• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel bioactive nerve conduit for the repair of peripheral nerve injury

    2016-12-01 12:37:46BinbinLiYixiaYinQiongjiaoYanXinyuWangShipuLi

    Bin-bin Li, Yi-xia Yin,, Qiong-jiao Yan, Xin-yu Wang, Shi-pu Li

    1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China

    2 Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China

    RESEARCH ARTICLE

    A novel bioactive nerve conduit for the repair of peripheral nerve injury

    Bin-bin Li1,2, Yi-xia Yin1,2,*, Qiong-jiao Yan1,2, Xin-yu Wang1,2, Shi-pu Li1,2

    1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei Province, China

    2 Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei Province, China

    Graphical Abstract

    orcid: 0000-0002-0326-1658 (Yi-xia Yin)

    The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide (PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury.

    nerve regeneration; polylactic acid; poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]}; β-tricalcium phosphate; nerve conduit; nerve fiber; neural regeneration

    Introduction

    The two detached ends of an injured peripheral nerve cannot rejoin successfully in the absence of an external aid. A nerve-like device is necessary for the repair of the injured nerve to reduce the loss of muscle function and sensory disorder (Evans et al., 1999; Li et al., 2014). The application of a nerve conduit is considered as an effective method that avoids the shortfalls associated with an autograft. It can also provide an opportunity to regulate the responses to the cytokines and neurotrophins during the peripheral nerve regeneration (Mohammad et al., 2000; Kehoe et al., 2012; Azizi et al., 2015). To resolve these issues, composite materials with excellent biodegradability and biocompatibility are employed to imitate the structure and function of naturalnerves (Mligiliche et al., 1999; Chen et al., 2005; Luis et al., 2007; Subramanian et al., 2009; Das et al., 2013). Poly-DL-lactide (PDLLA) was employed in this study as the nerve conduit due to its excellent biodegradability and biocompatibility. However, the degradation products of PDLLA can lower the local pH which is harmful to the surrounding cells and tissues. The addition of β-tricalcium phosphate (β-TCP) is beneficial not only because of its good biocompatibility, biodegradability and non-toxicity, but also because its basic degradation products restore the local pH to its normal value. The peptide Gly-Arg-Gly-Asp-Gly (RGD) has been shown to enhance Schwann cell attachment and elongation in vitro (Yan et al., 2012; de Luca et al., 2013), and thereby facilitate axon growth in the early stage in vivo (Liu et al., 2009).

    Most previous studies focused on the long-term (over 3 months) nerve regeneration after nerve conduit implantation (Den Dunnen et al., 1993; Toba et al., 2002; Bian et al., 2009; Xu et al., 2011, 2014; Yan et al., 2012), but there have been fewer reports on the morphology of regenerated nerves in the early stages of nerve regeneration (Yang et al., 2001; Jaminet et al., 2013; Kawasaki et al., 2013; Schrems-Hoesl et al., 2013; Seo et al., 2013; Qiu et al., 2014; Li et al., 2015).

    In this study, both RGD and β-TCP were first used to modify a PDLLA conduit to offer a bioactive microenvironment for nerve regeneration using a biomimetic method. We planned to analyze the biological performance of the nerve conduit in the repair of a 10-mm deletion of the sciatic nerve in rats by observing the changes at an early stage (35 days) during nerve regeneration.

    Materials and Methods

    Preparation of PDLLA-based bioactive nerve conduit

    A polymer RGD peptide (GL Biochem, Shanghai, China) modification of poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PRGD) was fabricated by the following steps. Firstly, (3S)-3-[4-(benzyloxycarbonylamino) butyl] morpholine-2,5-dione (BMD) was synthesized by bromoacetyl bromide and Nε-(benzyloxycarbonyl)-L-lysine. Secondly, poly(lactic acid)-co-[(glycolic acid)-alt-(Nε-benzyloxycarbonyl-L-lysine)] was obtained by copolymerization of D, L-lactide and BMD. Then, poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PLGL) was synthesized by catalytic hydrogenation. Finally, PLGL was modified with RGD peptide. PRGD (0.05 g) and PDLLA (0.9 g) (molecular weight 250,000, synthesized in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology in China) were dissolved in ethyl acetate at a concentration of 0.05 g/L β-TCP (0.05 g) (synthesized in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) was then added to the ethyl acetate solution and mixed thoroughly. The PRGD, PDLLA and β-TCP were used to prepare PDLLA-based bioactive composite using a solvent volatilization method (Zhang et al., 2015). The PDLLA-based composite and PDLLA membranes were fabricated and then rolled to form the PDLLA-based composite or PDLLA bioactive nerve conduits. The product was 14 mm long, 2 mm in diameter and 0.2 mm thick. The nerve conduits scheduled for bridging sciatic nerve defects were sterilized with ultraviolet light for 60 minutes. The material characterizations and in vitro evaluations of these conduits have been reported in our previous study (Zhang et al., 2015).

