• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    2016-12-02 10:48:16TianmeiQianLiliZhaoJingWangPingLiJingQinYishengLiuBinYuFeiDingXiaosongGuSonglinZhou

    Tian-mei Qian, Li-li Zhao, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    RESEARCH ARTICLE

    miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylationdissociated 1

    Tian-mei Qian#, Li-li Zhao#, Jing Wang, Ping Li, Jing Qin, Yi-sheng Liu, Bin Yu, Fei Ding, Xiao-song Gu, Song-lin Zhou*

    Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China

    Graphical Abstract

    #These authors contributed equally to this study.

    orcid: 0000-0001-8598-0922 (Songlin Zhou)

    Accepted: 2015-12-22

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. However, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migration in vitro. Further experiments confirmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migration of Schwann cells by directly targeting Cand1 in vitro.

    nerve regeneration; sciatic nerve injury; miR-148b-3p; Schwann cells; migration; Cand1; gene expression; microarray; peripheral nerve injury; mechanisms; neural regeneration

    Introduction

    Recovery of injuried central and peripheral nerves remains problematic and difficult (Navarro et al., 2007). This is primarily due to the inability for intrinsic growth and the existence of a regeneration barrier (Zou et al., 2009). Schwann cells (SCs) play a very important role in removing growth obstacles. Following sciatic nerve injury, mature SCs differentiate, proliferate, and migrate, thereby forming a path to guide the growth of new axons (Kury et al., 2001). SCs also contribute to the construction of a microenvironment for nerve regeneration by excreting multiple neurotrophic factors and adhesion molecules (Ngeow, 2010). However, the particular mechanisms that regulate SC proliferation and migration remain unknown. For successful regeneration, it is necessary to explore the molecular mechanisms of SCs.

    microRNAs (miRNAs) are endogenous molecules that are approximately 22 nucleotides of non-coding RNA molecules (Bartel, 2009). miRNAs come from either miRNA genes or as a part of intron-encoded proteins; they are further maturated by the endoribonuclease Dicer (Wu and Murashov, 2013). Mature miRNA can play a negative role in the degradation or silencing of mRNA by combiningthe 3′-untranslated region (UTR) (Filipowicz et al., 2008; Carthew and Sontheimer, 2009). Knocking out the key Dicer not only inhibits differentiation, but also promotes apoptosis and cell death (De Pietri Tonelli et al., 2008). In SCs, Dicer deletion increases proliferation, but blocks myelination (Bremer et al., 2010; Pereira et al., 2010; Verrier et al., 2010). Taken together, these studies suggest that miRNAs play a critical role in cell development.

    The role of miRNA has also been studied in a variety of diseases. For example, decreased miR-485-5p promotes BACE1, which stimulates the development of Alzheimer's disease (Faghihi et al., 2010). miR-433 and miR-7 regulate expression of α-synuclein, which is associated with cytotoxicity in Parkinson's disease (Wang et al., 2008; Junn et al., 2009). Previous studies have shown that miR-160b, 30b, and 181b are significantly up-regulated in the frontal cortex of schizophrenia patients (Kim et al., 2010; Santarelli et al., 2011), and miR-148b-3p increases proliferation of breast cancer cell lines (Jiang et al., 2015). Nevertheless, very little is understood about the role that miRNAs play in nerve regeneration (Lu et al., 2014).

    Results from microarray analyses and extensive function screening have revealed that expression of many miRNAs, such as miR-221/222 and miR-182, changes after sciatic nerve injury and affects proliferation and migration of SCs (Yu et al., 2011, 2012a, b). The present study investigated whether miR-148b-3p could regulate SC migration by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1), a negative regulator in the proliferation (Murata et al., 2010).

    Materials and Methods

    Primary Schwann cell culture and transfection with oligonucleotide

    Primary SCs were obtained from sciatic nerves of 1-day-old Sprague-Dawley rats of either sex. The SCs were cultured for 2 days with 10 μM Ara-C (Sigma, St Louis, MO, USA) to eliminate fibroblasts. The SCs were then further cultured with 50 ng/mL recombinant glial growth factor 2 (R&D Systems, Minneapolis, MN, USA) and 2 μM forskolin (R&D Systems) for 3 days, and then were purified by incubating with anti-Thy1.1 antibody diluted in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (1:1,000; Sigma) for 1.5 hours on ice (Mantuano et al., 2008). SCs were used when the purity reached 98%, as determined by immunoreaction with S100β. Primary SC cultures were cultured in DMEM containing 10% fetal bovine serum at 37°C and in a humidified 5% CO2incubator. miR-148b-3p mimics (20 mM), mimic control (20 mM), miR-148b-3p inhibitors (100 mM), inhibitor control (100 mM) or siRNAs (100 mM), and negative control (100 mM) (Ribobio, Guangzhou, Guangdong Province, China) were separately transfected into the SCs using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions (Yu et al., 2012a). Assays were performed three times in triplicate wells. All experimental procedures involving animals were conducted in accordance with institutional animal care guidelines and were ethically approved by the Administration Committee of Experimental Animals (SYXK (Su) 2015-0016), Jiangsu Province, China.

    Quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

    At 36 hours after transfection with miRNA mimics or siRNAs, the Prime-Script RT reagent Kit (TaKaRa, Dalian, Liaoning Province, China) was used to synthesize reverse-transcribed complementary DNA (cDNA). PCR was conducted using the SYBR Premix Ex Taq kit (TaKaRa). RT-PCR was performed on an ABI7900 thermocycler (Applied Biosystems, Foster, CA, USA). qPCR primers were designed using NCBI Primer Blast and were manufactured by Sangon Biotech (Shanghai, China). Cand 1 primer sequence: forward: 5′-CCA GTC ACA GAT CAG CTC CA-3′; reverse: 5′-CCT CAT GTG GAA CAC ACG TC-3′; product size: 119 bp. The reaction system was as follows: 10 μL SYBR? Premix Ex TaqTM (2×), 2 μL PCR primer, 0.4 μL ROX Reference Dye, 1 μL product from RT reaction, and ddH2O to 20 μL. The PCR reaction was as follows: initial denaturation at 95°C for 2 minutes; 45 cycles of denaturation at 95°C for 15 seconds, annealing elongation at 60°C for 1 minute; final elongation at 95°C for 15 seconds, 60°C for 1 minute. Each sample was run in triplicate in each assay. β-Actin was used as the endogenous control. The relative expression level was calculated using the comparative 2-ΔΔCtmethods (Livak and Schmittgen, 2001).

    Cell migration assay

    SC migration was investigated using Transwell chambers with 8-mm-deep pores (Costar, Cambridge, MA, USA). The bottom surface of each membrane was coated with 10 mg/mL fibronectin (Sigma). At 36 hours after transfection with miR-148b-3p mimics (20 mM), miR-148b-3p inhibitors (100 mM), or siRNAs (100 mM), 100 μL SCs (1 × 106cells/mL) were re-suspended in DMEM and transferred to the top chambers of each Transwell (Mantuano et al., 2008). The lower chambers were loaded with 500 μL complete medium. After 24 hours, a cotton swab was used to clean the upper surface of each membrane. Migrated cells on the bottom surface of the Transwell membrane were stained with 0.1% crystal violet and quantified using a DMR inverted microscope (Leica Microsystems Bensheim, Germany). Assays were performed three times in triplicate wells. A total of 10 fields were randomly sampled per well. The average number of crystal violet-stained cells per field was determined.

    Luciferase reporter assay

    Potential mRNA targets of miR-148b-3p were predicted by Target Scan and microarray. Cand1 was finally chosen from the intersection of the prediction and microarray. We obtained the 3′-UTR sequence of Cand1 from the genomic DNA and sub-cloned the region directly downstream of the luciferase gene stop codon in the luciferase reporter vector. Different p-Luc-UTR luciferase reporter vectors were obtained from PCR amplification of the 3′-UTR sequence of Cand1 usingappropriate primers. Cand1-3′ UTR primer sequence: forward: 5′-CCG GAA TTC ACG TGT GTT CCA CAT GAG-3′; reverse: 5′-CCG CTC GAG AAA GTT TTA ACA TTT TAA TCC-3′; product size: 336 bp. The 3′-UTR sequences were confirmed by sequencing.

    Figure 1 Effects of miR-148b-3p on Schwann cell migration in vitro (crystal violet staining).

    Figure 2 miR-148b-3p-induced inhibition of Cand1 expression by targeting the 3′-untranslated region.

    Figure 3 Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells.

    HEK293T cells were transfected with p-Luc-UTR (30 ng), miRNA mimics (5 pmol), and Renilla (5 ng) in each well of 96-well plates using the Lipofectamine 2000 transfection system (Invitrogen). At 48 hours after incubation, activities of firefly and Renilla luciferases were measured in the cell lysates using the dual-luciferase reporter assay system (Promega, Madison, WI, USA).

