• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells

    2016-12-02 06:04:24LeiZhangXiaoHanXiangChengXuefengTanHeyanZhaoXinhuaZhang
    關(guān)鍵詞:外文首字母著錄

    Lei Zhang, Xiao Han, Xiang Cheng, Xue-feng Tan, He-yan Zhao, Xin-hua Zhang

    Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China

    RESEARCH ARTICLE

    Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells

    Lei Zhang#, Xiao Han#, Xiang Cheng, Xue-feng Tan, He-yan Zhao, Xin-hua Zhang*

    Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0002-5702-6733 (Xin-hua Zhang)

    Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.

    nerve regeneration; ciliary neurotrophic factor; hippocampus; neural stem cells; neurons; neuronal differentiation; fimbria-fornix transection; neural regeneration

    Introduction

    Neural circuit damage or neurotransmitter loss induced by neuronal cell degeneration or necrosis in local brain areas is the pathological basis for neurological diseases (Zhang et al., 2014a; Masoudian et al., 2015; McHugh and Buckley, 2015). Currently, the main method for treatment of these diseases is supplementation of neurotransmitters that are reduced because of neuronal loss (Dineley et al., 2015; Levin et al., 2015; Li et al., 2015). However, this approach does not fundamentally solve the problem of neuronal degeneration and necrosis.

    Currently, stem cell transplantation for the treatment of nervous system diseases is attracting many researchers’ attention (Buzhor et al., 2014; Nicaise et al., 2015; Tong et al., 2015), as stem cells exhibit the potential of multi-lineage differentiation (Komaki et al., 2014; Ren et al., 2015). Neural stem cells (NSCs) are a type of stem cells that are present not only in embryonic tissue (Tsai et al., 2014; Gao et al., 2015) but in adult mammals in the subventricular zone of the lateral ventricles (Boccazzi et al., 2014; Li et al., 2014; Tong et al., 2014), subgranular zone of the dentate gyrus (Clarke and van der Kooy, 2011; Guo et al., 2012; Schulthei? et al., 2013), and even the spinal cord (Xu et al., 2012), striatum (Conway and Schaffer, 2014), and hypothalamus (Rojczyk-Go??biewska et al., 2014). As these cells exhibit the potential of multi-lineage differentiation, they can differentiate into neurons (Cai et al., 2014; Ramos et al., 2015; Wang et al., 2015), oligodendrocytes (Azim et al., 2014; Shi et al., 2014; Shirazi et al., 2015), and astrocytes (Falcone et al., 2015; Han et al., 2015). Therefore, NSCs are considered to be an ideal cell source to treat neurodegenerative diseases. Research shows that under endogenous conditions, the vast majority of NSCs differentiate into glial cells in vivo and in vitro, and only a few differentiate into neurons. External factors such as glial cell-derived neurotrophic factor (Deng et al., 2013), retinoic acid (Gu et al., 2015), nerve growth factor, and brain-derived neurotrophic factor (Liu et al., 2014a) more readily promote differentiation of NSCs into neurons, however the number of neurons is too small to meet the requirements of clinical treatment. Thus, investigation of the molecular mechanisms and additional factors involved during NSC differentiation into neurons is urgently needed.

    In our previous studies, we established a rat model of hippocampal denervation by fimbria-fornix (FiFx) transection, and transplanted subventricular zone-derived NSCs into the hippocampus of this model. We found that within a certain time period, the implanted NSCs were more likely to survive and differentiate into neurons (Zhang et al., 2007). Next, we cultured hippocampal NSCs obtained from fetal rats with denervated hippocampal extracts, and found that this significantly promoted in vitro differentiation of NSCs into neurons (Zhang et al., 2009). These results suggest that during a certain time period after denervation, the hippocampal microenvironment provides favorable conditions for NSCs to survive, regenerate, and differentiate into neurons. Nevertheless, the process remains poorly understood, including the number of factors involved.

    Our previous study also found that during a certain time period after denervation, expression of insulin like growth factor-1 and ciliary neurotrophic factor (CNTF) are both up-regulated in the denervated hippocampus. Furthermore, we confirmed that insulin like growth factor-1 induces hippocampal NSCs derived from fetal rats to differentiate in vitro into neurons via the PI3K/Akt pathway (Zhang et al., 2014b). In this study, cultured rat embryonic hippocampal NSCs were cultured with CNTF in vitro to determine if CNTF plays a similar role to insulin like growth factor-1.

    Materials and Methods

    Ethics statement and animals

    Animal studies were approved by the committee for Institutional Animal Care and Use Committee of Nantong University, China, and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Precautions were taken to minimize suffering and the number of animals used in each experiment. Twelve healthy adult female specific pathogen-free Sprague-Dawley rats weighing 200—250 g, and three pregnant Sprague-Dawley rats at embryonic day 17 (E17) were purchased from the Animal Research Center of Nantong University of China (license No. SYXK (Su) 2012-0031).

    Establishment of a hippocampal denervation model by FiFx transection

    Right FiFx transection was performed as described previously (Zou et al., 2010). In brief, rats were intraperitoneally anesthetized with chloral hydrate (2 mL/kg) and fixed in a stereotaxic instrument (Zhenghua, Anhui Province, China). The skull periosteum was separated, and anterior fontanelle coordinates recorded. According to the atlas of Paxinos and Watson (1986), two points were located on the right side of the skull: anterior (sagittal axis) = 1.4 mm, lateral (coronal axis) = 1.0 mm; and anterior = 1.4 mm, lateral = 4.0 mm (Zou et al., 2010). An aperture was drilled between these two points and a wire-knife lowered to a depth of 5.4 mm ventral to the dura. The knife was shifted back and forth three times before slowly being withdrawn from the brain. The left side of the hippocampus was not operated on, and therefore representative of the normal condition (i.e., control). After surgery, rats were caged with free access to food and water.