    Ethics statement and animals

    The study protocol was approved by the Animal Care and Use Committees of Wuhan University of Technology, China and performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (No.85-23, revised 1996). Precautions were taken to minimize the number of animals used and their suffering.

    Adult male Wistar rats, weighing 200-250 g, 8 weeks old, specific pathogen-free level, were purchased from the Centers for Disease Control and Prevention of Hubei Province (China) (license No. SCXK(E)2015-0018). The rats were randomly divided into three groups each with 10 rats: PDLLA conduit group; PDLLA-based bioactive conduit group and normal nerve group.

    Sciatic nerve injury model establishment and nerve conduit repair

    The rats were anesthetized with 50 mg/kg pentobarbital sodium by intraperitoneal injection. The right sciatic nerve was exposed after a skin incision was made and the muscles around the nerve tissues were separated using blunt dissection. Subsequently, the right sciatic nerve was severed into proximal and distal segments at the center of the right thigh. Both the proximal and distal stumps were sutured with 9-0 nylon sutures to a depth of 1 mm into the conduits, leaving a 10-mm gap between the stumps, bridged by the nerve conduits (Figure 1). The muscle and skin layers were re-approximated using 6-0 nylon sutures. In the normal nerve group, no surgery was carried out on the sciatic nerve.

    Hematoxylin-eosin staining

    At 35 days after conduit implantation, the rats were anesthetized again with 50 mg/kg pentobarbital sodium to expose the right sciatic nerve. The conduits were opened and samples of the regenerated nerves, or normal nerves, and small pieces of the soleus muscle in all groups were collected. All the rats were sacrificed by cervical dislocation after all the samples had been collected. The soleus muscle and nerve specimens were fixed in a solution containing 1% paraformaldehyde, 1.25% glutaraldehyde and 0.1 M cacodylate buffered to pH 6.5-7.0, then dehydrated and embedded in paraffin. Sections (5 μm thick) were stained with hematoxylin and eosin and observed using an inverted microscope (IX71, Olympus, Tokyo, Japan). The muscle fiber size in each group was analyzed by selecting 200 muscle fibers in 10 random areas. The average diameter of the muscle fibers was analyzed using an image analysis system (Image-Pro Plus, Media Cybernetics, San Francisco, CA, USA).

    Toluidine blue staining

    To evaluate the physiological status of axons and myelin sheath regeneration at 35 days after conduit implantation, the regenerated nerve specimens were fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffered saline for 2 hours and postfixed in 1% osmium tetroxide for 1.5 hours. Then they were dehydrated in a graded ethanol series, and embedded in paraffin. The specimens were cut into 1-μm-thick cross-sections with an ultramicrotome (MT-XL, RMC Inc., New York, NY, USA), stained with toluidine blue, and observed by inverted microscopy. The fiber sizes in all groups were analyzed by selecting 200 nerve fibers in 10 random areas. The average diameter of the regenerated nerve fibers was analyzed using the image analysis system (Image-Pro Plus, Media Cybernetics).

    Statistical analysis

    Data are expressed as the mean ± SD. Experimental data were processed using the statistical software SPSS 10.0 (SPSS Inc., Chicago, IL, USA), and analyzed with one-way analysis of variance followed by a Bonferroni post-hoc test. P values less than 0.05 were considered statistically significant.

    Results

    The biocompatibility of the PDLLA-based bioactive conduits

    All the rats used in this study appeared to be well by their daily behavior. Macroscopically, axonal sprouts were found at both the distal and proximal ends, and these were successfully connected by the 35thday. The conduit was well integrated with the sciatic nerve and had not yet degraded.

    Regenerated nerve morphology after rat sciatic nerve repair with PDLLA-based bioactive conduits

    To observe the morphology of the nerve in the early stage of regeneration, hematoxylin-eosin staining was done 35 days post surgery. These hematoxylin-eosin images illustrate that Figure 2C appears to have denser packing of nerve fibers than either Figure 2A or B. Also, the fiber bundles in Figure 2C are more regular than those in Figure 2B, which in turn are more regular than those in Figure 2A. Figure 2B shows less in-growth of irregular connective tissues from the sciatic nerve sheath than that in Figure 2A. The regenerated nerve fibers of sciatic nerves in the rats (Figure 2D, E) were smaller in diameter and less uniform in morphology than those in the normal nerve group (Figure 2F). Those in the PDLLA conduit group were thinnest and most irregular with the most in-growth of connective tissues (Figure 2D). The sections in the two conduit groups showed more activated Schwann cells and blood vessels than those in the normal nerve group. These findings showed that the axons were actively supported and that the neurotrophic substances were delivered to the lesion for the nerve regeneration.

    Results of toluidine blue staining showed that nerve fibers were densely packed in all groups (Figure 3A-C), the myelinated fibers in the PDLLA-based bioactive conduit group had more compact and uniform structures than those in the PDLLA conduit group, but less than those in the normal nerve group. The average fiber diameter analysis showed that the mean fiber diameter in the PDLLA-based bioactive conduit group was significantly smaller than that in the normal nerve group, but 1.42 times larger than that in the PDLLA conduit group (Figure 3D).

