phase and the backward motion of a support foot with respect to the body coordinate is equal to the forward motion of the body with respect to the ground.That is

    (27)

    4 Trotting controller

    The control of the rectilinear motion of the robot is divided into the support phase control and flight phase control.Both of them are designed based on the virtual leg model and later on translated to the quadruped model.Then the yaw controller is involved to modify the foot position and enable the robot to rotate around the yaw axis.

    For simplicity:all of the following coordinates in this paper are defined in the body frame unless noted otherwise.

    4.1 Support Phase

    For the foot in the support phase:thezcoordinate of the foot should remain unchanged as mentioned before.Meanwhile thexcoordinate would customarily be function of the starting point:the velocity and time.See

    (28)

    where

    xsandzsare the coordinates of the support foot.

    xs0is thexcoordinate of the starting point:i.e.:the vertical position of the support foot at time 0.

    tis the current time.

    z0is the initial vertical coordinate of support foot.

    (29)

    And the foot trajectory of the support phase will change to

    (30)

    4.2 Flight Phase

    Motion trajectory of the flight foot should go through the lift-off point (xf0:z0):and the touch-down point (xfT:z0).Obviously the lift-off point is the final status of the last support phase:and the touch-down point will be the initial status of the next support phase.

    (31)

    In order to minimize the contact forces between ground and the foot:it is generally considered that the foot trajectory should meet the demand that the vertical velocity becomes zero at the time of touch-down:lift-off and maximum foot height.

    In addition:it is hoped that there are no steps with the position curve and velocity curve of the foot.According to Eq.(29):the velocity of the support foot (also velocity of the torso) would not be a constant value and the coordinate of the foot while lifting off would be variable.Thus the foot trajectory of the flight phase should be state based.

    The requirements for the flight phase trajectory can be summarized as

    (32)

    where

    xfandzfare the coordinates of the flight foot.

    Hfindicates the step height.

    Tfis the length of the flight phase time.For trotting gait with duty factorβ=0.5:Tf=Ts.

    Thus the equations for the flight phase foot trajectory are

    (33)

    (34)

    The next step is to transform the virtual leg model back to the quadruped robot.In the derivation mentioned above trajectories that lie in thex-zplane of the virtual leg model are generated:but this can be easily extended to any orientation and eventually to the quadruped robot.Equations for the foot of the real quadruped robot are given in Appendix A.

    4.3 Yaw Control

    The control algorithm discussed earlier can drive the robot to move in longitudinal or lateral directions:while yaw control would enable it to spin or make turns.

    In our controller:foot placement is used to generate a yaw motion of the robot.As shown in Fig.7:if the feet are positioned to rotate the line connecting the feet about the center of mass:the robot body will spin around the yaw axis (zbaxis in Fig.2).The resulting couple is used to manipulate the yaw orientation of the quadruped without disturbing its rectilinear motions.Coordinates for the feet will be

    (35)

    where

    (xi:yi:zi) are the coordinates of footiin {Ob} programmed for the rectilinear motions.

    (Xi,Yi,Zi) are the modified coordinates of footi.

    ψ(t) is the angle between the line through the hips and the line through the diagonal feet:as shown in Fig.7.

    Fig.7 Control of turning about the yaw axis.The diagram shows the quadruped viewed from above:indicating how the placement of the feet can be used to generate a spinning motion of the robot.The filled circles indicate the location of the hips.Tile open circles indicate the placement of the feet

    Similar to the previous part:ψ(t) of the support feet and flight feet are programmed separately with the desired yaw rate.For the support feet:

    (36)

    And for the flight feet:

    (37)

    BlockdiagramofthetrottingcontrollerisshowninFig.8.

    5 Experiments

    Forthesakeofverifyingkinematicequationsandtheperformanceofthetrottingcontroller:andgettingsomeimportantparameters:experimentsareconductedbothinsimulationandontherealrobot.ThemobileroboticssimulatesoftwareWebotsisusedforthesimulationtests.ThissectiondemonstratessuccessfultrottinginsimulationandontherealLittleCalfrobotwiththe same controller:while it also shows how the system responds to unexpected perturbations in simulation.

    Fig.8 Block diagram of the trotting controller

    Some parameters used in the simulation and the physical prototype test are listed in Appendix B.

    5.1 Trotting in simulation

    The initial implementation and testing cycle have been performed in simulation.There it is able to test and tune a number of different controller parameter sets and obtain exhaustive data about the motions.