    Nissl staining

    Seven days after surgery, three rats were intraperitoneally anesthetized with chloral hydrate (2 mL/kg) and successively perfused with 0.9% (w/v) NaCl and 4% (w/v) paraformaldehyde. To determine if the right denervated hippocampal model had been successfully established, coronal sections (20 mm) surrounding FiFx were prepared and subjected to Nissl staining. Sections were soaked in dimethylbenzene (two times), 100% alcohol (two times), 95% alcohol, 70% alcohol, and water for 5 minutes each step. Subsequently, sections were stained with 0.1% cresyl violet for 20 minutes, washed with water, and viewed using a phase contrast microscope (Leica, Heidelberg, Germany).

    Western blot assay

    Whole hippocampi were rapidly removed from three FiFx transected rats. Total protein was extracted from normal and denervated hippocampi using mammalian Protein Extraction Reagent (Pierce, Waltham, MA, USA). Equivalent amounts of protein (30 μg) were loaded and separated on 10% sodium dodecyl sulfate-polyacrylamide gels before transfer to polyvinylidene difluoride membranes (Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% nonfat milk in Tris-buffered saline (Sangon, Shanghai, China), incubated overnight at 4°C with primary antibodies (rabbit polyclonal anti-CNTF: 1:1,000, Abcam, Cambridge, UK; mouse monoclonal anti-β-actin: 1:10,000, Sigma, St. Louis, MO, USA), and then secondary antibodies (horseradish peroxidase-conjugated goat anti-mouse IgG, 1:1,000, Pierce; horseradish peroxidase-conjugated goat anti-rabbit IgG, 1:1,000, Pierce) for 2 hours at room temperature. Finally, complexes were visualized by enhanced chemiluminescence (Santa Cruz Biotechnology, Santa Cruz, CA, USA) after X-ray exposure (Kodak, Rochester, NY, USA). The gray scale of each band was scanned and quantified using the Shine-tech Image System (Shanghai, China).

    Reverse transcription-polymerase chain reaction (RT-PCR) Hippocampi were dissected from three FiFx transected rats and total RNA extracted using a Trizol reagent kit (BBI, Markham, Canada). Two μg of total RNA was reverse transcribed into cDNA using oligo (dT) primers and Omniscript reverse transcriptase (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. RT-PCR was performed using the following primers (synthesized by Sangon, Shanghai, China): CNTF: forward, 5′-GGA CCT CTG TAG CCG TTC TA-3′, reverse, 5′-TCA TCT CAC TCC AAC GAT CA-3′; and GAPDH: forward, 5′-ACC ACA GTC CAT GCC ATC AC-3′, reverse, 5′-TCC ACC CTG TTG CTG TA-3′. PCR products were separated by agarose gel electrophoresis and then ethidium bromide stained. Optical density of the CNTF band relative to the GAPDH band was determined using an image analysis system (Leica Q550I W).

    Figure 1 Nissl staining of a coronal brain section showing dissection of the right transected FiFx.

    Figure 2 Expression of endogenous CNTF mRNA and protein in normal and the denervated hippocampi 7 days after right FiFx transection.

    Enzyme-linked immunosorbent assay (ELISA)

    Normal (left) and denervated (right) hippocampi were removed from FiFx transected rats, placed into an aseptic glass-homogenizer with cold Dulbecco’s modified Eagle’s medium (DMEM, 1 mL/100 mg; Gibco, Grand Island, NY, USA), and homogenized for 10 minutes. Homogenates were centrifuged at 4°C 250 × g for 5 minutes. Supernatants were harvested and the amount of CNTF was determined using a rat CNTF ELISA kit (R&D, Minneapolis, MN, USA), according to the manufacturer’s instruction.

    NSC culture and neuronal differentiation

    NSCs were derived from hippocampi of fetal (E17) rats, as described previously (Zhang et al., 2009). In brief, hippocampi were rapidly dissected into 1.5 mL eppendorf tubes containing 0.125% trypsin and mechanically dissociated to single-cell suspensions. These suspensions were centrifuged at 250 × g for 5 minutes and the supernatants discarded. Single cells were cultured in 50 cm2flasks at a density of 1 × 104cells/mL, with 5 mL NSC culture medium (DMEM/F12 medium (1:1; Gibco), 2% B27 (Gibco), 10 ng/mL epidermal growth factor (Gibco), 10 ng/mL basic fibroblast growth factor (Sigma), and 100 U/mL penicillin/streptomycin) in a humidified 95% air 5% (v/v) CO2incubator at 37°C. Five days later, neurospheres were dissociated into single-cell suspensions and seeded into 96-well plates at 1—2 cells per well. Subclonal neurospheres were digested and passaged as before. Cells were passaged three times to obtain neurospheres that originated from single primary cells. On the third passage, neurospheres were rinsed in DMEM and digested into single cells using 0.125% trypsin. Single NSCs were seeded at a density of 5 × 105cells/mL into poly-L-lysine-coated 24-well plates containing differentiation medium (DMEM/F12, 2% fetal bovine serum, and 100 U/ mL penicillin/streptomycin). NSCs were cultured without CNTF (control group) or with conditional medium containing 10 ng/mL CNTF (Sigma; CNTF group). After 7 days, differentiation was terminated and cells were detected by immunofluorescence assay.