    Morphology of the soleus muscles after rat sciatic nerve repair with PDLLA-based bioactive conduits

    To evaluate the nerve function recovery, the soleus muscles in all groups were subjected to hematoxylin-eosin staining. Compared with the normal nerve group (Figure 4C), the soleus muscles following surgery had degenerated in the PDLLA conduit and PDLLA-based bioactive conduit groups, and presented smaller fiber diameters in the same area. The muscle atrophy and connective tissues in the PDLLA-based bioactive conduit group (Figure 4B) had re-grown, showing a better morphology, while the muscles in the PDLLA conduit group (Figure 4A) were still in a poor condition. The mean diameter of muscle fibers in the PDLLA-based bioactive conduit group was 1.34-times larger than that in the PDLLA conduit group, yet still smaller than that in the normal nerve group (Figure 4D).

    Discussion

    The RGD peptide has been proven to enhance Schwann cell attachment and elongation in vitro (Yan et al., 2012; de Luca et al., 2013), and RGD in vivo facilitates the axonal regeneration in the early period after sciatic nerve injury in rats (Liu et al., 2009). The presence of RGD-coated conduits in the early phase of peripheral nerve regeneration provides a permissive surface for activated Schwann cells around the lesion to secrete vital trophic factors to support axon regeneration (Rafiuddin Ahmed and Jayakumar, 2003; Liu et al., 2009). The other supplement, β-TCP, upregulates the mRNA expression of cytoskeletal protein and has been proved to be nontoxic (Qiu et al., 2014).

    Figure 1 Sciatic nerve defects bridged by poly-D-L-lactide (PDLLA)-based bioactive conduits.

    Figure 2 Morphology of regenerated sciatic nerves in rats at 35 days after sciatic nerve injury (hematoxylin-eosin staining).

    Figure 3 Morphology of regenerated sciatic nerves in rats at 35 days after sciatic nerve injury (toluidine blue staining).

    Figure 4 Morphology of the soleus muscle in rats at 35 days after sciatic nerve injury.

    In this study, we aimed to observe the morphology of regenerated nerves bridged by the PDLLA-based bioactive nerve conduit in the early period of nerve regeneration. Thenerve morphology of nerve fibers at different stages would directly demonstrate the maturation of axons, which is also a marker for assessing the efficiency of indirect conduit bridging. Many of the fibers with small diameters could be nonconducting and degenerating rather than regenerating. As the nerve fibers regenerate distally and reach the appropriate target organs, the fiber diameter increases and the myelin sheath grows (Weiss, 1945; Schr?der, 1972). If sprouting axons are incapable of establishing a suitable connection with the target organ, they are deprived of vital growth factors and degenerate.

    The morphology and size analysis of nerve fibers have demonstrated that the PDLLA-based bioactive nerve conduits promote early-stage peripheral nerve regeneration by enhancing the nerve regeneration rate and significantly increase the myelinated fiber and soleus muscle fiber density compared with PDLLA conduit controls. At 35 days after sciatic nerve surgery, the fibroblasts and macrophages concentrated around the periphery of the newly formed nerve tissues (Brown et al., 1991; Zhou and Snider, 2006). Schwann cells and endothelial cells moved into the lesion and secreted the necessary cytokines and neurotrophins to enhance synthesis of new nerve tissue and axon elongation (Markus et al., 2002; Leibinger et al., 2009; Liu et al., 2011). The injury detected by the neuronal body switched the axons from the normal state to growth mode with an associated gene expression and protein synthesis (Kretz et al., 2005; Agthong et al., 2006; Miao et al., 2006; Luo et al., 2007; Trenchi et al., 2009; Yamazaki et al., 2009; Liu et al., 2011). Concurrently, cell-adhesion molecules, myelin proteins, and extracellular matrix proteins around the lesion supported the growth cone sprouting and axons remodeling (Skene et al., 1986; Fernandes et al., 1999; Janke and Bulinski, 2011). The nerve fiber morphology would be different in this early stage during nerve regeneration because of the different cytokines and gene regulation. Therefore, we concluded that the PDLLA-based bioactive nerve conduit might promote axon growth and soleus muscle recovery in the early stage of nerve regeneration.

    Our evidence indicated that a PDLLA-based conduit modified with bioactive compounds enhanced regeneration of the injured nerve during the first 35 days. However, the regenerating nerve morphology should be explored at other time points. Similarly, research at the molecular level is necessary to explore how the bioactive conduit affects the changes in the cytokines and neurotrophins.

    In this study, we developed a novel PDLLA-based bioactive nerve repair conduit, which we used in in vivo trials for the repair of rat sciatic nerve injury with a 10 mm gap. We evaluated the outcomes of nerve regeneration by observing the nerve morphology with histological staining in the early period. Our results demonstrated that compared with the PDLLA conduit group, the nerve recovery in the PDLLA-based bioactive conduit group showed larger diameter nerve fibers in more ordered array. Soleus muscle fibers were also larger. This enhanced nerve conduit offers new opportunities for research in the field of nerve regeneration.