    The trotting controller is capable of trotting in place where it maintains the body attitude very close to zero.The desired forward velocity of the robot is ramped up to 0.05m/s and then to 0.1m/s and finally ramp down to zero.In Fig.10:a run of this procedure is presented.Fig.9(a) and Fig.9(b) present the robot velocity while Fig.9(c) and Fig.9(d) show the torso attitude throughout this simulation trial.Example snapshots of the robot trotting in simulation are available in Fig.10.And the leg motions during the 0.1m/s trot in world frame are plotted by stick sequence for two gait cycles in Fig.11.

    (a) Forward velocity of the robot torso through the simulation run

    (b) Lateral velocity of the robot torso through the simulation run

    (c) Roll angle of the robot torso through the simulation run

    (d) Pitch angle of the robot torso through the simulation run

    Fig.9 Plots of the velocity and attitude of the robot throughout the simulation run.The robot was trotting at place at first and then the desired forward velocity ramped up to 0.05m/s and then to 0.1m/s and finally ramped down to zero

    Fig.10 Snapshots showing the robot trotting in simulation.From left to right:trotting at a forward velocity of 0m/s:at 0.05m/s and 0.1m/s

    Moreover:to test the superiority of the controller compared with traditional position-controlled gait planning method:the composite cycloid foot trajectory in Ref.[1] on our robot is applied.Fig.12 shows the torso attitude of the robot while the robot trotting forward with velocity of 0.1m/s using the composite cycloid foot trajectory in Ref.[1] as well as using the trotting controller proposed in this paper.Obviously the controller could maintain the body attitude much more close to zero.

    Fig.11 Stick figure sequence of leg 0 (right) and leg 2 (left) for two gait cycles (from left to right):described in sagittal plane of world frame.The desired forward speed of the robot is 0.1 m/s

    (a) Roll angles of the robot torso

    (b) Pitch angles of the robot torso

    Fig.12 Comparison of the torso attitude angles collected in the simulator while the robot trotting with the composite cycloid foot trajectory and with the trotting controller.Dashed lines:trotting with the composite cycloid foot trajectory.Solid line:trotting with the trotting controller.The desired forward velocity are all set to 0.1m/s

    5.2 Path tracking test

    If the robot has the ability to actively move forward or sideward:spin or make turns:it can effectively avoid large obstacles in front or track a complex path.In the simulation:the robot is dictated to track a desired path as shown in Fig.13(a) (dashed line).The starting point isOand the robot moves forward to pointA.AtAit spins for 90° to right and then move forward to pointB.After that:the robot is dictated to make a right turn and draw a semicircle path to pointC.Finally it moves right-sideward and arrives atD.

    The simulation results for this task are shown in Fig.13.The solid line in Fig.13(a) indicates the desired and actual trajectory of the robot’s COM.It seems that the robot tracks the desired path quite well.Fig.13(b):Fig.13(c) and Fig.13(d) show the roll:pitch and yaw angles of the torso during the motion.The vertical dashed lines labelledA:B:CandDindicate the moments when the robot arrives at pointA:B:CandDof the path.And the dates between timeAandA’ show the spinning motion of the robot at pointA.The snapshots of this simulation are exhibited in Fig.14.

    (a) Desired and actual path of the robot

    (b) Roll angle of the robot torso

    (c) Pitch angle of the robot torso

    (d) Yaw angle of the robot torso

    Fig.13 Simulation results of path tracking test.In (a):the solid and dashed lines indicate the actual and desired paths:respectively.(b)(c)(d) shows the torso attitude angles and the vertical dashed lines indicate the moments when the robot arrives at the corresponding points

    Fig.14 Snapshots showing the path tracking simulation

    5.3 Impact recovery

    A showcase of the controller robustness is the ability to recover from unexpected perturbations.Due to the morphology of the robot:perturbations along the coronal plane are much harder to accommodate[22].the response of the controller is tested while trotting in place and while trotting at a constant velocity.

    Unexpected impacts are exerted on the broadside of the robot by a pendulum bob in simulation.The impulse acting on the robot’s torso is 0.3kg·m/s.When trotting in place and when trotting in the specified velocity range the robot can successfully recover from perturbations.Fig.15 shows how the controller responds to the impact by presenting the attitude and the velocity of the robot body as it is impacted laterally by the pendulum bob:and how the disturbances are dissipated.