    Statistical analysis

    All data are expressed as the mean ± SD. Statistical analyses were performed by SPSS 18.0 software (SPSS, Chicago, IL, USA). The Student's t-test was used to compare the difference of intergroup data. A value of P < 0.05 was considered statistically significant.

    Results

    Effects of miR-148b-3p on Schwann cell migration in vitro We investigated whether miR-148b-3p played a part in the regeneration of peripheral nerves. Primary SCs were transfected with mimic control and miR-148b-3p mimic, and then added to Transwell inserts 36 hours later. At 24 hours after cell culture, crystal violet staining showed that miR-148b-3p mimic significantly promoted SC migration compared with the control (P < 0.05; Figure 1A). Silencing miR-148b-3p decreased SC migration when transfected with the inhibitor control and miR-148b-3p inhibitor (P < 0.05; Figure 1B). These results indicated that miR-148b-3p increased SC migration in vitro.

    miR-148b-3p induced inhibition of Cand1 expression by targeting the 3′-UTR region

    To investigate the underlying molecular mechanisms of miR-148b-3p initiating SC migration, potential mRNA targets of miR-148b-3p were selected by cross-referencing programs (Target Scan) and microarray results. A total of 476 potential target genes were predicted by software, and 1,736 down-regulated genes after transfection with miR-148b-3p mimics of SC were obtained (P < 0.05; Figure 2A). Among the 52 genes in the intersection of the two predictions, Cand1 was finally selected as a potential target of miR-148b-3p. Furthermore, a luciferase reporter construct was made by inserting the Cand1 3′-UTR containing the predicted target site of miR-148b-3p into the luciferase reporter gene. The relative luciferase activity was repressed by nearly 50% by miR-148b-3p (Figure 2B). These results demonstrated that miR-148b-3p specifically repressed Cand1 expression through the predicted target site in the Cand1 3′-UTR. qRT-PCR analysis further demonstrated that miR-148b-3p dramatically suppressed endogenous mRNA expression of Cand1 when the SCs were transfected with miR-148b-3p mimics (Figure 2C). These results suggested that miR-148b-3p reduced Cand1 expression by targeting the 3′-UTR region.

    Recapitulation of miR-148b-3p effects by Cand1 knockdown in Schwann cells

    Two specific small interfering RNAs (siRNAs) against Cand1 were synthesized. The results showed that siRNA-1 and siRNA-2 both inhibited Cand1 expression compared with the negative control (P < 0.05; Figure 3A). The Transwell assay showed that siRNA-1 and siRNA-2 both promoted SC migration, although the effect of siRNA-2 was more obvious (P < 0.05; Figure 3B). To further determine whether down-regulation of Cand1 directly mediated miR-148b-3p-induced SC migration, SCs were transfected with miR-148b-3p inhibitor with or without siRNA-2 against Cand1 (P < 0.05). As shown in Figure 3C, anti-miR-148b-3p significantly decreased SC migration. Conversely, a significant increase in cell migration was detected in groups co-transfected with miR-148b-3p inhibitor and siRNA-2 (P < 0.05). These results suggested that inhibition of Cand1 expression rescued the migration suppression induced by the miR-148b-3p inhibitor.

    Discussion

    The in vitro role of miR-148b-3p in SCs was explored in this study. Transfection with miR-148b-3p mimics or inhibitors revealed that miR-148b-3p improved SC migration. Cand1, a negative regulator of SKP1-Cullin1-F-box ubiquitin ligases, has the direct target region of miR-148b-3p. Decreased Cand1 expression can promote SC migration. These data showed that increased expression of miR-148b-3p promotes SC migration by reducing Cand1 expression.

    During nerve regeneration after peripheral nerve injury, miRNAs provide a powerful mechanism for post-transcriptional control of gene expression. Microarray analysis revealed miRNAs with significant expression changes, such as miR-9, miR-132, miR-182, Let-7, miR-221, and miR-222. Our previous studies showed that miR-9 inhibits SC migration by targeting Cthrc1 (Zhou et al., 2014); miR-221 and miR-222 promote SC proliferation and migration by targeting LASS2 (Yu et al., 2012b); miR-182 inhibits SC proliferation and migration by targeting FGF9 and NTM following sciatic nerve injury (Yu et al., 2012a); and Let-7 reduces SC proliferation and migration by targeting NGF (Li et al., 2015). Liu et al. (2015) showed that inhibition of miR-148b stimulates cell proliferation, enhances chemosensitivity, and increases cell metastasis and angiogenesis in vitro. Another study confirmed that miR-148b suppresses hepatocellular carcinoma cell proliferation and invasion by targeting the WNT1/β-catenin pathway (Zhang et al., 2015). However, the mechanisms of miR-148b-3p are different from miR-148b, and miR-148b-3p has been shown to increase proliferation of breast cancer cell lines (Aure et al., 2013). Proliferation of breast cancer cell lines can also be increased by miR-148b-3p (Jiang et al., 2015). The results from the present study showed another function of miR-148b-3p increased SC migration in vitro by targeting Cand1.