    Author contributions: BBL wrote the paper. All authors designed the study, provided critical revision of the paper and approved the final version of this paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Agthong S, Kaewsema A, Tanomsridejchai N, Chentanez V (2006) Activation of MAPK ERK in peripheral nerve after injury. BMC Neurosci 7:45.

    Azizi S, Heshmatian B, Amini K, Raisi A, Azimzadeh M (2015) Alpha-lipoic acid loaded in chitosan conduit enhances sciatic nerve regeneration in rat. Iran J Basic Med Sci 18:228-233.

    Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217-225.

    Brown MC, Hugh Perry V, Ruth Lunn E, Gordon S, Heumann R (1991) Macrophage dependence of peripheral sensory nerve regeneration: Possible involvement of nerve growth factor. Neuron 6:359-370.

    Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS (2005) An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 26:3911-3918.

    Das B, Chattopadhyay P, Mandal M, Voit B, Karak N (2013) Bio-based biodegradable and biocompatible hyperbranched polyurethane: a scaffold for tissue engineering. Macromol Biosci 13:126-139.

    de Luca AC, Stevens JS, Schroeder SLM, Guilbaud JB, Saiani A, Downes S, Terenghi G (2013) Immobilization of cell-binding peptides on poly-ε-caprolactone film surface to biomimic the peripheral nervous system. J Biomed Mater Res A 101:491-501.

    Den Dunnen WF, Van der Lei B, Schakenraad JM, Blaauw EH, Stokroos I, Pennings AJ, Robinson PH (1993) Long-term evaluation of nerve regeneration in a biodegradable nerve guide. Microsurgery 14:508-515.

    Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gürlek A, Nabawi A, Lohman R, Patrick C W Jr (1999) In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20:1109-1115.

    Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W (1999) Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol 414:495-510.

    Jaminet P, K?hler D, Rahmanian-Schwarz A, Lotter O, Mager A, Fornaro M, Ronchi G, Geuna S, Rosenberger P, Schaller HE (2013) Expression patterns and functional evaluation of the UNC5B receptor during the early phase of peripheral nerve regeneration using the mouse median nerve model. Microsurgery 33:216-222.

    Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773-786.

    Kawasaki T, Oka N, Yagi H, Akiguchi I (2013) Cyclin/INS;D1 expression in Schwann cell nucleus associated with the stage of nerve regeneration. J Neurol Sci 333:e705.

    Kehoe S, Zhang XF, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43:553-572.

    Kretz A, Happold CJ, Marticke JK, Isenmann S (2005) Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci 29:569-579.

    Leibinger M, Müller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29:14334-14341.

    Li B, Qiu T, Iyer KS, Yan Q, Yin Y, Xie L, Wang X, Li S (2015) PRGD/ PDLLA conduit potentiates rat sciatic nerve regeneration and the underlying molecular mechanism. Biomaterials 55:44-53.

    Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L (2014) Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys 68:449-454.

    Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131-152.

    Liu WQ, Martinez JA, Durand J, Wildering W, Zochodne DW (2009) RGD-mediated adhesive interactions are important for peripheral axon outgrowth in vivo. Neurobiol Dis 34:11-22.

    Luis AL, Rodrigues JM, Amado S, Veloso AP, Armada-Da-silva PA, Raimondo S, Fregnan F, Ferreira AJ, Lopes MA, Santos JD, Geuna S, Varej?o AS, Maurício AC (2007) PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery 27:125-137.

    Luo JM, Cen LP, Zhang XM, Chiang SW, Huang Y, Lin D, Fan YM, Van Rooijen N, Lam DS, Pang CP, Cui Q (2007) PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur J Neurosci 26:828-842.

    Markus A, Patel TD, Snider WD (2002) Neurotrophic factors and axonal growth. Curr Opin Neurobiol 12:523-531.

    Miao T, Wu D, Zhang Y, Bo X, Subang MC, Wang P, Richardson PM (2006) Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 26:9512-9519.

    Mligiliche NL, Tabata Y, Ide C (1999) Nerve regeneration through biodegradable gelatin conduits in mice. East Afr Med J 76:400-406.

    Mohammad J, Shenaq J, Rabinovsky E, Shenaq S (2000) Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 105:660-666.

    Qiu T, Yin Y, Li B, Xie L, Yan Q, Dai H, Wang X, Li S (2014) PDLLA/ PRGD/β-TCP conduits build the neurotrophin-rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration. J Biomed Mater Res A 102:3734-3743.

    Rafiuddin Ahmed M, Jayakumar R (2003) Peripheral nerve regeneration in RGD peptide incorporated collagen tubes. Brain Res 993:208-216.

    Schr?der JM (1972) Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers. Brain Res 45:49-65.

    Schrems-Hoesl LM, Schrems WA, Cruzat A, Shahatit BM, Bayhan HA, Jurkunas UV, Hamrah P (2013) Cellular and subbasal nerve alterations in early stage Fuchs’ endothelial corneal dystrophy: an in vivo confocal microscopy study. Eye (Lond) 27:42-49.

