• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of 2D square-like Bi2S3-BiOCl heterostructures withenhanced visible light-driven photocatalytic performance for dye pollutant degradation

    2017-02-01 08:50:26JingjingXuJingwenYangPuZhangQuanYuanYanhongZhuYuWangMiaomiaoWuZhengmeiWangMindongChen
    Water Science and Engineering 2017年4期

    Jing-jing Xu*,Jing-wen YangPu ZhangQuan YuanYan-hong ZhuYu WangMiao-miao WuZheng-mei WangMin-dong Chen

    aCollaborative Innovation Center of Atmospheric Environment and Equipment Technology,School of Environmental Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    bJiangsu Engineering Technology Research Center of Environmental Cleaning Materials,Nanjing University of Information Science and Technology,Nanjing 210044,China

    cJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,Nanjing University of Information Science and Technology,Nanjing 210044,China

    1.Introduction

    Photocatalytic technology has been developing quickly since Fujishima and Honda(1972)found that titanium dioxide(TiO2)photoanodes can induce water splitting.Thefirst attempt at application of photocatalytic technology in thefield of organic pollutant degradation was the use of TiO2for the photodechlorination of polychlorobiphenyls(Carey et al.,1976).Because of their high reaction speed,stability,low toxicity,and many other advantages,semiconductor photocatalysts have attracted much attention over the past several decades.In recent years,photocatalysts such as TiO2(Bianchi et al.,2014;Wang et al.,2014),BiOX(X=Cl,Br,I)(Chen et al.,2013;Ao et al.,2016a,2016b,2016c;Qin et al.,2013;Zhang et al.,2013b),and Ag/AgX(X=Cl,Br)(Wang et al.,2012,2013c)have attracted much attention in thisfield.

    Bismuth oxyhalide BiOCl has a lamellar structure and strong photocorrosion resistance.BiOCl has been put to many uses,such as pigments(Maile et al.,2005),photoluminescence(Deng et al.,2008),and photocatalysis(Shenawi-Khalil et al.,2011).Much progress has been made.Xiong et al.(2011)prepared square-like BiOCl nanosheets through an environmentally friendly hydrothermal process.At room temperature,Ye et al.(2013)synthesizedflower-like BiOCl composed of self-assembled hierarchical nanosheets,which performed well in the degradation of Rhodamine B(RhB).However,widebandgap BiOCl shows little response to visible light,which accounts for 45%of solar spectra.This means that BiOCl cannot utilize the solar energy efficiently.The fact that it can only be photo-excited under ultraviolet(UV)irradiation has limited its application to removal of organic pollutants.Major efforts have been made to obtain visible light-driven BiOClbased photocatalysts(Zhang et al.,2013a;Xia et al.,2013;Wang et al.,2013a;Cao et al.,2013).

    Narrow-bandgap Bi2S3has been used to modify TiO2(Liu et al.,2017),Bi2O2CO3(Wang et al.,2013b),ZnS(Nawaz,2017),and some other wide-bandgap photocatalysts(Cheng et al.,2012)in order to improve their performance under visible light irradiation.Cao et al.(2012)synthesized a novel Bi2S3-sensitized BiOCl photocatalyst with a rose-like structure,which photodegraded 98.0%of RhB within 2 h under visible light irradiation,much more than BiOCl,Bi2S3,or TiO2alone.This showed that the combination of Bi2S3and BiOCl can turn BiOCl into a promising visible light-driven photocatalyst(Ferreira et al.,2016;Jiang et al.,2014).However,all the studies mentioned above focused on Bi2S3-modified three-dimensional(3D)flower-like structured BiOCl,and no study has focused on the preparation and activity of Bi2S3-modified two-dimensional(2D)plate-like structured BiOCl.2D Bi2S3-BiOCl would be highly active under visible light irradiation.

    2.Experimental setup

    2.1.Synthesis

    Analytical-grade chemicals have often been used without further purification.In this study,Bi2S3-BiOCl composites with different Bi2S3contents were synthesized via a facile two-step anion exchange route at room temperature.First,we prepared white BiOCl nanosheets using the solvothermal method(Xiong et al.,2011).Second,thioacetamide(TAA)was used as the sulfur source to obtain the composites.In the experimental synthesizing of Bi2S3-BiOCl composites,0.26 g of BiOCl nanosheets were added into 25 mL of ultrapure water and sonicated for 10 min to form suspension A.Solution B was obtained after the dissolution of a certain amount of TAA in 25 mL of ultrapure water.Then,solution B was gradually poured into suspension A and stirred for 5 h at room temperature.Finally,the light gray products were obtained;they were washed with deionized water,and dried at 80°C for about 6 h.Four samples were prepared by changing the added amount of TAA.The obtained samples were defined as Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),and Bi2S3-BiOCl(8:8),as the added amounts of TAA were 0.009,0.019,0.038,and 0.075 g,respectively.