    Cand1 has been shown to remold the SKP1-Cullin1-F-box repertoire in response to changing growth conditions (Zemla et al., 2013), and Cand1 has also been shown to bea negative regulator in the proliferation of lymph node carcinoma of prostate cells (Murata et al., 2010). The present study explored whether miR-148b-3p and Cand1 affected SC proliferation, and the results showed no change in SC proliferation, regardless of whether expression of miR-148b-3p or Cand1 was altered.

    In summary, Cand1 suppressed migration of SCs, and the results showed a direct interaction between Cand1 and miR-148b-3p. SC proliferation and migration can affect myelination, suggesting that further studies are needed to determine the effects of Cand1 on the myelin of axons. The results from the present study offer a novel target to study SC migration, and provide evidence for a role for Cand1 in peripheral nerve regeneration, as well as cancer diagnosis and treatment.

    Author contributions: TMQ, LLZ, XSG and SLZ designed the study and prepared the paper. TMQ, LLZ, JW, PL, JQ, YSL and BY performed the experiments. BY, FD and XSG analyzed data. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnaes GI, Perala M, Busato F, Touleimat N, Tost J, Borresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjaerde OC, Sahlberg KK, Kristensen VN (2013) Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 14:R126.

    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215-233.

    Bremer J, O'Connor T, Tiberi C, Rehrauer H, Weis J, Aguzzi A (2010) Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS One 5:e12450.

    Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136:642-655.

    De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911-3921.

    Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56.

    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-114.

    Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, Qu A, Zhang X, Pan H, Yang Y, Wang C (2015) Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer 136:854-862.

    Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052-13057.

    Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, van den Oord EJ, Riley BP, Kendler KS, Vladimirov VI (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124:183-191.

    Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635-639.

    Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X (2015) Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 23:423-433.

    Liu Q, Xu Y, Wei S, Gao W, Chen L, Zhou T, Wang Z, Ying M, Zheng Q (2015) microRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci Rep 35:e00229.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.

    Lu A, Huang Z, Zhang C, Zhang X, Zhao J, Zhang H, Zhang Q, Wu S, Yi X (2014) Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regen Res 9:1031-1040.

    Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28:11571-11582.

    Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y, Homma Y, Hayashizaki Y, Inoue S (2010) miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13:356-361.

    Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163-201.

    Ngeow WC (2010) Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:357-366.

    Pereira JA, Baumann R, Norrmen C, Somandin C, Miehe M, Jacob C, Luhmann T, Hall-Bozic H, Mantei N, Meijer D, Suter U (2010) Dicer in Schwann cells is required for myelination and axonal integrity. J Neurosci 30:6763-6775.

    Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180-187.

    Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L (2010) Reduction of Dicer impairs Schwann cell differentiation and myelination. J Neurosci Res 88:2558-2568.

    Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283-289.

    Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55.

    Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 6:e24612.

    Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012a) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40:10356-10365.

    Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, Gu X (2012b) miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 125:2675-2683.

    Zemla A, Thomas Y, Kedziora S, Knebel A, Wood NT, Rabut G, Kurz T (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun 4:1641.

    Zhang JG, Shi Y, Hong DF, Song M, Huang D, Wang CY, Zhao G (2015) MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/beta-catenin pathway. Sci Rep 5:8087.

    Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, Ding F, Yu B, Gu X (2014) MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 127:967-976.

    Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29:7116-7123.

    Copyedited by Cooper C, Hindle A, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.184504

    How to cite this article: Qian TM, Zhao LL, Wang J, Li P, Qin J, Liu YS, Yu B, Ding F, Gu XS, Zhou SL (2016) miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylation-dissociated 1. Neural Regen Res 11(6)∶1001-1005.

    Funding: This study was supported by the National Key Basic Research Program of China, No. 2014CB542202; the National High-Tech R&D Program of China (863 Program), No. 2012AA020502; the National Natural Science Foundation of China, No. 81130080, 81371389 and 81571198; the Natural Science Foundation of Nantong University of China, No. 13040397; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    *Correspondence to: Song-lin Zhou, Ph.D., songlin.zhou@ntu.edu.cn.