    Seo SY, Min SK, Bae HK, Roh D, Kang HK, Roh S, Lee S, Chun GS, Chung DJ, Min BM (2013) A laminin-2-derived peptide promotes early-stage peripheral nerve regeneration in a dual-component artificial nerve graft. J Tissue Eng Regen Med 7:788-800.

    Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233:783-786.

    Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 16:108.

    Toba T, Nakamura T, Lynn AK, Matsumoto K, Fukuda S, Yoshitani M, Hori Y, Shimizu Y (2002) Evaluation of peripheral nerve regeneration across an 80-mm gap using a polyglycolic acid (PGA)--collagen nerve conduit filled with laminin-soaked collagen sponge in dogs. Int J Artif Organs 25:230-237.

    Trenchi A, Gomez Guillermo A, Daniotti Jose L (2009) Dual acylation is required for trafficking of growth-associated protein-43 (GAP-43) to endosomal recycling compartment via an Arf6-associated endocytic vesicular pathway. Biochem J 421:357-369.

    Weiss P (1945) Experiments on cell and axon orientation in vitro; the role of colloidal exudates in tissue organization. J Exp Zool 100:353-386.

    Xu H, Yan Y, Li S (2011) PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials 32:4506-4516.

    Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, Li S, Ma PX (2014) Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 35:225-235.

    Yamazaki T, Sabit H, Oya T, Ishii Y, Hamashima T, Tokunaga A, Ishizawa S, Jie S, Kurashige Y, Matsushima T, Furuta I, Noguchi M, Sasahara M (2009) Activation of MAP kinases, Akt and PDGF receptors in injured peripheral nerves. J Peripher Nerv Syst 14:165-176.

    Yan Q, Yin Y, Li B (2012) Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration. Biomed Eng Online 11:36.

    Yang YG, Li CG, Guo P, Ren XS (2001) The early stage morphology study of the repairment of cauda equina injury with peripheral nerve transplantation in rats. Zhongguo Jizhu Jisui Zazhi 11:168-170.

    Zhang Z, Wu XP, Yin YX, Zhao Z, Li SP (2015) Fabrication, characterization and biological evaluation of PRGD/PDLLA/β-TCP scaffold for nerve regeneration. J Fiber Bioeng Inform 8:133-142.

    Zhou FQ, Snider WD (2006) Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci 361:1575-1592.

    Copyedited by Dawes EA, Edanz QC, Yu J, Wang L, Li CH, Song LP, Zhao M

    10.4103/1673-5374.175062

    How to cite this article: Li BB, Yin YX, Yan QJ, Wang XY, Li SP (2016) A novel bioactive nerve conduit for the repair of peripheral nerve injury. Neural Regen Res 11(1)∶150-155.

    Funding: This study was supported by a grant from the National Key Basic Research Program of China, No. 2011CB606205; a grant from the National Natural Science Foundation of China, No. 51403168; a grant from the Major Scientific and Technological Research Projects of the Ministry of Education of China, No. 313041; and a grant from the Scientific and Technological Cooperation Projects of Hong Kong, Macao and Taiwan, China, No. 2015DFH30180.

    http://www.nrronline.org/

    Accepted: 2015-12-16

    *Correspondence to: Yi-xia Yin, yinyixia@whut.edu.cn.