    5.4 Test on LittleCalf

    The trotting controller is tested on the real quadruped robot with similar success including experiment with the robot trotting in place:trotting forward and backward.Fig.17 shows a photo of the LittleCalf robot trotting forward with the forward velocity of 0.1m/s.In the same way:the composite cycloid foot trajectory proposed in Ref.[1] is also applied on LittleCalf as comparison.The pitch and roll angles of the torso in these experiments are presented in Fig.18.And similarly:LittleCalf also demonstrates the ability of omni-directional moving and the path tracking test is shown in Fig.19.

    Snapshots from this test are presented in Fig.16.

    (a) Forward velocity of the robot torso through the lateral impact test

    (b) Lateral velocity of the robot torso through the lateral impact test

    (c) Roll angle of the robot torso through the lateral impact test

    (d) Pitch angle of the robot torso through the lateral impact test

    Fig.15 Plots of the velocity and attitude of the robot collected from the lateral impact test.Vertical dashed line shows the time that the robot torso being impacted laterally by the pendulum bob.The bob is 0.15kg weight and moves at speed of 2m/s before knocking on the robot

    Fig.16 Snapshots showing the impact recovery of the quadruped robot

    Fig.17 Photo of the LittleCalf trotting with forward velocity of 0.1m/s

    (a) Roll angles of the robot torso

    (b) Pitch angles of the robot torso

    Fig.18 Comparison of the torso attitude angles collected through LittleCalf while the robot trotting with the composite cycloid foot trajectory and with the trotting controller.Dashed lines:trotting with the composite cycloid foot trajectory.Solid line:trotting with the trotting controller.The desired forward velocity are all set to 0.1m/s

    Fig.19 Snapshots showing the path tracking test on LittleCalf

    Objectively speaking:the test done on LittleCalf is less than perfect compared to that in simulation on account of the limitations of the hardware platform.That is the shortcoming of position control which requires high motion precision and accurate sensor values[23].And in simulation it is possible to decouple the control laws from the limitations of specific hardware platforms.Nonetheless:the controller is still quite effective on LittleCalf and shows superiority in maintaining the torso attitude.

    6 Conclusion

    Based on the actuation mode and sensors of the robot LittleCalf:this paper elaborates a trotting controller for the position controlled quadruped robot:which utilizes the torso attitude control:moving velocity control and yaw control.It has shown how the controller is organized and how the different tasks are implemented.Main advantage of the controller is that the complex dynamic calculation of the robot and complicated force control are avoided yet the robot could move steadily and stably.How this trotting controller is able to trot at varying speeds and varying directions and how it can robustly dissipate unexpected perturbations in simulation are presented.Moreover:Effectiveness of the trotting controller is also verified by experiments on LittleCalf.

    However:every coin has two sides.Shortcomings of our trotting controller are quite obvious:which requires high motion precision and accurate attitude sensor values.And collision between the feet and the ground may be strong since it does not employ force control thus this method may not be suitable to be directly applied to some large robots.Nevertheless:our controller is still quite effective in improving the stability and robustness of quadruped trotting and it is believed it will provide a new idea for the quadruped researchers.

    In the future work:the controller should be improved so as to enable the robot to move on different types of terrain.There would be more simulations and experiments.

    Appendix A:Correspondence between the virtual leg model and the quadruped robot

    If legiis in support phase:the coordinate of the foot in {Ob} should be

    (38)

    (39)

    zi,s=zi,ini

    (40)

    where (xi,ini:yi,ini:zi,ini) indicates the initial point of footideclared in the last part of Section 2.φpandφrare the pitch and roll angles of the robot torso:φpdandφrdare the desired values.

    If legiis in flight phase:the coordinate of the foot in in {Ob} is

    (41)

    (42)

    (43)

    (44)

    (45)

    Note that Eqs(38)(39)(40)(42)(44)(45) do not involve the yaw control.