    Immunofluorescence assay

    Statistical analysis

    Data are expressed as the mean ± SEM. All statistical evaluations were performed using a two-tailed Student’s t-test, and data were analyzed using SPSS 11.0 software (SPSS, Chicago, IL, USA). A probability level of P < 0.05 was considered to be significant.

    Results

    FiFx transection in the adult rat hippocampus

    Nissl staining confirmed complete dissection of the right FiFx, while the left side remained intact (Figure 1). This indicates successful establishment of our denervated hippocampal model.

    CNTF expression in denervated hippocampus

    Seven days after right FiFx transection, CNTF mRNA and protein levels in normal and denervated hippocampi were examined by RT-PCR analysis (Figure 2A, B), western blot assay (Figure 2C, D), and ELISA (Figure 2E). Compared with normal hippocampus, both CNTF mRNA and protein levels in denervated hippocampus were significantly up-regulated.

    注:文獻(xiàn)作者小于3個(gè),全部著錄;大于3個(gè),著錄時(shí)保留前3個(gè),其余用“等”(外文用 "et al")代替。外國(guó)作者采用姓在前、名取首字母置后的方式著錄。

    Neuronal differentiation of hippocampal NSCs treated in vitro with CNTF

    After 7 days of differentiation, immunofluorescence showed increased MAP2-positive cell number and decreased GFAP-positive cell number in the CNTF group compared with the control group (Figure 3).

    Discussion

    Recently, an increasing number of studies reported that because of their potential for neuronal differentiation, NSCs are a good cell source for cell therapy of neurodegenerative diseases (Diamandis et al., 2007; Marutle et al., 2007). However, to date, the number of neurons obtained from NSCs using various in vitro methods is too small to meet the demands of therapy (Donato et al., 2007; Yi et al., 2008). Thus, to induce differentiation of a sufficient number of neurons from NSCs, and subsequently meet the demands of clinical treatment, further study of the molecular mechanisms underlying neuronal differentiation of NSCs is urgently needed.

    Figure 3 Immunofluorescence analysis of MAP2 and GFAP expression in hippocampal NSCs derived from embryonic day 17 fetal rats.

    Our previous studies have shown that denervating the hippocampus by FiFx transection enables both grafted and endogenous newborn NSCs to proliferate, migrate, and differentiate into neurons in the hippocampus (Zhang et al., 2007; Zou et al., 2010). These indicates that the denervated hippocampus may provide a favorable environment for neuronal differentiation of NSCs. However, the pathways and mechanisms in this process are still unclear. (A) Cells were separately stained for GFAP (red) and MAP2 (green), with total cell number indicated by Hoechst (blue). Scale bar: 20 μm. (B) MAP2-positive cells are indicated by a percentage of total cells. (C) GFAP-positive cells are indicated by a percentage of total cells. Data are the mean ± SEM. Experiments were performed in triplicate. *P < 0.05, **P < 0.01, vs. control (two-tailed Student’s t-test). MAP2: Microtubule associated protein-2; GFAP: glial fibrillary acidic protein; CNTF: ciliary neurotrophic factor.

    Here, we show that compared with the normal hippocampus, expression of both CNTF mRNA and protein in the denervated hippocampus is significantly up-regulated 7 days after right FiFx transection. CNTF was first reported as a survival factor in ciliary ganglion neurons of chick embryos. It has since been shown that CNTF activates a receptor complex composed of a ligand-binding α-subunit (CNTF Rα) and two signal transducing β-subunits (LIFRβ and gp130) (Inoue et al., 1996). Further studies have shown that CNTF plays a similar role in many other nervous system cells, for example motor neurons (Lamas et al., 2014), sensory neurons (Bailey and Green, 2014), and sympathetic ganglion neurons (Saygili et al., 2011). DeWitt et al. (2014) reported that CNTF promotes neuronal differentiation and cell cycle withdrawal in neuroblastoma cells. Nilbratt et al. (2010) found that CNTF promotes differentiation of human embryonic stem cells into cholinergic neurons. Thus, we hypothesized that increased CNTF in the denervated hippocampus microenvironment might lead to neuronal differentiation of endogenous hippocampal NSCs. To examine this, we cultured hippocampal NSCs derived from E17 fetal rats with exogenous human CNTF for 7 days in vitro, and found that approximately 8.19 ± 0.79% cells were MAP2-positive. In contrast, cells cultured in medium without CNTF, resulted in almost no MAP2-positive cells. Instead, the vast majority of cells showed GFAP-positive expression. These results indicate that CNTF promotes a portion of NSCs to differentiate into neurons, while in the absence of CNTF (and any other neurotrophic factors), the vast majority of NSCs spontaneously differentiate into glial cells in vitro. Thus, we speculate that CNTF may be one of the factors that promotes neuronal differentiation of endogenous NSCs in the denervated hippocampus. It is still unclear how up-regulated hippocampal CNTF promotes NSC differentiation into neurons after FiFx transection. Many studies have shown two main CNTF-related signaling pathways. Vigneswara et al. (2014) reported that CNTF reduces apoptosis of retinal ganglion cells through the JAK/STAT signaling pathway. Moreover, other studies have shown that CNTF participates in neuronal migration and neurite outgrowth of the dorsal root ganglion through the PI3K/Akt and JAK2/STAT3 signaling pathways(Liu et al., 2014b). Therefore, in future studies, we will determine if endogenous CNTF promotes neuronal differentiation of hippocampal NSCs in the denervated hippocampus via these two signaling pathways in vivo. Of course, there may be other signaling pathways involved in this process.