    99久国产av精品| 国产在线精品亚洲第一网站| 欧美性猛交╳xxx乱大交人| 亚洲精品成人久久久久久| 中文字幕av成人在线电影| www.av在线官网国产| 啦啦啦韩国在线观看视频| 久久久久久久久久久丰满| 日本黄色片子视频| 51国产日韩欧美| 中文字幕精品亚洲无线码一区| 在线免费观看不下载黄p国产| 久久人人爽人人片av| 日本撒尿小便嘘嘘汇集6| 少妇熟女欧美另类| 亚洲一区高清亚洲精品| 国产视频内射| 国产视频内射| 九九爱精品视频在线观看| 级片在线观看| 一本精品99久久精品77| 99热精品在线国产| 在线播放无遮挡| 小说图片视频综合网站| 亚洲真实伦在线观看| 联通29元200g的流量卡| 99热精品在线国产| 小蜜桃在线观看免费完整版高清| 国产精品蜜桃在线观看 | 人妻少妇偷人精品九色| 非洲黑人性xxxx精品又粗又长| 人妻系列 视频| 久久精品久久久久久久性| 极品教师在线视频| 国产美女午夜福利| 国产亚洲精品久久久com| 亚洲成a人片在线一区二区| 女人被狂操c到高潮| 欧美高清性xxxxhd video| 亚洲在线自拍视频| 精品国内亚洲2022精品成人| 人人妻人人看人人澡| 白带黄色成豆腐渣| 夫妻性生交免费视频一级片| 麻豆久久精品国产亚洲av| av天堂中文字幕网| 成人毛片60女人毛片免费| 你懂的网址亚洲精品在线观看 | 晚上一个人看的免费电影| 99在线人妻在线中文字幕| 狂野欧美激情性xxxx在线观看| 有码 亚洲区| 嫩草影院精品99| 亚洲av免费高清在线观看| 久久人人爽人人片av| 精品久久久久久成人av| 欧美潮喷喷水| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 美女大奶头视频| 深夜精品福利| 淫秽高清视频在线观看| 国产一区二区亚洲精品在线观看| 激情 狠狠 欧美| 在线观看午夜福利视频| 久久久国产成人免费| 99riav亚洲国产免费| 亚洲精品456在线播放app| 中文字幕制服av| 久久久久久久亚洲中文字幕| 久久久久久久久中文| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 18禁黄网站禁片免费观看直播| 日韩欧美三级三区| 国产私拍福利视频在线观看| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| 乱系列少妇在线播放| 久久久国产成人精品二区| 真实男女啪啪啪动态图| 91狼人影院| 久久久久久久久久久免费av| 色5月婷婷丁香| 全区人妻精品视频| 久久6这里有精品| 九色成人免费人妻av| 国产精品日韩av在线免费观看| 亚洲精品色激情综合| 国产成年人精品一区二区| 亚洲久久久久久中文字幕| 国产日本99.免费观看| 国产精品永久免费网站| 亚洲av中文字字幕乱码综合| 蜜桃亚洲精品一区二区三区| 日本欧美国产在线视频| 久久午夜亚洲精品久久| 男人和女人高潮做爰伦理| 女人十人毛片免费观看3o分钟| 国产精品久久久久久av不卡| 舔av片在线| 99久国产av精品国产电影| 国产69精品久久久久777片| 天堂影院成人在线观看| 亚洲欧美日韩高清在线视频| 久久久久久久久久成人| 少妇熟女aⅴ在线视频| 久久久久久久久久久免费av| 欧美日本亚洲视频在线播放| 亚洲av男天堂| 最近视频中文字幕2019在线8| 免费看美女性在线毛片视频| 午夜精品在线福利| av女优亚洲男人天堂| 韩国av在线不卡| 久久99热6这里只有精品| 美女cb高潮喷水在线观看| 欧美3d第一页| 国产中年淑女户外野战色| 又爽又黄a免费视频| 乱码一卡2卡4卡精品| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 12—13女人毛片做爰片一| 午夜福利在线在线| 亚洲在久久综合| 男女视频在线观看网站免费| 嫩草影院新地址| 亚洲高清免费不卡视频| 亚洲精品国产av成人精品| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 99riav亚洲国产免费| 国产精品嫩草影院av在线观看| 一区二区三区四区激情视频 | 69av精品久久久久久| 亚洲最大成人手机在线| 在线免费观看不下载黄p国产| 狂野欧美白嫩少妇大欣赏| 午夜精品国产一区二区电影 | 国产av不卡久久| 蜜臀久久99精品久久宅男| 国产午夜福利久久久久久| 在线a可以看的网站| 人体艺术视频欧美日本| 男人舔奶头视频| av天堂在线播放| 亚洲精品色激情综合| 日日撸夜夜添| 热99在线观看视频| 亚洲欧洲日产国产| 久久99热这里只有精品18| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 久久精品国产鲁丝片午夜精品| 久久久久久久亚洲中文字幕| 日韩欧美在线乱码| 国产乱人偷精品视频| 十八禁国产超污无遮挡网站| 美女 人体艺术 