    Appendix B:Experiments parameters

    Table 4 Control parameters of the simulated model and LittleCalf

    Reference

    [1] Rong X:Li Y:Ruan J:et al.Design and simulation for a hydraulic actuated quadruped robot.Journalofmechanicalscienceandtechnology:2012:26(4):1171-1177

    [2] Raibert M H.Legged robots that balance.Cambridge:MA:MIT press:1986

    [3] Raibert M H.Trotting:pacing and bounding by a quadruped robot.Journalofbiomechanics:1990:23:79-98

    [4] Raibert M:Blankespoor K:Nelson G:et al.Bigdog:the rough-terrain quadruped robot.In:Proceedings of the 17th World Congress The International Federation of Automatic Control:Seoul:Korea:2008.10822-10825

    [5] Michael K.Meet Boston dynamics’ LS3-the latest robotic war machine.ResearchOnline:2012

    [6] Xie H:Ahmadi M:Shang J:et al.An intuitive approach for quadruped robot trotting based on virtual model control.ProceedingsoftheInstitutionofMechanicalEngineers:PartI:JournalofSystemsandControlEngineering:2015:229(4):342-355

    [7] Kurazume R:Yoneda K:Hirose S.Feedforward and feedback dynamic trot gait control for quadruped walking vehicle.AutonomousRobots:2002:12(2):157-172

    [8] Kalakrishnan M:Buchli J:Pastor P:et al.Learning:planning:and control for quadruped locomotion over challenging terrain.TheInternationalJournalofRoboticsResearch:2011:30(2):236-258

    [9] Fukuoka Y:Kimura H:Cohen A H.Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts.TheInternationalJournalofRoboticsResearch:2003:22(3-4):187-202

    [10] Barasuol V:Buchli J:Semini C:et al.A reactive controller framework for quadrupedal locomotion on challenging terrain.In:Proceedings of the IEEE International Conference on Robotics and Automation:Karlsruhe:Germany:2013.2554-2561

    [11] Gehring C:Coros S:Hutter M:et al.Control of dynamic gaits for a quadrupedal robot.In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation:Karlsruhe:Germany:2013.3287-3292

    [12] Yi S.Reliable gait planning and control for miniaturized quadruped robot pet.Mechatronics:2010:20(4):485-495

    [13] Kim H:Kang T:Loc V G:et al.Gait planning of quadruped walking and climbing robot for locomotion in 3D environment.In:Proceedings of the IEEE International Conference on Robotics and Automation:Barcelona:Spain:2005.2733-2738

    [14] Sakakibara Y:Kan K:Hosoda Y:et al.Foot trajectory for a quadruped walking machine.In:Proceedings of the IEEE International Workshop on Intelligent Robots and Systems:IROS ’90:Ibaraki:Japan:1990.315-322

    [15] Dong H:Zhao M:Zhang J:et al.Gait planning of quadruped robot based on third-order spline interpolation.In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems:Beijing:China:2006.5756-5761

    [16] Semini C:Tsagarakis N G:Guglielmino E:et al.Design of HyQCa hydraulically and electrically actuated quadruped robot.Proceedings of the Institution of Mechanical Engineers:Part I:Journal of Systems and Control Engineering:2011:831-849

    [17] Zhang X:Zheng H:Guan X:et al.A biological inspired quadruped robot:structure and control.In:Proceedings of the IEEE International Conference on Robotics and Biomimetics:Hong Kong:China:2005.387- 392

    [18] Rong X:Li Y:Ruan J:et al.Kinematics analysis and simulation of a quadruped robot.AppliedMechanicsandMaterials:2010:26:517-522

    [19] Nanua P:Waldron K J.Energy comparison between trot:bound:and gallop using a simple model.Journalofbiomechanicalengineering:1995:117(4):466-473

    [20] Semini C.HyQIDesign and development of a hydraulically actuated quadruped robot:[Ph.D dissertation].Genoa:University of Genoa:2010.45-86

    [21] Raibert M:Chepponis M:Brown Jr H B.Running on four legs as though they were one.IEEEJournalofRoboticsandAutomation:1986:2(2):70-82

    [22] Havoutis I:Semini C:Buchli J:et al.Quadrupedal trotting with active compliance.In:Proceedings of the 2013 IEEE International Conference on Mechatronics:Vicenza:Italy:2013.610-616

    [23] Zhang G:Chai H:Rong X:et al.An impact recovery approach for quadruped robot with trotting gait.In:Proceedings of the 2014 IEEE International Conference on Information and Automation:Hailar:China:2014.819-824

    Zhang Guoteng:born in 1989.He is currently a PhD student in Shandong University:China.He received his B.S degree from Shandong University in 2007.His research interests include robotics:intelligent control:etc.