    亚洲欧美日韩卡通动漫| 久久精品久久久久久久性| 国产 一区 欧美 日韩| 国产成人一区二区在线| 国产免费一级a男人的天堂| 热99在线观看视频| 综合色av麻豆| 99热6这里只有精品| 久久人妻av系列| 少妇熟女aⅴ在线视频| 国产成人精品久久久久久| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 国产 一区精品| 欧美一区二区国产精品久久精品| 成人av在线播放网站| 最近最新中文字幕大全电影3| 色综合色国产| 日韩精品有码人妻一区| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| www.av在线官网国产| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 成年女人永久免费观看视频| 大香蕉久久网| 国产欧美日韩精品一区二区| 极品教师在线视频| 国产探花在线观看一区二区| 看十八女毛片水多多多| 99国产极品粉嫩在线观看| 爱豆传媒免费全集在线观看| 亚洲av第一区精品v没综合| 精品人妻熟女av久视频| 亚洲不卡免费看| 97超碰精品成人国产| 亚洲中文字幕日韩| 日韩av不卡免费在线播放| 亚洲乱码一区二区免费版| 日韩欧美一区二区三区在线观看| 久久久久久久午夜电影| 精品午夜福利在线看| 免费大片18禁| 中国国产av一级| av在线播放精品| 91久久精品国产一区二区成人| 国产蜜桃级精品一区二区三区| 欧美一区二区国产精品久久精品| 国产精品久久久久久av不卡| 国产美女午夜福利| 久久精品久久久久久久性| 亚洲不卡免费看| 国产色爽女视频免费观看| 18+在线观看网站| av福利片在线观看| 22中文网久久字幕| 最新中文字幕久久久久| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 在线观看午夜福利视频| 欧美3d第一页| 午夜精品一区二区三区免费看| 伊人久久精品亚洲午夜| 一个人看的www免费观看视频| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 最近视频中文字幕2019在线8| 少妇猛男粗大的猛烈进出视频 | 国产精品av视频在线免费观看| 黑人高潮一二区| 国产亚洲91精品色在线| 国产视频首页在线观看| 亚洲aⅴ乱码一区二区在线播放| 最近2019中文字幕mv第一页| 欧洲精品卡2卡3卡4卡5卡区| 18+在线观看网站| 在线天堂最新版资源| 男女啪啪激烈高潮av片| 美女国产视频在线观看| 91久久精品国产一区二区三区| av卡一久久| 简卡轻食公司| 国产精品永久免费网站| 天堂网av新在线| 人妻制服诱惑在线中文字幕| 色哟哟哟哟哟哟| 看非洲黑人一级黄片| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 欧美色视频一区免费| 国产单亲对白刺激| 国产单亲对白刺激| 国内精品久久久久精免费| 国产伦一二天堂av在线观看| 你懂的网址亚洲精品在线观看 | 女同久久另类99精品国产91| 日韩人妻高清精品专区| 久久精品国产亚洲av香蕉五月| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 在现免费观看毛片| 成熟少妇高潮喷水视频| 亚洲人成网站高清观看| 97超碰精品成人国产| 国产精华一区二区三区| 亚洲av一区综合| 日日摸夜夜添夜夜爱| 国产成人a∨麻豆精品| 欧美丝袜亚洲另类| 国产精品麻豆人妻色哟哟久久 | 成人特级av手机在线观看| 亚洲av免费高清在线观看| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 人人妻人人澡人人爽人人夜夜 | 亚洲久久久久久中文字幕| 国产亚洲精品av在线| 我的老师免费观看完整版| 亚洲av男天堂| 深爱激情五月婷婷| 亚洲人与动物交配视频| 99久久成人亚洲精品观看| 国产成人freesex在线| 大型黄色视频在线免费观看| 亚洲精品亚洲一区二区| 久久99热这里只有精品18| 免费大片18禁| av女优亚洲男人天堂| 午夜福利成人在线免费观看| 99久久精品一区二区三区| av.在线天堂| 国产高清激情床上av| а√天堂www在线а√下载| 老司机影院成人| 校园春色视频在线观看| 久久亚洲国产成人精品v| 插逼视频在线观看| 大型黄色视频在线免费观看| 亚洲av成人av| 99在线视频只有这里精品首页| 亚洲欧美精品综合久久99| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 日日啪夜夜撸| 97超视频在线观看视频| 成人午夜高清在线视频| 久久精品国产亚洲网站| 日本三级黄在线观看| 久久这里有精品视频免费| 亚洲无线观看免费| 晚上一个人看的免费电影| 成人一区二区视频在线观看| 小说图片视频综合网站| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图| 久久久久网色| 老女人水多毛片| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| av又黄又爽大尺度在线免费看 | 国产精品av视频在线免费观看| 日本爱情动作片www.在线观看| 午夜激情欧美在线| 啦啦啦韩国在线观看视频| 不卡一级毛片| 日韩三级伦理在线观看| 亚洲aⅴ乱码一区二区在线播放| 人妻系列 视频| 亚洲人成网站在线观看播放| 欧美一区二区精品小视频在线| 99久久中文字幕三级久久日本| 亚洲精品影视一区二区三区av| 极品教师在线视频| 亚洲,欧美,日韩| 久久精品人妻少妇| 欧美精品国产亚洲| 99riav亚洲国产免费| 亚洲精品乱码久久久v下载方式| 欧美变态另类bdsm刘玥| 国产高潮美女av| 国产精品一区二区三区四区久久| 免费看美女性在线毛片视频| 男女视频在线观看网站免费| 99久国产av精品| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 午夜精品在线福利| 国产大屁股一区二区在线视频| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 日韩大尺度精品在线看网址| 国产一级毛片七仙女欲春2| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一夜夜www| 亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 国产一区二区亚洲精品在线观看| 免费观看的影片在线观看| 日本在线视频免费播放| 国产白丝娇喘喷水9色精品| 村上凉子中文字幕在线| 亚洲无线在线观看| 久久午夜亚洲精品久久| 久久久久久久亚洲中文字幕| 日本成人三级电影网站| 欧美又色又爽又黄视频| 亚洲国产欧美人成| 亚洲va在线va天堂va国产| 能在线免费看毛片的网站| 日韩欧美国产在线观看| 亚洲经典国产精华液单| 久久99蜜桃精品久久| 有码 亚洲区| 一进一出抽搐动态| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 亚洲自偷自拍三级| 亚洲最大成人手机在线| 天堂网av新在线| 三级男女做爰猛烈吃奶摸视频| av国产免费在线观看| 少妇裸体淫交视频免费看高清| 亚洲成a人片在线一区二区| 看黄色毛片网站| 久久久午夜欧美精品| 亚洲av一区综合| 成人二区视频| 亚洲欧美日韩东京热| 在线观看一区二区三区| 中国美女看黄片| 精品久久久久久久久久久久久| .