    2.2.Characterization

    We used X-ray diffraction(XRD)to examine the crystal form and crystallinity of the samples.Field emission scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were utilized to observe the surface morphologies and microstructures of the samples,using a Hitachi S-4800 scanning electron microscope and a Hitachi H-7650 transmission electron microscope,respectively.The absorption ability of catalysts was measured through ultraviolet-visible(UV/Vis)diffuse reflectance spectra(DRS)on a Shimadzu UV3600 spectrometer.The Brunauer-Emmett-Teller(BET)surface area of the samples was obtained with a BET analyzer(ASAP 2020,Micromeritics Instrument Corporation)through N2adsorption-desorption isotherms.

    2.3.Photocatalytic experiments

    The photocatalytic activities of the as-prepared samples were measured through photodegradation of X-3B under visible light(λ≥ 400 nm,where λ is the wave length)irradiation,a 300 W Xe lamp was used as a light source,and a circulating cooling water system was used to keep the temperature at 12°C.In each experiment,a 0.01-g sample was added to 50 mL of X-3B solution with a concentration of 25 mg/L to form a suspension.In order to reach adsorptiondesorption equilibrium,the suspension was ultrasonic-treated for 2 min and further stirred for 30 min in the dark.Under light irradiation,about 1.5 mL of suspension was taken out for examination every 15 min.

    3.Results and discussion

    The as-prepared Bi2S3-BiOCl samples were analyzed through XRD characterization(Fig.1,where a.u.means arbitrary unit,and 2θ is the diffraction angle)to examine their phase structure,crystal form,and crystallinity.All the diffraction peaks of BiOCl and Bi2S3could be indexed according to the structures of tetragonal BiOCl(JCPDS No.06-0249)and bulk orthorhombic Bi2S3(JCPDS No.75-1306),respectively,indicating high crystal purity.No diffraction peaks of Bi2S3were observed in the curves of Bi2S3-BiOCl composites.This is probably due to the amorphous structure,high level of dispersity,and small crystallites of Bi2S3.The obtained results indicate that the addition of Bi2S3does not cause changes in the crystal phase of BiOCl.

    Fig.1.XRD patterns of BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    During the preparation process of Bi2S3-BiOCl composites,thesquare-likeBiOClnanosheetswith athicknessof 10-25 nm(Fig.2(a))were dispersed in the ultrapure waterfirst.Then,through ion exchange,a reaction between Bi3+and TAA occurred over time(the stepwise equations were as follows:CH3CSNH2+H2O→CH3CONH2+H2S↑;2Bi3++3H2S→Bi2S3↓+6H+).Finally,Bi2S3was dispersed and anchored on the surface of BiOCl nanosheets,as shown clearly in Fig.3(b).Because of the rather lower solubility of Bi2S3(Ksp=1.0×10-97,where Kspis the solubility product),compared to BiOCl(Ksp=1.8×10-31)(Cheng et al.,2012),a partial anion ion exchange reaction induced the formation of Bi2S3on the surface of BiOCl.The microstructure and morphology of the samples were investigated by SEM and TEM.Compared to the morphology of Bi2S3nanorods with lengths of 100-180 nm(Fig.2(b)),Bi2S3-BiOCl composites were nanosheets(Fig.2(c)through(f))similar to pure BiOCl.Furthermore,it can be seen that the thickness of all the nanosheets were about 10-20 nm(marked by black arrows in Fig.2).Surface area and pore structures are crucial to the activity of photocatalysts.Therefore,the surface areas of the obtained samples were obtained through N2adsorptiondesorption isotherms.The surface areas of pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3were 2.91,5.12,5.63,5.90,6.24,and 15.62 m2/g,respectively.

    The UV/Vis diffuse reflectance spectra of BiOCl,Bi2S3,and Bi2S3-BiOCl composites are shown in Fig.4.Pure BiOCl can only adsorb UV light with an absorption edge at about 360 nm.However,Bi2S3exhibits strong absorption intensity in the visible light region,even extending to the near-infrared region.As for Bi2S3-BiOCl composites,their absorption edges shift to about 420 nm and an enhancement in photoabsorption efficiency is observed.The results illustrate that Bi2S3has a photosensitization effect on BiOCl.Furthermore,the bandgap energy(Eg)of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites can be calculated to be about 3.49,1.27,and 2.95 eV,respectively.

    Fig.2.SEM images of samples.

    Fig.3.TEM images of samples.

    Fig.4.UV/Vis DRS of pure BiOCl,Bi2S3,and Bi2S3-BiOCl composites.