    In the present study, the neuronal differentiation efficiency of hippocampal NSCs induced by CNTF in vitro was still low. Based on these findings, we speculate that the denervated hippocampus promotes expression of endogenous CNTF and upregulated CNTF may be involved in hippocampal NSC differentiation into neurons in vivo. These changes may be beneficial to repair and regeneration of the hippocampus after injury. Although the molecular mechanisms of this phenomenon have not yet been fully confirmed, our findings provide the experimental basis for neuronal differentiation of NSCs with CNTF. These findings may help to promote the clinical application of cell replacement therapy.

    Author contributions: LZ performed western blot assay and wrote the paper. XH completed the immunofluorescence assay and ELISA. XC was responsible for RT-PCR. XFT performed animal experiment. HYZ analyzed the data. XHZ was responsible for study proposal and design. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Azim K, Fischer B, Hurtado-Chong A, Draganova K, Cantù C, Zemke M, Sommer L, Butt A, Raineteau O (2014) Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32:1301-1312.

    Babaee A, Eftekhar-Vaghefi SH, Asadi-shekaari M, Shahrokhi N, Soltani SD, Malekpour-Afshar R, Basiri M (2015) Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iran J Basic Med Sci 18:867-872.

    Bailey EM, Green SH (2014) Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci 34:13110-13126.

    Boccazzi M, Rolando C, Abbracchio MP, Buffo A, Ceruti S (2014) Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes. Glia 62:428-439.

    Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R (2014) Cell-based therapy approaches: the hope for incurable diseases. Regen Med 9:649-672.

    Cai M, Zhou Y, Zhou B, Lou S (2014) Hypoxic conditioned medium from rat cerebral cortical cells enhances the proliferation and differentiation of neural stem cells mainly through PI3-K/Akt pathways. PLoS One 9:e111938.

    Clarke L, van der Kooy D (2011) The adult mouse dentate gyrus contains populations of committed progenitor cells that are distinct from subependymal zone neural stem cells. Stem Cells 29:1448-1458.

    Conway A, Schaffer DV (2014) Biomaterial microenvironments to support the generation of new neurons in the adult brain. Stem Cells 32:1220-1229.

    Deng X, Liang Y, Lu H, Yang Z, Liu Re, Wang J, Song X, Long J, Li Y, Lei D, Feng Z (2013) Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson’s disease. PLoS One 8:e80880.

    DeWitt J, Pappas A, Nishi R (2014) Ciliary neurotrophic factor reduces proliferation and promotes differentiation of TH-MYCN transformed sympathoadrenal progenitors. Dev Neurosci 36:422-431.

    Diamandis P, Wildenhain J, Clarke ID, Sacher AG, Graham J, Bellows DS, Ling EK, Ward RJ, Jamieson LG, Tyers M, Dirks PB (2007) Chemical genetics reveals a complex functional ground state of neural stem cells. Nat Chem Biol 3:268-273.

    Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96-108.

    Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, Edwards FA, Sinden JD (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36.

    Falcone C, Filippis C, Granzotto M, Mallamaci A (2015) Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia 63:412-422.

    Gao Y, Li X, Zheng D, Guan W, Ma Y (2015) Isolation of a pluripotent neural stem cell from the embryonic bovine brain. Int J Mol Sci 16:5990-5999.

    Gu G, Zhang W, Li M, Ni J, Wang P (2015) Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice. Neuroscience 291:81-92.

    Guo W, Patzlaff NE, Jobe EM, Zhao X (2012) Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc 7:2005-2012.

    Han D, Choi M, Jung K, Kim N, Kim S, Chai J, Lee Y, Chai Y (2015) Global transcriptome profiling of genes that are differentially regulated during differentiation of mouse embryonic neural stem cells into astrocytes. J Mol Neurosci 55:109-125.

    Inoue M, Nakayama C, Noguchi H (1996) Activating mechanism of CNTF and related cytokines. Mol Neurobiol 12:195-209.

    Komaki M, Iwasaki K, Morita I (2014) Bone and Stem Cells. Mesenchymal stem cells and bone regeneration. Clin Calcium 24:565-573.

    Lamas NJ, Johnson-Kerner B, Roybon L, Kim YA, Garcia-Diaz A, Wichterle H, Henderson CE (2014) Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures. PLoS One 9:e110324.

    Levin ED, Hall BJ, Rezvani AH (2015) Heterogeneity across brain regions and neurotransmitter interactions with nicotinic effects on memory function. Curr Top Behav Neurosci 23:87-101.

    Li L, Candelario KM, Thomas K, Wang R, Wright K, Messier A, Cunningham LA (2014) Hypoxia inducible factor-1α (HIF-1α) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ. J Neurosci 34:16713-16719.

    Li Y, Hai S, Zhou Y, Dong BR (2015) Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev 3:CD009444.

    Liu F, Xuan A, Chen YAN, Zhang J, Xu L, Yan Q, Long D (2014a) Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Report 10:1739-1745.

    Liu H, Liu G, Bi Y (2014b) CNTF regulates neurite outgrowth and neuronal migration through JAK2/STAT3 and PI3K/Akt signaling pathways of DRG explants with gp120-induced neurotoxicity in vitro. Neurosci Lett 569:110-115.

    Marutle A, Ohmitsu M, Nilbratt M, Greig NH, Nordberg A, Sugaya K (2007) Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc Natl Acad Sci U S A 104:12506-12511.

    Masoudian N, Riazi GH, Afrasiabi A, Modaresi SM, Dadras A, Rafiei S, Yazdankhah M, Lyaghi A, Jarah M, Ahmadian S, Seidkhani H (2015) Variations of glutamate concentration within synaptic cleft in the presence of electromagnetic fields: an artificial neural networks study. Neurochem Res 40:629-642.