国产精品久久| 热99在线观看视频| 99riav亚洲国产免费| 亚洲在线观看片| 我的老师免费观看完整版| 亚洲av成人av| 99热6这里只有精品| 91狼人影院| 亚洲欧洲国产日韩| 日韩av在线大香蕉| 国产亚洲av片在线观看秒播厂 | 午夜视频国产福利| 国产成人精品久久久久久| 国产一区二区在线av高清观看| 日本黄色片子视频| 亚洲无线观看免费| 精品国产三级普通话版| 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 国产精品国产高清国产av| avwww免费| 99riav亚洲国产免费| 成人综合一区亚洲| 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 国产单亲对白刺激| 国语自产精品视频在线第100页| 26uuu在线亚洲综合色| 日韩av在线大香蕉| 秋霞在线观看毛片| 成人综合一区亚洲| 女同久久另类99精品国产91| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 午夜视频国产福利| 国产三级中文精品| 成人特级av手机在线观看| 久久久久性生活片| 国产伦一二天堂av在线观看| 国产av在哪里看| 色播亚洲综合网| 天堂网av新在线| 久久久久久九九精品二区国产| 麻豆国产97在线/欧美| 午夜激情欧美在线| av在线亚洲专区| 精品久久久久久久久亚洲| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| 欧美精品一区二区大全| av免费在线看不卡| 久久午夜亚洲精品久久| 午夜精品一区二区三区免费看| 一进一出抽搐gif免费好疼| 亚洲自偷自拍三级| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱 | 国产一区二区三区在线臀色熟女| 麻豆av噜噜一区二区三区| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 91在线精品国自产拍蜜月| 亚洲国产精品久久男人天堂| 老熟妇乱子伦视频在线观看| 日韩中字成人| 一边摸一边抽搐一进一小说| 黄色欧美视频在线观看| 午夜福利高清视频| 国产视频首页在线观看| 非洲黑人性xxxx精品又粗又长| 日日摸夜夜添夜夜添av毛片| 久久亚洲精品不卡| 国产精华一区二区三区| 国产在线精品亚洲第一网站| 只有这里有精品99| 国产成人a∨麻豆精品| 黄色欧美视频在线观看| 99国产极品粉嫩在线观看| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 网址你懂的国产日韩在线| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 国产精品爽爽va在线观看网站| 久久久久性生活片| 高清午夜精品一区二区三区 | 久久久久性生活片| 高清午夜精品一区二区三区 | 国产午夜精品一二区理论片| 男人舔女人下体高潮全视频| 欧美成人一区二区免费高清观看| 国产色爽女视频免费观看| 国产极品天堂在线| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 成人毛片a级毛片在线播放| 精品一区二区免费观看| 好男人在线观看高清免费视频| 免费人成在线观看视频色| 久久韩国三级中文字幕| 日本黄色片子视频| 老熟妇乱子伦视频在线观看| 午夜a级毛片| 插阴视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 久久99热这里只有精品18| 久久久久九九精品影院| 日韩大尺度精品在线看网址| 日韩制服骚丝袜av| 性色avwww在线观看| 国产精品野战在线观看| 久久精品国产自在天天线| 在现免费观看毛片| 亚洲性久久影院| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 亚洲欧美成人精品一区二区| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 美女大奶头视频| 免费看美女性在线毛片视频| 人妻系列 视频| 久久久久免费精品人妻一区二区| 免费电影在线观看免费观看| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久久av| 99久久人妻综合| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看| 黄色欧美视频在线观看| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 99热精品在线国产| 12—13女人毛片做爰片一| 一个人免费在线观看电影| 别揉我奶头 嗯啊视频| 久久国内精品自在自线图片| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| 午夜视频国产福利| 不卡视频在线观看欧美| 国产午夜精品久久久久久一区二区三区| 亚洲国产色片| 亚洲经典国产精华液单| 最近视频中文字幕2019在线8| 午夜精品一区二区三区免费看| 少妇被粗大猛烈的视频| 最近的中文字幕免费完整| 在线天堂最新版资源| 少妇裸体淫交视频免费看高清| 欧美一级a爱片免费观看看| 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 伊人久久精品亚洲午夜| 哪里可以看免费的av片| 久久久久性生活片| 国产探花极品一区二区| 国产极品天堂在线| .