    Fig.5 shows the concentration changes of X-3B dye in different samples with the visible light irradiation time in order to evaluate the photocatalytic activities,where C is the concentration of X-3B in the process and C0is the initial concentration of X-3B.After 30 min of stirring in the dark,a strong adsorption was observed on Bi2S3,while other samples exhibited relatively low levels of adsorption for X-3B.Furthermore,it can be seen that only 11.6%and 37.8%of X-3B were removed by BiOCl and Bi2S3after the adsorption and photocatalytic processes,respectively.The main reasons were that BiOCl has little response to visible light,and the photoexcited electron-hole pairs of Bi2S3would be recombined due to its narrow bandgap.Meanwhile,the degradation effi-ciency of Bi2S3-BiOCl(8:4)was 74.6%,which was the highest photodegradation efficiency of the samples.The apparent rate constants were 0.0015,0.014,0.02,0.028,0.018,and 0.096 min-1for pure BiOCl,Bi2S3-BiOCl(8:1),Bi2S3-BiOCl(8:2),Bi2S3-BiOCl(8:4),Bi2S3-BiOCl(8:8),and Bi2S3,respectively.Obviously,all Bi2S3-BiOCl composites performed better than both BiOCl and Bi2S3,and 8:4 was the optimal Bi/S ratio in this study.In order to determine the factor that caused the increase of the activity of Bi2S3-BiOCl composite photocatalysts,photocurrent was measured at open circuit potentials for all samples.The samples deposited onfluorine-doped tin oxide(FTO)conductive glass were used as anodes for the measurement.The results are shown in Fig.6.A uniform and apparent photocurrent response can be seen for all electrodes.Furthermore,all Bi2S3-BiOCl composites exhibited higher photocurrent intensity values than pure BiOCl.The photocurrent is determined by the recombination at the electrolyte interface and the transferring speed of excited electrons from the photocatalyst to FTO.Therefore,the increase of photocurrent for Bi2S3-BiOCl composites should be attributed to the higher separation efficiency of photogenerated charges.This results from the coupling of BiOCl and Bi2S3and the formation of heterojunctions between the two components.The formed heterojunctions help to transfer and separate the photogenerated electron-hole pairs,and thus increase the photocatalytic activity.It can also be seen that the photocatalytic performance and photocurrent of Bi2S3-BiOCl composites strengthen gradually with the increase of the Bi/S ratio from 8:1 to 8:4.However,Bi2S3-BiOCl(8:8)shows a weaker performance than Bi2S3-BiOCl(8:4),which may stem from the overload of Bi2S3.Therefore,there is an optimal value of the Bi/S ratio(8:4 in this study)that obtains the highest photocatalytic activity for Bi2S3-BiOCl composites.

    Fig.5.Photocatalytic activities of samples.

    Fig.6.Photocurrent responses of Bi2S3-BiOCl composites under visible light irradiation.

    To explore the mechanism of photocatalytic degradation of X-3B by Bi2S3-BiOCl composites is highly significant.As shown in Fig.7,a plausible mechanism for X-3B degradation is proposed.

    Under visible light irradiation,Bi2S3is excited enough to generate electron-hole pairs.Some of the photogenerated electrons are then trapped by dissolved O2and produce·O-2,an important active species in oxidation reactions,and the others can be readily transferred to the conduction band(CB)of BiOCl.These electrons on CB of BiOCl cannot react to produce·Ο-2radicals,because the CB potential is 0.11 eV,while the redox potential of O2/·O-2is-0.046 eV(Wang et al.,2013a).The hole(h+)can either react with OH-to produce·OH or directly decompose X-3B dye since it is also a strong oxidant(the valent band(VB)potential of Bi2S3is 1.47 eV,and the redox potential of H2O/·OH is 2.72 eV)(Li et al.,2009).Consequently,the recombination of e-and h+has largely been restrained,and these oxidative species(·O-2,·OH,and h+)can degrade X-3B dye.In addition,BiOCl may degrade X-3B molecules through the photosensitition effect,although it shows little response to visible light because of its wide bandgap.The related equations in this reaction process,including two collaborative processes(photodegradation and photosensitization),are as follows(Nawaz,2017;Cao et al.,2012):

    Fig.7.Schematic photocatalytic reaction process of Bi2S3-BiOCl composites with degradation of X-3B under visible light irradiation.

    where h is the Planck constant,ν is the frequency,and*means the excited state.

    The stability of Bi2S3-BiOCl samples is crucial to their practical applications.Therefore,typical reuse experiments of Bi2S3-BiOCl(8:4)were conducted to evaluate its long-term service properties.The obtained results are shown in Fig.8.The photocatalytic performance of Bi2S3-BiOCl(8:4)has no apparent decreasing trend after three cycles.This indicates that the prepared Bi2S3-BiOCl composite photocatalysts are stable.

    Fig.8.Recyclability of Bi2S3-BiOCl(8:4)under visible light irradiation.

    4.Conclusions

    Visible light-responsive and square-like Bi2S3-BiOCl composites with different Bi/S ratios were prepared via a twostep anion exchange route.The samples were obtained through a partial anion exchange reaction between the square-like BiOCl and TAA,in which the Bi2S3was produced on the surface of BiOCl.The phase structure,morphology,and optical properties of Bi2S3-BiOCl composites were studied with XRD,SEM,TEM,and DRS.The results show that the coupling of BiOCl with Bi2S3induce enhanced photoabsorption efficiency and a narrower bandgap.The photocatalytic activity under visible light irradiation was investigated through the photocatalytic degradation of X-3B dye.The results show that all Bi2S3-BiOCl composites exhibited much higher activity than pure BiOCl and Bi2S3,and the enhanced activity was ascribed to the formation of Bi2S3on BiOCl nanosheets.Based on investigation of the effect of the Bi/S ratio on the activity of Bi2S3-BiOCl composites,an optimal value(8:4)was obtained.This work can provide ideas concerning the design of more bismuth-based photocatalysts for treatment of pollutants.