    10.3772/j.issn.1006-6748.2016.03.012

    ①Supported by the National Natural Science Foundation of China (No.61233014:61305130):China Postdoctoral Science Foundation (No.2013M541912) and the Shandong Provincial Natural Science Foundation (No.ZR2013FQ003:ZR2013EEM027).

    a级毛片在线看网站| 中文在线观看免费www的网站| 99九九在线精品视频 | 国产一区二区三区综合在线观看 | 插逼视频在线观看| 国产乱人偷精品视频| 国产在视频线精品| 久久午夜福利片| 大码成人一级视频| av天堂久久9| 亚洲内射少妇av| 18禁在线播放成人免费| 一级毛片电影观看| 免费av中文字幕在线| 亚洲欧洲日产国产| 美女xxoo啪啪120秒动态图| 亚洲av电影在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 色吧在线观看| 亚洲精品国产成人久久av| 激情五月婷婷亚洲| 亚洲精品国产色婷婷电影| 日韩制服骚丝袜av| 欧美精品国产亚洲| 各种免费的搞黄视频| 蜜臀久久99精品久久宅男| av免费观看日本| 国产欧美日韩综合在线一区二区 | 又大又黄又爽视频免费| 大陆偷拍与自拍| 久久亚洲国产成人精品v| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻一区二区三区视频| 亚洲天堂av无毛| 精品久久久久久电影网| 日本猛色少妇xxxxx猛交久久| 哪个播放器可以免费观看大片| 大话2 男鬼变身卡| 日韩熟女老妇一区二区性免费视频| 久热这里只有精品99| 日韩一区二区三区影片| 欧美日韩国产mv在线观看视频| 一级毛片电影观看| 最新中文字幕久久久久| 国产午夜精品久久久久久一区二区三区| 你懂的网址亚洲精品在线观看| 人体艺术视频欧美日本| 肉色欧美久久久久久久蜜桃| 在线观看av片永久免费下载| 亚洲激情五月婷婷啪啪| 日日啪夜夜撸| 国产极品天堂在线| 亚洲激情五月婷婷啪啪| 极品人妻少妇av视频| 日韩人妻高清精品专区| 99国产精品免费福利视频| 自线自在国产av| 建设人人有责人人尽责人人享有的| 91在线精品国自产拍蜜月| 深夜a级毛片| 久久久久久久久久久免费av| 另类亚洲欧美激情| 在线免费观看不下载黄p国产| 狂野欧美激情性xxxx在线观看| 九九在线视频观看精品| 黄色欧美视频在线观看| 在线观看www视频免费| 18禁在线无遮挡免费观看视频| 成人国产麻豆网| 午夜福利在线观看免费完整高清在| 免费少妇av软件| 国产视频内射| 天堂8中文在线网| 少妇人妻 视频| 纵有疾风起免费观看全集完整版| 午夜福利,免费看| 亚洲人成网站在线播| 毛片一级片免费看久久久久| 色哟哟·www| 最黄视频免费看| 高清黄色对白视频在线免费看 | 成人国产麻豆网| 日韩伦理黄色片| 爱豆传媒免费全集在线观看| 成人影院久久| 黄色怎么调成土黄色| 一区二区三区免费毛片| 日韩欧美精品免费久久| 亚洲国产精品成人久久小说| 日韩亚洲欧美综合| 欧美 亚洲 国产 日韩一| 国产免费一区二区三区四区乱码| 免费av中文字幕在线| 欧美另类一区| 日本91视频免费播放| 乱人伦中国视频| 国产色婷婷99| 岛国毛片在线播放| 人妻夜夜爽99麻豆av| 国产精品无大码| 亚洲av福利一区| 天美传媒精品一区二区| 色婷婷久久久亚洲欧美| 美女视频免费永久观看网站| 国产日韩欧美在线精品| a级片在线免费高清观看视频| 免费看光身美女| 国产av一区二区精品久久| 亚洲精华国产精华液的使用体验| 国产成人精品福利久久| 国产精品不卡视频一区二区| 日韩成人伦理影院| 国产精品一区二区在线观看99| av网站免费在线观看视频| 看非洲黑人一级黄片| 又大又黄又爽视频免费| av免费在线看不卡| 国产精品秋霞免费鲁丝片| av免费在线看不卡| 国产国拍精品亚洲av在线观看| 女人精品久久久久毛片| 国产极品粉嫩免费观看在线 | 一级爰片在线观看| 丁香六月天网| 亚洲国产欧美日韩在线播放 | 久久久久久久久久成人| 少妇精品久久久久久久| 婷婷色av中文字幕| 麻豆成人午夜福利视频| 天美传媒精品一区二区| 又粗又硬又长又爽又黄的视频| 美女主播在线视频| 日本免费在线观看一区| 国产成人精品福利久久| 丝瓜视频免费看黄片| 三上悠亚av全集在线观看 | 日韩欧美 国产精品| 在线天堂最新版资源| 欧美3d第一页| 一本一本综合久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产视频内射| 