    McHugh PC, Buckley DA (2015) The structure and function of the dopamine transporter and its role in CNS diseases. Vitam Horm 98: 339-369.

    Nakano R, Edamura K, Nakayama T, Narita T, Okabayashi K, Sugiya H (2015) Fibroblast growth factor receptor-2 contributes to the basic fibroblast growth factor-induced neuronal differentiation in canine bone marrow stromal cells via phosphoinositide 3-kinase/Akt signaling pathway. PLoS One 10:e0141581.

    Nicaise C, Mitrecic D, Falnikar A, Lepore AC (2015) Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 7:380-398.

    Nilbratt M, Porras O, Marutle A, Hovatta O, Nordberg A (2010) Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons. J Cell Mol Med 14:1476-1484.

    Pacey LK, Guan S, Tharmalingam S, Thomsen C, Hampson DR (2015) Persistent astrocyte activation in the fragile X mouse cerebellum. Brain Behav 5:e00400.

    Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press.

    Ramos Alexander D, Andersen Rebecca E, Liu Siyuan J, Nowakowski Tomasz J, Hong Sung J, Gertz CC, Salinas Ryan D, Zarabi H, Kriegstein Arnold R, Lim Daniel A (2015) The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439-447.

    Razavi S, Razavi MR, Ahmadi N, Kazemi M (2015) Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro. Iran J Basic Med Sci 18:799-804.

    Ren Y, Han C, Wang J, Jia Y, Kong L, Eerdun T, Wu L, Jiang D (2015) Identification of genes associated with the differentiation potential of adipose-derived stem cells to osteocytes or myocytes. Mol Cell Biochem 400:135-144.

    Rojczyk-Go? biewska E, Pa?asz A, Wiaderkiewicz R (2014) Hypothalamic subependymal niche: a novel site of the adult neurogenesis. Cell Mol Neurobiol 34:631-642.

    Saygili E, Pekassa M, Saygili E, Rackauskas G, Hommes D, Noor-Ebad F, Gemein C, Zink MD, Schwinger RH, Weis J, Marx N, Schauerte P, Rana OR (2011) Mechanical stretch of sympathetic neurons induces VEGF expression via a NGF and CNTF signaling pathway. Biochem Biophys Res Commun 410:62-67.

    Schulthei? C, Abe P, Hoffmann F, Mueller W, Kreuder AE, Schütz D, Haege S, Redecker C, Keiner S, Kannan S, Claasen JH, Pfrieger FW, Stumm R (2013) CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus 23:1345-1358.

    Shi B, Ding J, Liu Y, Zhuang X, Zhuang X, Chen X, Fu C (2014) ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PLoS One 9:e106038.

    Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang G-X (2015) 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 98:240-245.

    Tong CK, Chen J, Cebrián-Silla A, Mirzadeh Z, Obernier K, Guinto CD, Tecott LH, García-Verdugo JM, Kriegstein A, Alvarez-Buylla A (2014) Axonal control of the adult neural stem cell niche. Cell Stem Cell 14:500-511.

    Tong LM, Fong H, Huang Y (2015) Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp Mol Med 47:e151.

    Tsai P-C, Bake S, Balaraman S, Rawlings J, Holgate RR, Dubois D, Miranda RC (2014) MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells. Biology Open 3:741-758.

    Vigneswara V, Akpan N, Berry M, Logan A, Troy CM, Ahmed Z (2014) Combined suppression of CASP2 and CASP6 protects retinal ganglion cells from apoptosis and promotes axon regeneration through CNTF-mediated JAK/STAT signalling. Brain 137:1656-1675.

    Wang L, Liu Y, Li S, Long ZY, Wu YM (2015) Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. Int J Clin Exp Pathol 8:578-585.

    Xu L, Mahairaki V, Koliatsos VE (2012) Host induction by transplanted neural stem cells in the spinal cord: further evidence for an adult spinal cord neurogenic niche. Regen Med 7:785-797.

    Yi SH, Jo AY, Park CH, Koh HC, Park RH, Suh-Kim H, Shin I, Lee YS, Kim J, Lee SH (2008) Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action. Mol Ther 16:1873-1882.

    Zhang J, Saur T, Duke AN, Grant SG, Platt DM, Rowlett JK, Isacson O, Yao WD (2014a) Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J Neurogenet 28:98-111.

    Zhang X, Jin G, Tian M, Qin J, Huang Z (2007) The denervated hippocampus provides proper microenvironment for the survival and differentiation of neural progenitors. Neurosci Lett 414:115-120.

    Zhang X, Jin G, Wang L, Hu W, Tian M, Qin J, Huang H (2009) Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Hippocampus 19:176-186.

    Zhang X, Zhang L, Cheng X, Guo Y, Sun X, Chen G, Li H, Li P, Lu X, Tian M, Qin J, Zhou H, Jin G (2014b) IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/ Akt pathway. PLoS One 9:e113801.

    Zou L, Jin G, Zhang X, Qin J, Zhu H, Tian M, Tan X (2010) Proliferation, migration, and neuronal differentiation of the endogenous neural progenitors in hippocampus after fimbria fornix transection. Int J Neurosci 120:192-200.

    Copyedited by James R, Hindle A, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.180744 http://www.nrronline.org/

    How to cite this article: Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH (2016) Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 11(4):597-603.

    Funding: This work was supported by grants of Jiangsu Natural College Foundation of China, No. 13KJB310010, 14KJB310015; the Natural Foundation of Nantong University of China, No. 14ZY022.

    Accepted: 2016-02-22

    *Correspondence to: Xin-hua Zhang, Ph.D., zhangxinhua@ntu.edu.cn.