    Ao,Y.H.,Bao,J.Q.,Wang,P.F.,Wang,C.,Hou,J.,2016a.Bismuth oxychloride modified titanium phosphate nanoplates:A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.J.Colloid Interface Sci.476,71-78.https://doi.org/10.1016/j.jcis.2016.05.021.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016b.Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7composite photocatalyst with enhanced photocatalytic performance under both UVand visible light irradiation.Appl.Catal.B Environ.194,157-168.https://doi.org/10.1016/j.apcatb.2016.04.050.

    Ao,Y.H.,Wang,K.D.,Wang,P.F.,Wang,C.,Hou,J.,2016c.Fabrication of novel p-n heterojunction BiOI/La2Ti2O7composite photocatalysts for enhanced photocatalytic performance under visible light irradiation.Dalton Trans.45(19),7986-7997.https://doi.org/10.1039/c6dt00862c.

    Bianchi,C.L.,Gatto,S.,Pirola,C.,Naldoni,A.,Di Michele,A.,Cerrato,G.,Crocella,V.,Capucci,V.,2014.Photocatalytic degradation of acetone,acetaldehyde and toluene in gas-phase:Comparison between nano and micro-sized TiO2.Appl.Catal.B Environ.146,123-130.https://doi.org/10.1016/j.apcatb.2013.02.047.

    Cao,J.,Xu,B.Y.,Lin,H.L.,Luo,B.D.,Chen,S.F.,2012.Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B.Catal.Commun.26,204-208.https://doi.org/10.1016/j.catcom.2012.05.025.

    Cao,J.,Zhou,C.C.,Lin,H.L.,Xu,B.Y.,Chen,S.F.,2013.Surface modifi-cation of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity.Appl.Surf.Sci.284,263-269.https://doi.org/10.1016/j.apsusc.2013.07.092.

    Carey,J.H.,Lawrence,J.,Tosine,H.M.,1976.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions.Bull.Environ.Contam.Toxicol.16(6),697-701.

    Chen,L.,Huang,R.,Xiong,M.,Yuan,Q.,He,J.,Jia,J.,Yao,M.Y.,Luo,S.L.,Au,C.T.,Yin,S.F.,2013.Room-temperature synthesis offlower-like BiOX(X=Cl,Br,I)hierarchical structures and their visible-light photocatalytic activity.Inorg.Chem.52(19),11118-11125.https://doi.org/10.1021/ic401349j.

    Cheng,H.F.,Huang,B.B.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2012.A controlled anion exchange strategy to synthesize Bi2S3nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity.Chem.Commun.48(1),97-99.https://doi.org/10.1039/c1cc15487g.

    Deng,Z.T.,Tang,F.Q.,Muscat,A.J.,2008.Strongbluephotoluminescencefrom single-crystalline bismuth oxychloridenanoplates.Nanotechnology 19(29),295705-295710.https://doi.org/10.1088/0957-4484/19/29/295705.

    Ferreira,V.C.,Neves,M.C.,Hillman,A.R.,Monteriro,O.C.,2016.Novel onepot synthesis and sensitisation of new BiOCl-Bi2S3nanostructures from DES medium displaying high photocatalytic activity.RSC Advances 6,77329-77339.https://doi.org/10.1039/C6RA14474H.

    Fujishima,A.,Honda,K.,1972.Electrochemical photolysis of water at a semiconductorelectrode.Nature 238(5358),37-38.https://doi.org/10.1038/238037a0.

    Jiang,S.H.,Zhou,K.Q.,Shi,Y.Q.,Lo,S.M.,Xu,H.Y.,Hu,Y.,Gui,Z.,2014.In situ synthesis of hierarchicalflower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity.Appl.Surf.Sci.290,313-319.https://doi.org/10.1016/j.apsusc.2013.11.074.

    Li,G.T.,Wong,K.H.,Zhang,X.W.,Hu,C.,Yu,J.C.,Chan,R.C.Y.,Wong,P.K.,2009.Degradation of acid orange 7 using magnetic AgBr under visible light:The roles of oxidizing species.Chemosphere 76(9),1185-1191.https://doi.org/10.1016/j.chemosphere.2009.06.027.

    Liu,Y.,Shi,Y.D.,Liu,X.,Li,H.X.,2017.A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue.Appl.Surf.Sci.396,58-66.https://doi.org/10.1016/j.apsusc.2016.11.028.

    Maile,F.J.,Pfaff,G.,Reynders,P.,2005.Effect pigments:Past,present and future.Prog.Org.Coating 54(3),150-163.https://doi.org/10.1016/j.porgcoat.2005.07.003.

    Nawaz,M.,2017.Morphology-controlled preparation ofBi2S3-ZnS chloroplast-like structures,formation mechanism and photocatalytic activityforhydrogenproduction.J.Photochem.Photobiol.Chem.332,326-330.https://doi.org/10.1016/j.jphotochem.2016.09.005.

    Qin,X.Y.,Cheng,H.F.,Wang,W.J.,Huang,B.B.,Zhang,X.Y.,Dai,Y.,2013.Three dimensional BiOX(X=Cl,Br and I)hierarchical architectures:Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation.Mater.Lett.100,285-288.https://doi.org/10.1016/j.matlet.2013.03.045.