gogo| 啦啦啦啦在线视频资源| 亚洲在线自拍视频| 中文字幕久久专区| 国产在视频线在精品| 啦啦啦啦在线视频资源| 99热6这里只有精品| 国产精品美女特级片免费视频播放器| 午夜精品国产一区二区电影 | 久久热精品热| 黄片无遮挡物在线观看| 色噜噜av男人的天堂激情| 成人国产麻豆网| 亚洲自偷自拍三级| 久久午夜福利片| 国产精品一区www在线观看| 干丝袜人妻中文字幕| 国产精品蜜桃在线观看 | 免费一级毛片在线播放高清视频| 中国美白少妇内射xxxbb| 国产黄片美女视频| 在线播放国产精品三级| 少妇熟女欧美另类| 99精品在免费线老司机午夜| 一级毛片aaaaaa免费看小| 色综合色国产| 成人高潮视频无遮挡免费网站| 久久久久久久久久成人| av在线蜜桃| 99久久中文字幕三级久久日本| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 春色校园在线视频观看| 欧美成人精品欧美一级黄| 亚洲成av人片在线播放无| 亚洲三级黄色毛片| 日韩成人伦理影院| 黄色日韩在线| 两个人的视频大全免费| 亚洲成人精品中文字幕电影| 精品人妻视频免费看| 成人国产麻豆网| 一级毛片电影观看 | 日本黄色视频三级网站网址| 3wmmmm亚洲av在线观看| 久久中文看片网| 成人漫画全彩无遮挡| 六月丁香七月| 如何舔出高潮| 麻豆一二三区av精品| 日本成人三级电影网站| 精品人妻偷拍中文字幕| 日韩精品有码人妻一区| 又粗又硬又长又爽又黄的视频 | 2021天堂中文幕一二区在线观| 丰满乱子伦码专区| 欧美zozozo另类| 最近2019中文字幕mv第一页| 校园春色视频在线观看| 久久久久久久久中文| 特级一级黄色大片| 日韩人妻高清精品专区| 天堂√8在线中文| 欧美成人一区二区免费高清观看| 久久99热6这里只有精品| 国内精品久久久久精免费| 99热这里只有是精品50| av.在线天堂| 一区福利在线观看| 淫秽高清视频在线观看| 麻豆精品久久久久久蜜桃| 久久久精品大字幕| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 97超视频在线观看视频| 亚洲国产精品成人综合色| 亚洲va在线va天堂va国产| 日韩欧美国产在线观看| h日本视频在线播放| 久久精品久久久久久噜噜老黄 | 国国产精品蜜臀av免费| 国产成人a∨麻豆精品| 欧美色欧美亚洲另类二区| 亚洲美女搞黄在线观看| 亚洲色图av天堂| 久久这里有精品视频免费| 97超碰精品成人国产| 欧美日韩国产亚洲二区| 大型黄色视频在线免费观看| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 国产精品久久视频播放| 中文字幕免费在线视频6| 91精品一卡2卡3卡4卡| 免费av观看视频| 色5月婷婷丁香| 午夜福利高清视频| 综合色av麻豆| 国产美女午夜福利| 日韩 亚洲 欧美在线| 午夜视频国产福利| 人妻夜夜爽99麻豆av| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 在线免费观看不下载黄p国产| 啦啦啦观看免费观看视频高清| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 97超视频在线观看视频| 国内精品宾馆在线| 国产高清三级在线| 三级男女做爰猛烈吃奶摸视频| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜爱| 精品日产1卡2卡| 国产成人午夜福利电影在线观看| 人人妻人人澡欧美一区二区| 日韩欧美三级三区| 在现免费观看毛片| 日本黄色片子视频| 天堂av国产一区二区熟女人妻| 日韩成人伦理影院| 色5月婷婷丁香| 国产精品野战在线观看| 免费看a级黄色片| 97在线视频观看| 国产真实乱freesex| 看黄色毛片网站| 欧美日韩一区二区视频在线观看视频在线 | 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 久久久久久大精品| 精品人妻熟女av久视频| 观看免费一级毛片| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 成人三级黄色视频| 色综合亚洲欧美另类图片| 高清日韩中文字幕在线| 亚洲av成人av| 我要搜黄色片| 日本撒尿小便嘘嘘汇集6| 成人综合一区亚洲| 91av网一区二区| 免费搜索国产男女视频| 日韩一区二区视频免费看| 97超视频在线观看视频| 亚洲国产色片| 熟女电影av网| 日韩强制内射视频| 赤兔流量卡办理| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久成人| 哪个播放器可以免费观看大片| 插阴视频在线观看视频| 久久这里有精品视频免费| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 