    猜你喜歡
    外文首字母著錄
    常用參考文獻(xiàn)著錄要求
    常用參考文獻(xiàn)著錄要求
    常用參考文獻(xiàn)著錄要求
    外文字母大小寫的應(yīng)用規(guī)則
    新目標(biāo)英語八年級(jí)(上)Unit5 STEP BY STEP隨堂通
    新目標(biāo)英語八年級(jí)(上)Unit4 STEP BY STEP隨堂通
    Unit 12 STEP BY STEP 隨堂通
    Unit 7 STEP BY STEP 隨堂通Section A
    李鴻章集外文補(bǔ)遺
    本刊參考文獻(xiàn)著錄要求
    欧美久久黑人一区二区| 美女福利国产在线| 看片在线看免费视频| 亚洲国产欧美网| 两性午夜刺激爽爽歪歪视频在线观看 | 大型av网站在线播放| 久久久久久久久久久久大奶| 中文欧美无线码| 色精品久久人妻99蜜桃| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 亚洲国产中文字幕在线视频| xxxhd国产人妻xxx| 亚洲专区字幕在线| 国产亚洲av高清不卡| 国产男靠女视频免费网站| 久久亚洲精品不卡| 午夜福利,免费看| 51午夜福利影视在线观看| 久久精品亚洲av国产电影网| 女人精品久久久久毛片| 男女高潮啪啪啪动态图| 国产在线精品亚洲第一网站| 亚洲精品av麻豆狂野| 欧美 亚洲 国产 日韩一| 激情视频va一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 极品教师在线免费播放| 国产精品偷伦视频观看了| 欧美中文日本在线观看视频| 69精品国产乱码久久久| 国产熟女午夜一区二区三区| 91麻豆av在线| 窝窝影院91人妻| 国产精品99久久99久久久不卡| www.自偷自拍.com| 久久天堂一区二区三区四区| 91av网站免费观看| 欧美色视频一区免费| 国产精品久久电影中文字幕| 成人精品一区二区免费| av免费在线观看网站| 国产精品影院久久| 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| 一区在线观看完整版| 一区在线观看完整版| 午夜久久久在线观看| 国产成人精品久久二区二区免费| 女同久久另类99精品国产91| 无遮挡黄片免费观看| 中文字幕人妻丝袜一区二区| 高清黄色对白视频在线免费看| 女警被强在线播放| 久久久久精品国产欧美久久久| 咕卡用的链子| 久久久久久免费高清国产稀缺| 免费看a级黄色片| 亚洲久久久国产精品| 欧美在线一区亚洲| aaaaa片日本免费| 9色porny在线观看| 一边摸一边抽搐一进一出视频| 久久久久亚洲av毛片大全| 亚洲,欧美精品.| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 亚洲精品国产色婷婷电影| 国产免费男女视频| 大型黄色视频在线免费观看| 国产91精品成人一区二区三区| 亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| 国产人伦9x9x在线观看| 岛国在线观看网站| 天天躁夜夜躁狠狠躁躁| 在线免费观看的www视频| 日韩av在线大香蕉| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 美国免费a级毛片| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| 久久人妻熟女aⅴ| 精品一区二区三区四区五区乱码| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 国产av在哪里看| 亚洲熟妇中文字幕五十中出 | 9191精品国产免费久久| 妹子高潮喷水视频| 日韩欧美一区视频在线观看| 亚洲人成77777在线视频| 真人一进一出gif抽搐免费| √禁漫天堂资源中文www| 91九色精品人成在线观看| 精品电影一区二区在线| 国产精品免费一区二区三区在线| 大型av网站在线播放| 国产精品亚洲av一区麻豆| 日日爽夜夜爽网站| 亚洲 欧美 日韩 在线 免费| 日韩精品免费视频一区二区三区| 免费高清在线观看日韩| 一级作爱视频免费观看| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看 | 日韩av在线大香蕉| 精品欧美一区二区三区在线| 欧美日韩国产mv在线观看视频| 丝袜在线中文字幕| 国产一卡二卡三卡精品| 夜夜爽天天搞| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久国产66热| 999精品在线视频| a级片在线免费高清观看视频| 国产精品久久久久久人妻精品电影| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 亚洲精品在线美女| 精品人妻在线不人妻| 久久人妻福利社区极品人妻图片| 国产国语露脸激情在线看| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 欧美黑人精品巨大| 久久精品国产亚洲av高清一级| aaaaa片日本免费| 精品高清国产在线一区| 身体一侧抽搐| 国产蜜桃级精品一区二区三区| 亚洲一码二码三码区别大吗| aaaaa片日本免费| 美女福利国产在线| ponron亚洲| 国产欧美日韩精品亚洲av| 亚洲五月婷婷丁香| 国产精品一区二区在线不卡| 亚洲av五月六月丁香网| 亚洲国产精品sss在线观看 | 法律面前人人平等表现在哪些方面| 国产免费男女视频| 日韩成人在线观看一区二区三区| 嫩草影院精品99| 女警被强在线播放| 亚洲av成人av| 男人的好看免费观看在线视频 | 日本五十路高清| 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 亚洲色图综合在线观看| 老汉色∧v一级毛片| 国产91精品成人一区二区三区| 99riav亚洲国产免费| 日韩欧美在线二视频| 精品福利观看| 在线观看一区二区三区| 国产成人精品久久二区二区91| 大码成人一级视频| 午夜福利影视在线免费观看| 亚洲精品一区av在线观看| 91成年电影在线观看| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 国产熟女午夜一区二区三区| 脱女人内裤的视频| 久久婷婷成人综合色麻豆| 亚洲av成人av| 在线观看免费日韩欧美大片| 最新美女视频免费是黄的| 麻豆成人av在线观看| 午夜福利一区二区在线看| a级毛片在线看网站| 日本三级黄在线观看| 水蜜桃什么品种好| 两个人免费观看高清视频| 18美女黄网站色大片免费观看| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 