    Shenawi-Khalil,S.,Uvarov,V.,Kritsman,Y.,Mennes,E.,Popov,I.,Sasson,Y.,2011.A new family of BiO(ClxBr1-x)visible light sensitive photocatalysts.Catal.Commun.12(12),1136-1141.https://doi.org/10.1016/j.catcom.2011.03.014.

    Wang,B.,Li,C.,Cui,H.,Zhang,J.P.,Zhai,J.,Li,Q.,2014.Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2nanospheres.J.Mater.Sci.49(3),1336-1344.https://doi.org/10.1007/s10853-013-7817-4.

    Wang,P.Q.,Bai,Y.,Liu,J.Y.,Fan,Z.,Hu,Y.Q.,2012.Facile synthesis and activity of daylight-driven plasmonic catalyser Ag/AgX(X=Cl,Br).IET Micro Nano Lett.7(8),838-841.https://doi.org/10.1049/mnl.2012.0591.

    Wang,Q.Z.,Hui,J.,Li,J.J.,Cai,Y.X.,Yin,S.Q.,Wang,F.P.,Su,B.T.,2013a.Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation.Appl.Surf.Sci.283,577-583.https://doi.org/10.1016/j.apsusc.2013.06.149.

    Wang,W.J.,Cheng,H.F.,Huang,B.B.,Lin,X.J.,Qin,X.Y.,Zhang,X.Y.,Dai,Y.,2013b.Synthesis of Bi2O2CO3/Bi2S3hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants.J.Colloid Interface Sci.402,34-39.https://doi.org/10.1016/j.jcis.2013.03.054.

    Wang,Y.Q.,Sun,L.,Fugetsu,B.,2013c.Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX(X=Cl,Br)with graphene oxide template.J.Mater.Chem.1(40),12536-12544.https://doi.org/10.1039/c3ta12893h.

    Xia,J.X.,Xu,L.,Zhang,J.,Yin,S.,Li,H.M.,Xu,H.,Di,J.,2013.Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids.CrystEngComm 15(46),10132-10141.https://doi.org/10.1039/C3CE41555D.

    Xiong,J.Y.,Cheng,G.,Li,G.F.,Qin,F.,Chen,R.,2011.Well-crystallized square-like 2D BiOCl nanoplates:Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance.RSC Adv.1(18),1542-1553.https://doi.org/10.1039/C1RA00335F.

    Ye,P.,Xie,J.J.,He,Y.M.,Zhang,L.,Wu,T.H.,Wu,Y.,2013.Hydrolytic synthesis offlower-like BiOCl and its photocatalytic performance under visible light.Mater.Lett.108,168-171.

    Zhang,J.,Xia,J.X.,Yin,S.,Li,H.M.,Xu,H.,He,M.Q.,Huang,L.Y.,Zhang,Q.,2013a.Improvement of visible light photocatalytic activity overflower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids.Colloid.Surface.Physicochem.Eng.Aspect.420,89-95.https://doi.org/10.1016/j.colsurfa.2012.11.054.

    Zhang,W.D.,Zhang,Q.,Dong,F.D.,2013b.Visible-light photocatalytic removal of NO in air over BiOX(X=Cl,Br,I)single-crystal nanoplates prepared at room temperature.Ind.Eng.Chem.Res.52(20),6740-6746.https://doi.org/10.1021/ie400615f.