精品一区二区三区视频在线| 性色avwww在线观看| 久久午夜福利片| 国精品久久久久久国模美| 18禁在线播放成人免费| 久久综合国产亚洲精品| 91在线精品国自产拍蜜月| 久久 成人 亚洲| 在线观看美女被高潮喷水网站| 有码 亚洲区| 国产精品三级大全| 五月玫瑰六月丁香| 少妇人妻久久综合中文| 亚洲熟女精品中文字幕| 只有这里有精品99| 久久99蜜桃精品久久| 婷婷色麻豆天堂久久| 这个男人来自地球电影免费观看 | 成年人午夜在线观看视频| a级毛色黄片| 久久精品国产鲁丝片午夜精品| 久久婷婷青草| 亚洲欧美成人精品一区二区| 大陆偷拍与自拍| 最新中文字幕久久久久| 99久久精品热视频| 日韩av免费高清视频| 国产欧美日韩综合在线一区二区 | 深夜a级毛片| 久久99蜜桃精品久久| 欧美日韩在线观看h| 日本色播在线视频| 只有这里有精品99| 五月伊人婷婷丁香| 国产一区二区三区av在线| 寂寞人妻少妇视频99o| 老司机影院毛片| av有码第一页| 国产午夜精品一二区理论片| 99久久精品一区二区三区| 欧美精品高潮呻吟av久久| 精品人妻一区二区三区麻豆| 内地一区二区视频在线| 国产在线一区二区三区精| av线在线观看网站| 国产精品免费大片| 黑人高潮一二区| 色吧在线观看| 中国三级夫妇交换| 五月玫瑰六月丁香| 黑人猛操日本美女一级片| 啦啦啦在线观看免费高清www| 亚洲av.av天堂| 九色成人免费人妻av| 一级a做视频免费观看| 激情五月婷婷亚洲| 2018国产大陆天天弄谢| 亚洲av福利一区| 日本猛色少妇xxxxx猛交久久| 色哟哟·www| 人人澡人人妻人| 免费大片18禁| 国语对白做爰xxxⅹ性视频网站| 在线免费观看不下载黄p国产| 午夜激情福利司机影院| 久久精品国产a三级三级三级| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一区久久| 久久国产精品男人的天堂亚洲 | 熟女电影av网| 亚洲成色77777| 亚洲国产日韩一区二区| h日本视频在线播放| www.av在线官网国产| 久久久国产精品麻豆| 日韩av不卡免费在线播放| 深夜a级毛片| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 多毛熟女@视频| 校园人妻丝袜中文字幕| 日韩成人av中文字幕在线观看| 嫩草影院入口| 国产精品熟女久久久久浪| 日韩亚洲欧美综合| 国产视频内射| 精品99又大又爽又粗少妇毛片| 日本欧美视频一区| 亚洲人成网站在线观看播放| 内射极品少妇av片p| 国产黄片美女视频| 国产成人精品无人区| 只有这里有精品99| 视频区图区小说| 色婷婷av一区二区三区视频| 国产精品免费大片| 国产成人免费无遮挡视频| 国产中年淑女户外野战色| 在线观看www视频免费| 精品亚洲乱码少妇综合久久| 成年女人在线观看亚洲视频| 日日摸夜夜添夜夜添av毛片| 五月开心婷婷网| 亚洲第一区二区三区不卡| 男女啪啪激烈高潮av片| 亚洲欧美精品专区久久| 亚洲精品日韩在线中文字幕| 国产 一区精品| 精品久久久久久电影网| 黑人高潮一二区| 午夜久久久在线观看| 成人特级av手机在线观看| 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 一级毛片久久久久久久久女| 精品少妇久久久久久888优播| 精品少妇内射三级| 成年人午夜在线观看视频| 18禁动态无遮挡网站| 乱人伦中国视频| 国产欧美日韩精品一区二区| 精品少妇黑人巨大在线播放| 黄色配什么色好看| 亚洲成人av在线免费| 黑丝袜美女国产一区| 国产成人精品无人区| 只有这里有精品99| 国产午夜精品久久久久久一区二区三区| 亚洲国产av新网站| 国产欧美另类精品又又久久亚洲欧美| 男女国产视频网站| 卡戴珊不雅视频在线播放| 丰满少妇做爰视频| 热re99久久精品国产66热6| 国产色爽女视频免费观看| 亚洲人成网站在线观看播放| 高清视频免费观看一区二区| 久久女婷五月综合色啪小说| 日本-黄色视频高清免费观看| 亚洲精品乱码久久久久久按摩| 国产熟女午夜一区二区三区 | 秋霞伦理黄片| 99热这里只有精品一区| 中文在线观看免费www的网站| a级一级毛片免费在线观看| 黄色日韩在线| 亚洲中文av在线| 99国产精品免费福利视频| 国产成人精品久久久久久| 只有这里有精品99| 亚洲自偷自拍三级| 黄色视频在线播放观看不卡| 伊人久久精品亚洲午夜| 久久久久久伊人网av| 国产 精品1| 午夜免费男女啪啪视频观看| 久久女婷五月综合色啪小说| 亚洲第一区二区三区不卡| 日韩一本色道免费dvd| 欧美精品国产亚洲| 久久午夜福利片| 免费黄网站久久成人精品| av视频免费观看在线观看| 黑丝袜美女国产一区| 午夜日本视频在线| 桃花免费在线播放| 