国产一卡二卡三卡精品| 两性夫妻黄色片| 脱女人内裤的视频| 自线自在国产av| 国产精品爽爽va在线观看网站 | 欧美在线黄色| 交换朋友夫妻互换小说| 人妻久久中文字幕网| a级毛片黄视频| 在线观看免费视频网站a站| 久久久久久久久久久久大奶| 成人18禁在线播放| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 后天国语完整版免费观看| 黄色怎么调成土黄色| 精品电影一区二区在线| 成在线人永久免费视频| 欧美一级毛片孕妇| a级毛片黄视频| 两个人免费观看高清视频| 大香蕉久久成人网| 午夜免费鲁丝| 99久久久亚洲精品蜜臀av| 亚洲中文av在线| x7x7x7水蜜桃| 老司机深夜福利视频在线观看| 国产不卡一卡二| av超薄肉色丝袜交足视频| 国产精品一区二区在线不卡| 久久婷婷成人综合色麻豆| 国产免费现黄频在线看| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 午夜福利欧美成人| 1024视频免费在线观看| 欧美久久黑人一区二区| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影 | 久久中文字幕一级| 中文字幕色久视频| 国产乱人伦免费视频| 久久天堂一区二区三区四区| 久久九九热精品免费| 美女福利国产在线| 美女大奶头视频| 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 欧美日韩黄片免| 五月开心婷婷网| 久久精品国产99精品国产亚洲性色 | 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 一区二区日韩欧美中文字幕| 国产精品偷伦视频观看了| 99国产精品99久久久久| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 成人影院久久| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 波多野结衣av一区二区av| av网站免费在线观看视频| 丰满迷人的少妇在线观看| 午夜视频精品福利| 黄频高清免费视频| 多毛熟女@视频| 热re99久久精品国产66热6| 午夜福利在线免费观看网站| 人妻久久中文字幕网| 中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 在线av久久热| 亚洲欧美日韩另类电影网站| 久久精品影院6| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看 | www国产在线视频色| 亚洲五月色婷婷综合| 日本黄色日本黄色录像| 首页视频小说图片口味搜索| 一级a爱视频在线免费观看| 国产一区二区在线av高清观看| 在线视频色国产色| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 波多野结衣高清无吗| 日日干狠狠操夜夜爽| 91大片在线观看| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 人人澡人人妻人| 99久久人妻综合| 大型av网站在线播放| 我的亚洲天堂| 精品人妻1区二区| 最近最新免费中文字幕在线| av国产精品久久久久影院| 在线视频色国产色| 亚洲五月婷婷丁香| 亚洲av成人一区二区三| 精品一区二区三卡| 久久性视频一级片| 国产熟女xx| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| av电影中文网址| 国产91精品成人一区二区三区| 精品无人区乱码1区二区| 成年版毛片免费区| 亚洲av成人av| 99久久综合精品五月天人人| 妹子高潮喷水视频| 黄频高清免费视频| 淫妇啪啪啪对白视频| 伊人久久大香线蕉亚洲五| 午夜福利,免费看| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 亚洲专区中文字幕在线| 日韩av在线大香蕉| 啦啦啦在线免费观看视频4| 国产一区在线观看成人免费| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 极品教师在线免费播放| 久久热在线av| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 老司机深夜福利视频在线观看| 国产成年人精品一区二区 | 男女下面进入的视频免费午夜 | 日韩成人在线观看一区二区三区| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 99精品欧美一区二区三区四区| 极品人妻少妇av视频| 国产精品免费视频内射| 久久久精品欧美日韩精品| 久久影院123| 乱人伦中国视频| 嫁个100分男人电影在线观看| 咕卡用的链子| 亚洲久久久国产精品| 大码成人一级视频| 成人av一区二区三区在线看| 免费人成视频x8x8入口观看| 午夜免费鲁丝| 午夜福利欧美成人| 操出白浆在线播放| 亚洲av五月六月丁香网| 露出奶头的视频| av天堂久久9| 新久久久久国产一级毛片| 黄片大片在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久av网站| 性少妇av在线| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 国产精品久久久av美女十八| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 久久精品成人免费网站| 9191精品国产免费久久| 亚洲av美国av| 亚洲精品国产一区二区精华液| 日韩精品青青久久久久久| 亚洲一区二区三区欧美精品| 黑人操中国人逼视频| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 好男人电影高清在线观看| 午夜免费激情av| 欧美日韩瑟瑟在线播放| videosex国产| 国产日韩一区二区三区精品不卡| 神马国产精品三级电影在线观看 | 国产免费男女视频| 女性生殖器流出的白浆| 天堂影院成人在线观看| 国产在线观看jvid| 精品国产一区二区久久| 亚洲欧美激情在线| 日韩av在线大香蕉| 国产亚洲精品一区二区www| 久久久水蜜桃国产精品网| 在线播放国产精品三级| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 一进一出抽搐动态| 日本黄色视频三级网站网址| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 正在播放国产对白刺激| 