    国产精品国产三级国产专区5o| 国产精品国产三级专区第一集| 亚洲天堂国产精品一区在线| 久久99热这里只频精品6学生| 色综合色国产| 免费看a级黄色片| 国产又色又爽无遮挡免| 国产精品熟女久久久久浪| 欧美少妇被猛烈插入视频| 亚洲成人精品中文字幕电影| 久久精品人妻少妇| 亚洲,欧美,日韩| 国产大屁股一区二区在线视频| 在线免费十八禁| 色视频在线一区二区三区| 高清av免费在线| 一区二区三区精品91| 中国美白少妇内射xxxbb| 久久久久久久国产电影| 69av精品久久久久久| 美女国产视频在线观看| 国产黄频视频在线观看| 国产永久视频网站| 亚洲精品一二三| 久久久a久久爽久久v久久| 久久人人爽人人片av| 插阴视频在线观看视频| 在线观看免费高清a一片| 久久久精品94久久精品| 少妇人妻久久综合中文| 日本与韩国留学比较| 久久久亚洲精品成人影院| 国产免费福利视频在线观看| 日韩视频在线欧美| 97精品久久久久久久久久精品| 少妇裸体淫交视频免费看高清| 亚洲综合色惰| 2022亚洲国产成人精品| 国产毛片a区久久久久| 国产在线一区二区三区精| 男人爽女人下面视频在线观看| 国产视频首页在线观看| 91aial.com中文字幕在线观看| 最近中文字幕2019免费版| 午夜视频国产福利| 国产91av在线免费观看| 亚洲欧美清纯卡通| 成人漫画全彩无遮挡| 一级毛片 在线播放| 久久久久久久久久成人| 精品一区二区免费观看| 国产精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 如何舔出高潮| 亚洲精品456在线播放app| av女优亚洲男人天堂| av国产久精品久网站免费入址| 一级a做视频免费观看| 亚洲久久久久久中文字幕| 免费观看性生交大片5| 大码成人一级视频| 少妇人妻 视频| 日韩成人伦理影院| 国产人妻一区二区三区在| 亚洲欧美日韩卡通动漫| 久久久久久久午夜电影| 国产一区亚洲一区在线观看| av国产免费在线观看| 久久久久国产精品人妻一区二区| 国产黄片视频在线免费观看| 国内精品美女久久久久久| av专区在线播放| 大香蕉久久网| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 插阴视频在线观看视频| 麻豆乱淫一区二区| 久久久a久久爽久久v久久| 在线精品无人区一区二区三 | 男人爽女人下面视频在线观看| av线在线观看网站| 日本一本二区三区精品| 熟女av电影| 亚洲欧美成人精品一区二区| 国产高清不卡午夜福利| 免费观看a级毛片全部| 精品午夜福利在线看| 深爱激情五月婷婷| 久久久色成人| 国产在线一区二区三区精| 熟女人妻精品中文字幕| 国产成人a区在线观看| 日韩亚洲欧美综合| 亚洲国产精品成人综合色| 最近中文字幕高清免费大全6| 国产精品国产三级国产专区5o| 两个人的视频大全免费| 九九在线视频观看精品| av.在线天堂| 国产午夜福利久久久久久| 天堂中文最新版在线下载 | 女人久久www免费人成看片| 日韩,欧美,国产一区二区三区| 天天一区二区日本电影三级| 久久久久久久久久久免费av| 亚洲av不卡在线观看| 日韩免费高清中文字幕av| 国产精品爽爽va在线观看网站| 少妇人妻久久综合中文| 国产精品成人在线| 91久久精品电影网| 欧美日韩一区二区视频在线观看视频在线 | 简卡轻食公司| 国产精品国产三级国产专区5o| 中文字幕制服av| 在线观看人妻少妇| 久热久热在线精品观看| 午夜福利在线观看免费完整高清在| 在线亚洲精品国产二区图片欧美 | 国产成人精品婷婷| 九九久久精品国产亚洲av麻豆| 深夜a级毛片| 蜜桃久久精品国产亚洲av| 高清毛片免费看| 极品教师在线视频| 蜜桃久久精品国产亚洲av| 国产爽快片一区二区三区| 欧美日韩亚洲高清精品| 中文字幕亚洲精品专区| 99热这里只有精品一区| 久久精品国产a三级三级三级| 久久久久久久大尺度免费视频| 狠狠精品人妻久久久久久综合| 晚上一个人看的免费电影| 九九爱精品视频在线观看| 免费黄网站久久成人精品| 高清在线视频一区二区三区| 免费黄频网站在线观看国产| 精品久久久噜噜| 国产精品国产av在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲四区av| 大香蕉久久网| 人体艺术视频欧美日本| 色网站视频免费| 久久热精品热| 搡女人真爽免费视频火全软件| 久久精品国产自在天天线| 菩萨蛮人人尽说江南好唐韦庄| 久久久午夜欧美精品| 免费看日本二区| 国产中年淑女户外野战色| 一级爰片在线观看| 尤物成人国产欧美一区二区三区| 国产日韩欧美亚洲二区| 国产色婷婷99| 国产毛片在线视频| av女优亚洲男人天堂| 精品一区二区免费观看| 26uuu在线亚洲综合色| 99精国产麻豆久久婷婷| 国产探花极品一区二区| 久久女婷五月综合色啪小说 | 特级一级黄色大片| 成人欧美大片| 国产精品99久久久久久久久| 亚洲成色77777| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 亚洲自偷自拍三级| 国国产精品蜜臀av免费| 中国国产av一级| 久久综合国产亚洲精品| 69av精品久久久久久| 日日摸夜夜添夜夜爱| 男男h啪啪无遮挡| 免费观看无遮挡的男女| av国产久精品久网站免费入址| 国产精品久久久久久av不卡| 亚洲欧美日韩卡通动漫| 中国国产av一级| 欧美性感艳星| 中国国产av一级| 久久99热这里只频精品6学生| 一区二区三区四区激情视频| av卡一久久| 亚洲精品影视一区二区三区av| 国产成人免费无遮挡视频| 搡老乐熟女国产| 观看美女的网站| 亚洲,一卡二卡三卡| 国产视频首页在线观看| 超碰av人人做人人爽久久| 69人妻影院| 黄色怎么调成土黄色| 啦啦啦中文免费视频观看日本| 国产精品精品国产色婷婷| 久久影院123| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 一区二区三区免费毛片| 熟妇人妻不卡中文字幕| 成人高潮视频无遮挡免费网站| 午夜福利高清视频| 在线观看一区二区三区| 中国三级夫妇交换| 亚洲av电影在线观看一区二区三区 | 久久久久精品久久久久真实原创| 99热网站在线观看| 狂野欧美激情性xxxx在线观看| 国产精品女同一区二区软件| 