国产精品久久| 91午夜精品亚洲一区二区三区| 一夜夜www| 级片在线观看| av国产免费在线观看| 日韩亚洲欧美综合| 成年版毛片免费区| 久久久精品欧美日韩精品| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 免费在线观看成人毛片| 99视频精品全部免费 在线| 一夜夜www| 亚洲国产精品国产精品| 久久欧美精品欧美久久欧美| 18禁在线无遮挡免费观看视频| 成人一区二区视频在线观看| 成人性生交大片免费视频hd| 亚洲av成人精品一区久久| 免费看a级黄色片| 日本一二三区视频观看| 久久久久国产网址| 日日撸夜夜添| 免费看av在线观看网站| 12—13女人毛片做爰片一| 亚洲精品影视一区二区三区av| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 亚洲最大成人av| 欧美xxxx性猛交bbbb| 99久国产av精品国产电影| 国产探花极品一区二区| 哪里可以看免费的av片| 亚洲在线观看片| 高清日韩中文字幕在线| 如何舔出高潮| 永久网站在线| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 国内精品美女久久久久久| 日本av手机在线免费观看| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 国产麻豆成人av免费视频| 成人特级黄色片久久久久久久| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 波多野结衣高清作品| 日本在线视频免费播放| 美女大奶头视频| 国产成人aa在线观看| 九草在线视频观看| av.在线天堂| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 天堂av国产一区二区熟女人妻| 丰满人妻一区二区三区视频av| 国产69精品久久久久777片| 久久精品91蜜桃| 91久久精品国产一区二区成人| 日韩视频在线欧美| 91av网一区二区| 99久国产av精品国产电影| 大香蕉久久网| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 黄片wwwwww| 人妻系列 视频| 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 97超碰精品成人国产| 丰满乱子伦码专区| 内地一区二区视频在线| 日本黄大片高清| 精品少妇黑人巨大在线播放 | 国产午夜福利久久久久久| 国产精品久久视频播放| 搞女人的毛片| 最新中文字幕久久久久| 国产v大片淫在线免费观看| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 三级男女做爰猛烈吃奶摸视频| 我要搜黄色片| 色5月婷婷丁香| 国产精品精品国产色婷婷| 国产午夜精品一二区理论片| 久久久久久国产a免费观看| 国产精品电影一区二区三区| 97超视频在线观看视频| 男女那种视频在线观看| 久久人人精品亚洲av| 色综合亚洲欧美另类图片| 亚洲久久久久久中文字幕| 蜜臀久久99精品久久宅男| 一区二区三区免费毛片| 在线观看免费视频日本深夜| 国模一区二区三区四区视频| 女同久久另类99精品国产91| 久久午夜福利片| av.在线天堂| 国产真实乱freesex| 男人舔奶头视频| 精品一区二区三区视频在线| 日韩av不卡免费在线播放| 午夜激情福利司机影院| 日韩人妻高清精品专区| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| 日韩亚洲欧美综合| 久久久久久久久久久丰满| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 国产精品久久久久久亚洲av鲁大| 夜夜夜夜夜久久久久| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| eeuss影院久久| 国产精品永久免费网站| 美女国产视频在线观看| 老女人水多毛片| 国产男人的电影天堂91| 老女人水多毛片| 九色成人免费人妻av| 在线播放无遮挡| 亚洲av熟女| 国产精品1区2区在线观看.| 99久国产av精品国产电影| 午夜福利高清视频| 国产中年淑女户外野战色| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| av天堂在线播放| 午夜激情欧美在线| 国产av在哪里看| 一进一出抽搐动态| 久久久午夜欧美精品| 色视频www国产| 成人三级黄色视频| 国产一级毛片在线| 男女下面进入的视频免费午夜| 色尼玛亚洲综合影院| 久久久成人免费电影| 观看免费一级毛片| 国产成人91sexporn| 国产又黄又爽又无遮挡在线| 高清日韩中文字幕在线| 内地一区二区视频在线| 婷婷六月久久综合丁香| av黄色大香蕉| 99久久精品热视频| av黄色大香蕉| 国产精品人妻久久久影院| 天堂影院成人在线观看| 国产精品蜜桃在线观看 | 成人三级黄色视频| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 国产69精品久久久久777片| 蜜臀久久99精品久久宅男| 成年免费大片在线观看| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 此物有八面人人有两片| 国产精品一区www在线观看| 午夜福利在线观看免费完整高清在 | 久久国产乱子免费精品| 国产真实乱freesex| 国内精品美女久久久久久| 久久九九热精品免费| 熟女电影av网| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 日本一二三区视频观看| 久久久久久九九精品二区国产| 久久久久网色| 国产一级毛片七仙女欲春2| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 欧美三级亚洲精品| 午夜福利视频1000在线观看| 在线天堂最新版资源| 男人和女人高潮做爰伦理| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 亚洲av不卡在线观看| eeuss影院久久| 日本撒尿小便嘘嘘汇集6| 国产综合懂色| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 日本色播在线视频| 性欧美人与动物交配| 日本与韩国留学比较| 成人鲁丝片一二三区免费| 在线观看一区二区三区| 高清毛片免费看| 中国美白少妇内射xxxbb| 久久人人精品亚洲av| 99热这里只有是精品在线观看| 波多野结衣高清无吗| 国产亚洲欧美98| 美女大奶头视频| 99热这里只有精品一区| 久久久久久久久大av| 午夜久久久久精精品| 日韩三级伦理在线观看| 免费人成在线观看视频色|