国产精品一区二区在线不卡| 亚洲精品日本国产第一区| 蜜桃久久精品国产亚洲av| 三级经典国产精品| 一区二区三区精品91| 草草在线视频免费看| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 日韩av免费高清视频| 在线观看www视频免费| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 国产精品久久久久久av不卡| 18+在线观看网站| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 丁香六月天网| 大陆偷拍与自拍| 国产精品国产三级专区第一集| 免费不卡的大黄色大毛片视频在线观看| 日本av手机在线免费观看| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 国产 一区精品| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 99热全是精品| 97超碰精品成人国产| 日本黄大片高清| 最新中文字幕久久久久| 成人影院久久| 99久国产av精品国产电影| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 亚洲欧美成人综合另类久久久| 一级毛片电影观看| 一区二区三区乱码不卡18| 国产91av在线免费观看| 大香蕉久久网| 国产极品粉嫩免费观看在线 | 亚洲欧美日韩另类电影网站| 亚洲精品乱码久久久v下载方式| 亚洲三级黄色毛片| 久久久久久久久久人人人人人人| av.在线天堂| 亚洲伊人久久精品综合| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 亚洲图色成人| 久久亚洲国产成人精品v| 三级国产精品欧美在线观看| www.色视频.com| 国产综合精华液| 国产乱来视频区| 国产在线男女| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 伊人久久精品亚洲午夜| 男的添女的下面高潮视频| 亚洲av男天堂| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线 | av在线app专区| 黄色一级大片看看| av免费在线看不卡| 色婷婷久久久亚洲欧美| 一个人免费看片子| 久久久久久久久久人人人人人人| 国产精品国产三级专区第一集| 日韩不卡一区二区三区视频在线| 精品少妇久久久久久888优播| 久久99热这里只频精品6学生| 大香蕉97超碰在线| 午夜视频国产福利| 在线观看免费日韩欧美大片 | 亚洲欧洲日产国产| 曰老女人黄片| 精品久久久噜噜| 男女免费视频国产| 最近最新中文字幕免费大全7| 精品国产国语对白av| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 国产 一区精品| 国产视频首页在线观看| 最近的中文字幕免费完整| 亚洲精品一二三| 男人舔奶头视频| 国产精品女同一区二区软件| 天堂俺去俺来也www色官网| 内射极品少妇av片p| 久久精品国产自在天天线| 久久午夜福利片| 99热6这里只有精品| 亚洲欧美一区二区三区国产| 99热这里只有是精品在线观看| 高清视频免费观看一区二区| 我的女老师完整版在线观看| 大片免费播放器 马上看| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 国产精品三级大全| 久热久热在线精品观看| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www | 国产黄色视频一区二区在线观看| 亚洲丝袜综合中文字幕| 亚洲精品自拍成人| 精品一区在线观看国产| 久久人人爽人人片av| 高清视频免费观看一区二区| 欧美日韩在线观看h| 久久6这里有精品| 熟妇人妻不卡中文字幕| 十八禁网站网址无遮挡 | 日本黄色片子视频| 午夜福利网站1000一区二区三区| 美女福利国产在线| 九九爱精品视频在线观看| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 国产 精品1| 久久av网站| 亚洲国产av新网站| 日本欧美国产在线视频| 99热这里只有是精品50| 国产av码专区亚洲av| 国产成人精品婷婷| 国产精品伦人一区二区| 大香蕉久久网| 亚洲国产av新网站| 国产日韩欧美视频二区| 黄色日韩在线| 国产视频首页在线观看| 免费看av在线观看网站| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 亚洲欧洲国产日韩| 日韩大片免费观看网站| 中文字幕精品免费在线观看视频 | 