久久人人爽人人爽人人片va| 一级二级三级毛片免费看| 成人无遮挡网站| 国产片特级美女逼逼视频| 丰满少妇做爰视频| 男插女下体视频免费在线播放| 亚洲va在线va天堂va国产| av国产久精品久网站免费入址| 国语对白做爰xxxⅹ性视频网站| 少妇 在线观看| 啦啦啦啦在线视频资源| 亚洲精品一区蜜桃| 中文字幕久久专区| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| 欧美变态另类bdsm刘玥| 日韩国内少妇激情av| 国产黄片美女视频| 国产老妇女一区| 国内少妇人妻偷人精品xxx网站| 亚洲真实伦在线观看| 成人国产麻豆网| 久久久精品94久久精品| 亚洲va在线va天堂va国产| 一级av片app| 日日啪夜夜爽| 免费人成在线观看视频色| 国产精品人妻久久久久久| 亚洲精品一二三| 99久久九九国产精品国产免费| 人人妻人人澡人人爽人人夜夜| 高清午夜精品一区二区三区| 国产精品一区二区性色av| 男人舔奶头视频| 少妇人妻 视频| 狂野欧美激情性xxxx在线观看| 天天躁日日操中文字幕| 国产老妇伦熟女老妇高清| 婷婷色av中文字幕| 观看免费一级毛片| 黑人高潮一二区| 国产免费视频播放在线视频| 禁无遮挡网站| 久久久久久久国产电影| 赤兔流量卡办理| 最近中文字幕2019免费版| 精华霜和精华液先用哪个| 嫩草影院精品99| 国产淫片久久久久久久久| 观看免费一级毛片| 亚洲成色77777| 久久精品国产自在天天线| 亚洲av电影在线观看一区二区三区 | 性色avwww在线观看| 国产一级毛片在线| 欧美成人a在线观看| 女人被狂操c到高潮| 男人爽女人下面视频在线观看| 亚洲人成网站在线播| 赤兔流量卡办理| 男的添女的下面高潮视频| 黑人高潮一二区| 亚洲精品国产av成人精品| 国产91av在线免费观看| 内射极品少妇av片p| 免费高清在线观看视频在线观看| 少妇被粗大猛烈的视频| 搡老乐熟女国产| 日韩亚洲欧美综合| 99热这里只有精品一区| 欧美+日韩+精品| 日日啪夜夜撸| 久久精品综合一区二区三区| av女优亚洲男人天堂| 中文字幕久久专区| 身体一侧抽搐| 五月玫瑰六月丁香| 午夜福利视频精品| 美女视频免费永久观看网站| 久久久久久久亚洲中文字幕| 肉色欧美久久久久久久蜜桃 | 亚洲va在线va天堂va国产| 免费黄网站久久成人精品| 国产精品一区二区三区四区免费观看| 中文欧美无线码| 中国国产av一级| 建设人人有责人人尽责人人享有的 | 九九久久精品国产亚洲av麻豆| 国产黄片视频在线免费观看| 国产精品国产三级国产专区5o| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 最近最新中文字幕免费大全7| 日韩欧美精品免费久久| 国产乱人偷精品视频| 在线a可以看的网站| 精华霜和精华液先用哪个| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 日韩av在线免费看完整版不卡| 亚洲国产欧美在线一区| 在线 av 中文字幕| 欧美一级a爱片免费观看看| av.在线天堂| 国产精品国产三级国产av玫瑰| 99久久精品国产国产毛片| 国产一区有黄有色的免费视频| 国产av码专区亚洲av| 亚洲精品,欧美精品| 狂野欧美激情性xxxx在线观看| 国产精品国产三级国产专区5o| 夜夜爽夜夜爽视频| 国产精品一区二区性色av| 少妇的逼好多水| 国产美女午夜福利| 成人欧美大片| 亚洲精品久久久久久婷婷小说| 激情五月婷婷亚洲| 在线免费观看不下载黄p国产| 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产亚洲最大av| 国产69精品久久久久777片| 天天一区二区日本电影三级| 26uuu在线亚洲综合色| 一区二区三区免费毛片| 久久这里有精品视频免费| 亚洲天堂av无毛| 成人无遮挡网站| 国产色婷婷99| 国产免费一级a男人的天堂| 久久久久久久久大av| 一级毛片电影观看| av国产久精品久网站免费入址| 欧美zozozo另类| 成人亚洲精品一区在线观看 | 18+在线观看网站| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 国产91av在线免费观看| 成人毛片60女人毛片免费| 一级片'在线观看视频| 99热全是精品| 人妻制服诱惑在线中文字幕| 视频区图区小说| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 91久久精品电影网| 久久久久久国产a免费观看| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 国产成人91sexporn| 精品一区二区三区视频在线| 免费av观看视频| 97人妻精品一区二区三区麻豆| 免费大片18禁| 国产精品伦人一区二区| 成人高潮视频无遮挡免费网站| 又大又黄又爽视频免费| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 久久热精品热| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 如何舔出高潮| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 亚洲精品中文字幕在线视频 | 亚洲欧美精品自产自拍| 久久久久久国产a免费观看| 男人狂女人下面高潮的视频| 黄色日韩在线| 国产av不卡久久| 国产精品一区www在线观看| 国产伦精品一区二区三区视频9| 国产综合精华液| 建设人人有责人人尽责人人享有的 | 永久免费av网站大全| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 国产一级毛片在线| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性xxxx在线观看| 亚洲av不卡在线观看| 日本免费在线观看一区| 美女xxoo啪啪120秒动态图| 亚洲av.av天堂| 日韩成人av中文字幕在线观看| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 国产一级毛片在线| 日日啪夜夜撸| 久久韩国三级中文字幕| av在线老鸭窝| 