美女内射精品一级片tv| 天天一区二区日本电影三级| 男女边吃奶边做爰视频| 日韩大尺度精品在线看网址| 国产不卡一卡二| 黄片无遮挡物在线观看| 少妇的逼好多水| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 99久久无色码亚洲精品果冻| av在线老鸭窝| 日韩制服骚丝袜av| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 久久韩国三级中文字幕| 一个人看的www免费观看视频| 成人特级av手机在线观看| 国产精品电影一区二区三区| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 精品一区二区三区人妻视频| 久久人人爽人人爽人人片va| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 久久99热6这里只有精品| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6| 最近最新中文字幕大全电影3| h日本视频在线播放| 99国产精品一区二区蜜桃av| 国产成人一区二区在线| 九九热线精品视视频播放| 成年av动漫网址| 少妇人妻一区二区三区视频| 亚洲四区av| 中文字幕久久专区| 国产一区二区亚洲精品在线观看| 日本三级黄在线观看| av国产免费在线观看| 国产精品久久久久久av不卡| .国产精品久久| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 亚洲欧美精品综合久久99| 91久久精品电影网| 国产男人的电影天堂91| 一本精品99久久精品77| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 久久亚洲精品不卡| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 欧美xxxx黑人xx丫x性爽| 国产午夜精品论理片| 在线观看美女被高潮喷水网站| 免费观看精品视频网站| 麻豆国产97在线/欧美| 乱码一卡2卡4卡精品| av免费在线看不卡| 中文字幕制服av| 日韩精品有码人妻一区| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 日韩高清综合在线| 久久久久久久久久久免费av| 欧美成人a在线观看| 尾随美女入室| 青春草亚洲视频在线观看| 精品久久久久久久久久免费视频| 中文精品一卡2卡3卡4更新| 内地一区二区视频在线| 亚洲欧洲国产日韩| 国产v大片淫在线免费观看| 色哟哟哟哟哟哟| 国产精品久久久久久精品电影小说 | 精品午夜福利在线看| 久久精品国产99精品国产亚洲性色| 黄色日韩在线| 91久久精品国产一区二区成人| 小蜜桃在线观看免费完整版高清| or卡值多少钱| 在线国产一区二区在线| 听说在线观看完整版免费高清| 午夜久久久久精精品| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 午夜福利在线观看免费完整高清在 | 久久精品久久久久久久性| 一区二区三区高清视频在线| 青春草国产在线视频 | 亚洲精品影视一区二区三区av| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 中文字幕久久专区| 日韩欧美一区二区三区在线观看| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 蜜桃亚洲精品一区二区三区| 黄片无遮挡物在线观看| 亚洲国产精品久久男人天堂| 热99在线观看视频| 国产日韩欧美在线精品| 深夜精品福利| 久久久欧美国产精品| 欧美精品国产亚洲| 赤兔流量卡办理| 麻豆国产97在线/欧美| 久久久久久久久中文| 亚洲内射少妇av| 国产精品不卡视频一区二区| 97在线视频观看| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 久久久久国产网址| 日日摸夜夜添夜夜爱| 欧美区成人在线视频| 毛片一级片免费看久久久久| 中文亚洲av片在线观看爽| 在线观看午夜福利视频| 我的老师免费观看完整版| 国内精品宾馆在线| 国产三级中文精品| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 乱系列少妇在线播放| 国产精品福利在线免费观看| 亚洲欧美日韩高清在线视频| 国产精品一区二区性色av| 久久久久九九精品影院| www.av在线官网国产| 一级毛片我不卡| 伦精品一区二区三区| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清| 女的被弄到高潮叫床怎么办| 我的女老师完整版在线观看| 