啦啦啦免费观看视频1| 精品久久久久久电影网| 亚洲精品在线美女| 人成视频在线观看免费观看| 精品国产国语对白av| 成年人免费黄色播放视频| 在线播放国产精品三级| 欧美在线黄色| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 欧美日韩瑟瑟在线播放| 久久中文字幕一级| 成人精品一区二区免费| 老汉色av国产亚洲站长工具| 久久国产精品人妻蜜桃| av视频免费观看在线观看| 精品日产1卡2卡| 久久久国产欧美日韩av| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 国产色视频综合| 亚洲精品成人av观看孕妇| 亚洲aⅴ乱码一区二区在线播放 | 国产成年人精品一区二区 | 91精品三级在线观看| 亚洲专区字幕在线| 亚洲av电影在线进入| 国产精品电影一区二区三区| 欧美激情 高清一区二区三区| 久久伊人香网站| 精品久久久久久,| 国产成人av教育| 久久婷婷成人综合色麻豆| 国产黄色免费在线视频| 水蜜桃什么品种好| 男女下面插进去视频免费观看| 久久精品亚洲精品国产色婷小说| 国产精品爽爽va在线观看网站 | 亚洲九九香蕉| 亚洲国产欧美网| 五月开心婷婷网| 亚洲 欧美一区二区三区| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 男人舔女人下体高潮全视频| www国产在线视频色| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 麻豆久久精品国产亚洲av | 亚洲一区二区三区色噜噜 | 韩国av一区二区三区四区| 淫秽高清视频在线观看| 麻豆一二三区av精品| 国产精品九九99| 亚洲欧美日韩高清在线视频| 88av欧美| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 午夜免费观看网址| 级片在线观看| 久久亚洲真实| 91大片在线观看| 久久精品国产清高在天天线| 成人18禁在线播放| 80岁老熟妇乱子伦牲交| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 成人三级黄色视频| 久久精品国产99精品国产亚洲性色 | 国产激情欧美一区二区| 亚洲熟妇熟女久久| 丁香六月欧美| 国产精品二区激情视频| 我的亚洲天堂| 天堂√8在线中文| 欧美最黄视频在线播放免费 | 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| 成人国语在线视频| 精品久久久久久,| 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 久久久久国产一级毛片高清牌| 国产在线观看jvid| 色综合欧美亚洲国产小说| 国产不卡一卡二| 午夜成年电影在线免费观看| 两个人免费观看高清视频| 久久久久精品国产欧美久久久| 亚洲视频免费观看视频| 国产片内射在线| 1024香蕉在线观看| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 精品国产乱子伦一区二区三区| 日本精品一区二区三区蜜桃| 50天的宝宝边吃奶边哭怎么回事| 天堂√8在线中文| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 美国免费a级毛片| 国产亚洲精品久久久久5区| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 亚洲五月天丁香| 夜夜看夜夜爽夜夜摸 | 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆国产av国片精品| 18禁观看日本| x7x7x7水蜜桃| 亚洲国产毛片av蜜桃av| 校园春色视频在线观看| 啦啦啦免费观看视频1| svipshipincom国产片| 久久中文看片网| av国产精品久久久久影院| 久久精品人人爽人人爽视色| 91在线观看av| 亚洲国产精品一区二区三区在线| 午夜激情av网站| 一区二区三区精品91| 黄色 视频免费看| x7x7x7水蜜桃| 在线观看一区二区三区激情| www.精华液| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久人人做人人爽| 我的亚洲天堂| 国产一区二区三区在线臀色熟女 | 一个人观看的视频www高清免费观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产深夜福利视频在线观看| 欧美丝袜亚洲另类 | 99久久久亚洲精品蜜臀av| 极品人妻少妇av视频| 亚洲国产精品sss在线观看 | 一进一出抽搐gif免费好疼 | 免费少妇av软件| 免费av中文字幕在线| 一二三四社区在线视频社区8| 亚洲午夜理论影院| 男女下面插进去视频免费观看| 亚洲三区欧美一区| 女警被强在线播放| 国产精品久久久av美女十八| 在线播放国产精品三级| 日本黄色日本黄色录像| 在线观看舔阴道视频| 免费搜索国产男女视频| 一区二区三区激情视频| 久99久视频精品免费| 在线视频色国产色| 黄色丝袜av网址大全| 国产一区二区在线av高清观看| 成人永久免费在线观看视频| a级毛片在线看网站| 亚洲国产欧美日韩在线播放| 国产亚洲欧美98| 两个人免费观看高清视频| 日韩大尺度精品在线看网址 | 国产精品成人在线| 97碰自拍视频| 亚洲avbb在线观看| 国产精品一区二区三区四区久久 | 国产成人精品久久二区二区91| 黄网站色视频无遮挡免费观看| 亚洲人成电影免费在线| 亚洲国产精品sss在线观看 | 999久久久国产精品视频| 亚洲第一欧美日韩一区二区三区| 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 在线观看日韩欧美| 精品久久久久久,| 国产高清国产精品国产三级| 国产精品日韩av在线免费观看 | 久久久久久人人人人人| 精品久久蜜臀av无| 午夜福利,免费看| 女人爽到高潮嗷嗷叫在线视频| 夜夜爽天天搞| 女人被躁到高潮嗷嗷叫费观| 精品欧美一区二区三区在线| 美女高潮喷水抽搐中文字幕| 午夜91福利影院| 日韩人妻精品一区2区三区| 一进一出抽搐gif免费好疼 | 国产av一区二区精品久久| av国产精品久久久久影院| 一夜夜www| 国产99白浆流出| www国产在线视频色| 岛国视频午夜一区免费看| 91九色精品人成在线观看| 国产黄色免费在线视频| 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 成年版毛片免费区| 免费在线观看黄色视频的| 免费少妇av软件| 怎么达到女性高潮| 久久人妻福利社区极品人妻图片| 亚洲成人免费电影在线观看|