国产探花极品一区二区| 国产综合懂色| 中文天堂在线官网| 99九九线精品视频在线观看视频| 香蕉精品网在线| 国产有黄有色有爽视频| 成人国产av品久久久| 秋霞伦理黄片| 国产黄色免费在线视频| 国产一区二区亚洲精品在线观看| 国产69精品久久久久777片| 看十八女毛片水多多多| 各种免费的搞黄视频| 亚洲精品第二区| 一个人看的www免费观看视频| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站 | 国产美女午夜福利| 久久久久久久久久久免费av| 在线观看三级黄色| 国产亚洲一区二区精品| 黄色一级大片看看| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 亚洲,欧美,日韩| eeuss影院久久| 午夜福利视频1000在线观看| 青春草视频在线免费观看| 午夜福利高清视频| 99九九线精品视频在线观看视频| av黄色大香蕉| 婷婷色麻豆天堂久久| 国产免费视频播放在线视频| 日韩国内少妇激情av| 肉色欧美久久久久久久蜜桃 | 日本三级黄在线观看| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 男女那种视频在线观看| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 免费黄网站久久成人精品| 制服丝袜香蕉在线| 听说在线观看完整版免费高清| 午夜精品国产一区二区电影 | 亚洲欧美精品专区久久| 亚洲婷婷狠狠爱综合网| av专区在线播放| 中文欧美无线码| 亚洲av免费高清在线观看| 中文资源天堂在线| 视频区图区小说| 一级黄片播放器| 日本免费在线观看一区| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 制服丝袜香蕉在线| 亚洲,一卡二卡三卡| 青春草视频在线免费观看| 欧美日韩精品成人综合77777| 99热6这里只有精品| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 亚洲色图综合在线观看| 亚洲人成网站高清观看| 午夜福利在线在线| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 精品国产三级普通话版| av国产久精品久网站免费入址| 99久久精品一区二区三区| 国产有黄有色有爽视频| 精品久久国产蜜桃| 日本一本二区三区精品| 日日撸夜夜添| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 免费高清在线观看视频在线观看| 日本欧美国产在线视频| 白带黄色成豆腐渣| 精品一区在线观看国产| 国产 一区 欧美 日韩| eeuss影院久久| 国产视频内射| 日本黄大片高清| 欧美成人a在线观看| 在线播放无遮挡| 各种免费的搞黄视频| 少妇熟女欧美另类| 日本免费在线观看一区| 黄色怎么调成土黄色| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| av在线亚洲专区| 2018国产大陆天天弄谢| 国产91av在线免费观看| 欧美亚洲 丝袜 人妻 在线| 18禁裸乳无遮挡免费网站照片| 免费av观看视频| 大片电影免费在线观看免费| 欧美高清性xxxxhd video| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 精品久久国产蜜桃| 又爽又黄a免费视频| 中文欧美无线码| 国产精品99久久99久久久不卡 | 精品久久久久久久久av| 日日啪夜夜爽| 五月伊人婷婷丁香| 免费黄色在线免费观看| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 国产国拍精品亚洲av在线观看| 午夜精品国产一区二区电影 | 亚洲自偷自拍三级| 内地一区二区视频在线| 国产精品成人在线| 亚洲成人久久爱视频| 日本-黄色视频高清免费观看| 91久久精品国产一区二区成人| 中文资源天堂在线| 国产精品三级大全| 免费少妇av软件| 99热网站在线观看| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 在线 av 中文字幕| 精品国产露脸久久av麻豆| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 丝袜喷水一区| 亚洲伊人久久精品综合| 亚洲人成网站在线播| 免费看a级黄色片| 五月天丁香电影| 国产成人精品久久久久久| 亚洲高清免费不卡视频| 黄色一级大片看看| 69人妻影院| 国产成人一区二区在线| 中国国产av一级| 欧美日本视频| 日韩av免费高清视频| 精品一区二区三卡| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 亚洲av二区三区四区| 午夜免费鲁丝| 中文资源天堂在线| 搡老乐熟女国产| 国产毛片在线视频| 一级二级三级毛片免费看| 在线播放无遮挡| av在线天堂中文字幕| 国产伦理片在线播放av一区| 嫩草影院精品99| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 人妻一区二区av| 青青草视频在线视频观看| 中文资源天堂在线| 欧美日韩视频高清一区二区三区二| av在线亚洲专区| 亚洲av一区综合| 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 激情五月婷婷亚洲| 看黄色毛片网站| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 校园人妻丝袜中文字幕| 日韩,欧美,国产一区二区三区| 男男h啪啪无遮挡| 国产毛片a区久久久久| 国产免费视频播放在线视频| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 三级经典国产精品| 午夜福利视频精品| 欧美日韩综合久久久久久| 一级毛片我不卡| 国产免费福利视频在线观看| 老司机影院成人| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 欧美精品一区二区大全|