如何舔出高潮| 久久久久久久久久黄片| 久久人妻av系列| 麻豆国产97在线/欧美| 成人欧美大片| 搡老妇女老女人老熟妇| 久久精品国产亚洲av涩爱 | 看免费成人av毛片| 日韩高清综合在线| 网址你懂的国产日韩在线| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 久久精品夜色国产| 国产极品天堂在线| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 国产乱人偷精品视频| 国产真实伦视频高清在线观看| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 国产精品蜜桃在线观看 | 亚洲四区av| 精品熟女少妇av免费看| 99热全是精品| 日韩欧美精品v在线| 天堂影院成人在线观看| 国产精品国产三级国产av玫瑰| av专区在线播放| 哪里可以看免费的av片| 国产午夜精品论理片| 一夜夜www| 你懂的网址亚洲精品在线观看 | 狂野欧美白嫩少妇大欣赏| 日本色播在线视频| 老司机福利观看| 亚洲自偷自拍三级| 国产精品野战在线观看| 日日摸夜夜添夜夜爱| 婷婷亚洲欧美| 成人av在线播放网站| 91午夜精品亚洲一区二区三区| 女的被弄到高潮叫床怎么办| 日韩精品有码人妻一区| 成人欧美大片| 国产国拍精品亚洲av在线观看| 国产伦在线观看视频一区| 亚洲无线在线观看| 波野结衣二区三区在线| 一进一出抽搐动态| 黄片无遮挡物在线观看| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 熟妇人妻久久中文字幕3abv| 少妇猛男粗大的猛烈进出视频 | 午夜亚洲福利在线播放| 中国美白少妇内射xxxbb| 国产黄色小视频在线观看| 夜夜看夜夜爽夜夜摸| 国产片特级美女逼逼视频| 成人三级黄色视频| 日本三级黄在线观看| 国产精品日韩av在线免费观看| 亚洲成av人片在线播放无| 中国美女看黄片| 特级一级黄色大片| 亚洲av免费高清在线观看| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 日韩欧美一区二区三区在线观看| 国内精品久久久久精免费| 综合色丁香网| 久久鲁丝午夜福利片| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 亚洲av男天堂| 中文资源天堂在线| а√天堂www在线а√下载| 国产精品不卡视频一区二区| av视频在线观看入口| 99视频精品全部免费 在线| 色播亚洲综合网| 人体艺术视频欧美日本| 成年免费大片在线观看| 国产精品免费一区二区三区在线| 免费观看精品视频网站| 日韩av在线大香蕉| 黄色日韩在线| 国产日本99.免费观看| 日日撸夜夜添| 99久久精品一区二区三区| 免费搜索国产男女视频| 女同久久另类99精品国产91| 国产亚洲欧美98| eeuss影院久久| 国产av麻豆久久久久久久| 偷拍熟女少妇极品色| 国产午夜福利久久久久久| 午夜激情欧美在线| 国产私拍福利视频在线观看| 日韩视频在线欧美| 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 成人av在线播放网站| 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 淫秽高清视频在线观看| 成人高潮视频无遮挡免费网站| 国产精品一区www在线观看| 日韩欧美精品v在线| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 一个人看视频在线观看www免费| 国产成人a∨麻豆精品| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3| 有码 亚洲区| 在线观看66精品国产| 成人av在线播放网站| 久久婷婷人人爽人人干人人爱| 国产又黄又爽又无遮挡在线| 欧美性感艳星| 变态另类成人亚洲欧美熟女| 成年免费大片在线观看| 国产不卡一卡二| 欧美一级a爱片免费观看看| 亚洲aⅴ乱码一区二区在线播放| av天堂中文字幕网| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| av在线老鸭窝| 欧美性猛交黑人性爽| 欧美日韩一区二区视频在线观看视频在线 | 91aial.com中文字幕在线观看| 亚洲欧美日韩高清在线视频| 激情 狠狠 欧美| 亚洲一区二区三区色噜噜| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 又粗又爽又猛毛片免费看| 校园春色视频在线观看| 嫩草影院精品99| 九草在线视频观看| 国产中年淑女户外野战色| 五月玫瑰六月丁香| 久久久欧美国产精品| 久久九九热精品免费| 亚洲乱码一区二区免费版| 美女被艹到高潮喷水动态| 一个人免费在线观看电影|