少妇的逼水好多| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 中文字幕亚洲精品专区| 久久免费观看电影| 91精品国产国语对白视频| 80岁老熟妇乱子伦牲交| 视频区图区小说| 狂野欧美白嫩少妇大欣赏| 亚洲成色77777| √禁漫天堂资源中文www| 久久99热6这里只有精品| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件| 亚洲国产最新在线播放| 国产av一区二区精品久久| av福利片在线| av不卡在线播放| 国产色婷婷99| 精华霜和精华液先用哪个| 人妻人人澡人人爽人人| 成年av动漫网址| 亚洲国产精品一区二区三区在线| 在线观看国产h片| 国产爽快片一区二区三区| 日本-黄色视频高清免费观看| 国产精品一区二区在线不卡| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 丰满迷人的少妇在线观看| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片| 狂野欧美白嫩少妇大欣赏| 亚洲成人av在线免费| 国产精品免费大片| 另类精品久久| 99精国产麻豆久久婷婷| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 中文字幕亚洲精品专区| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久| 亚洲不卡免费看| 亚洲欧美一区二区三区黑人 | 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 免费人妻精品一区二区三区视频| 好男人视频免费观看在线| 日韩一区二区视频免费看| 最新中文字幕久久久久| 成年人午夜在线观看视频| 女人久久www免费人成看片| 五月玫瑰六月丁香| 免费在线观看成人毛片| 人人妻人人澡人人爽人人夜夜| 午夜激情久久久久久久| 美女视频免费永久观看网站| 亚洲电影在线观看av| 少妇裸体淫交视频免费看高清| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 精品一区二区三卡| 亚洲天堂av无毛| 精品人妻熟女av久视频| 久久久国产精品麻豆| 亚洲av电影在线观看一区二区三区| 波野结衣二区三区在线| 成人国产av品久久久| 人人澡人人妻人| av黄色大香蕉| 搡女人真爽免费视频火全软件| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 夫妻午夜视频| 中文字幕免费在线视频6| 在线观看av片永久免费下载| av在线播放精品| 国产又色又爽无遮挡免| 亚洲国产日韩一区二区| 天堂中文最新版在线下载| av在线播放精品| 另类亚洲欧美激情| 国国产精品蜜臀av免费| tube8黄色片| 国产精品国产三级专区第一集| 一级毛片我不卡| 看十八女毛片水多多多| 免费大片18禁| 久久狼人影院| 一区二区av电影网| 亚洲精品中文字幕在线视频 | 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 国产日韩欧美在线精品| 国产成人91sexporn| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 一本一本综合久久| 久久av网站| 免费播放大片免费观看视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 精品国产国语对白av| 国产在线视频一区二区| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| av免费在线看不卡| 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 欧美区成人在线视频| 国产成人a∨麻豆精品| 日本黄色日本黄色录像| 欧美性感艳星| a级片在线免费高清观看视频| 有码 亚洲区| h视频一区二区三区| 国产综合精华液| 国产av精品麻豆| 亚洲精品成人av观看孕妇| 日韩精品有码人妻一区| 成人综合一区亚洲| 久久久精品94久久精品| 免费看不卡的av| 久久午夜综合久久蜜桃| 在线播放无遮挡| 成人漫画全彩无遮挡| 欧美人与善性xxx| 久久韩国三级中文字幕| 欧美xxⅹ黑人| 免费观看的影片在线观看| 久久女婷五月综合色啪小说| 99久久综合免费| 三级经典国产精品| 国产免费一区二区三区四区乱码| 九草在线视频观看| 国模一区二区三区四区视频| av福利片在线观看| 精品久久久精品久久久| 日本免费在线观看一区| 大香蕉97超碰在线| 亚洲第一区二区三区不卡| 成年人午夜在线观看视频|