• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    2016-12-01 09:23:27ErinGutillaOswaldSteward

    Erin A. Gutilla, Oswald Steward,

    1 Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA2 Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA3 Department of Neurobiology & Behavior, University of California Irvine School of Medicine, Irvine, CA, USA4 Department of Neurosurgery, University of California Irvine School of Medicine, Irvine, CA, USA5 Center for the Neurobiology of Learning and Memory, University of California Irvine School of Medicine, Irvine, CA, USA

    Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    Erin A. Gutilla1,2, Oswald Steward1,2,3,4,5,*

    1 Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA
    2 Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA
    3 Department of Neurobiology & Behavior, University of California Irvine School of Medicine, Irvine, CA, USA
    4 Department of Neurosurgery, University of California Irvine School of Medicine, Irvine, CA, USA
    5 Center for the Neurobiology of Learning and Memory, University of California Irvine School of Medicine, Irvine, CA, USA

    How to cite this article: Gutilla EA, Steward O (2016) Selective neuronal PTEN deletion∶ can we take the brakes off of growth without losing control? Neural Regen Res 11(8)∶1201-1203.

    Funding: This work was supported by NS073857 to OS, 5T32GM008620 to EG and generous donations from Cure Medical, Research for Cure, and individual donors.

    Oswald Steward, Ph.D.,

    osteward@uci.edu.

    orcid:

    0000-0002-8466-9902 (Erin A. Gutilla)

    0000-0001-7069-8756 (Oswald Steward)

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

    PTEN; mTOR; spinal cord injury; corticospinal tract; motor system; axon regeneration; recovery of function

    Introduction

    Regeneration of injured or unhealthy axons holds great therapeutic promise for neurological disorders including acute trauma to the brain or spinal cord, stroke, and neurodegenerative diseases. The phosphatase and tensin homolog (PTEN) gene has emerged as an important regulator of axon regeneration, and recent findings by multiple groups support the potential of using PTEN as a therapeutic target. Our recent paper reports that long-term deletion of PTEN, a tumor suppressor gene, does not result in any major detectable pathology and may also enhance neuronal vitality (Gutilla et al., 2016). By selectively deleting PTEN in the motor cortex of young mice, we specifically assessed the effects of PTEN loss using the same approach that has been used to promote regeneration of the corticospinal tract after spinal cord injury.

    PTEN’s impact on axon regeneration was discovered in a seminal experiment in which conditional genetic deletion of PTEN promoted robust axonal regeneration of retinal ganglion cells (RGCs) following optic nerve crush (Park et al., 2008). The rationale for this experimental approach is rooted in the discovery of inhibitory intrinsic and extrinsic factors that prevent regeneration of injured axons (Schwab and Bartholdi, 1996; Fitch and Silver, 2008). One approach to overcoming the intrinsic inhibitory factors focuses on attempting to “recapitulate development”, in order to return adult neurons to a more growth permissive state (Filbin, 2006). Growth cessation after the completion of development is thought to occur in part due to the onset of growth inhibiting genes being expressed.

    In their landmark study, Park et al. (2008) tested whether axon regeneration could be enhanced if genes that normally repress cell growth were eliminated prior to axon injury. They specifically examined several known tumor suppressor genes including PTEN, p53, retinoblastoma, Smad4, Dicer, and LKB. The effect of each individual gene was studied using multiple strains of “floxed” mice, with each strain having only one of the aforementioned genes flanked by lox-P sites. The specific gene was deleted in the retina be injecting AAV-Cre into the vitreous humor of the eye prior to performing an optic nerve crush. Only deletion of the PTEN gene enabled axotomized RGCs to regenerate, though deletion of both PTEN and p53 reduced retrograde degeneration of RGCs that otherwise occurred. The latter finding, not emphasized at the time, could mean that deleting PTEN enhanced RGC vitality such that the neurons could survive traumatic injuries that would normally cause cell death.

    PTEN Deletion and Corticospinal Tract (CST) Axon Regeneration

    Following the initial finding that linked PTEN deletion toenhanced neural regeneration, a follow up study tested whether neuronal PTEN deletion could also enhance regeneration after spinal cord injury. This study focused on regeneration of the CST, which mediates voluntary motor function. Damage to CST axons due to spinal cord injury is the cause of paralysis, and enabling regeneration of the CST is the best hope for restoring motor function after injury. Similar to Park et al. (2008), this study used floxed PTEN mice, and PTEN was deleted in the motor cortex of mice one day after birth by injecting AAV-Cre into the sensorimotor cortex. Then, as young adults, mice received spinal cord injuries. Tract tracing of CST axons revealed robust and unprecedented regeneration beyond the injury site (Liu et al., 2010).

    Subsequent studies have confirmed and extended findings from these two papers. Genetic deletion of PTEN soon after spinal cord injury in adult mice, or knockdown of PTEN expression using short hairpin RNA (shRNA) against PTEN in adult rats a few days before injury was found to enhance the regenerative growth of the adult CST and recovery of skilled motor functions (Zukor et al., 2013; Lewandowski and Steward, 2014; Danilov and Steward, 2015). Remarkably, PTEN deletion also induced robust CST regeneration in the chronic injury setting one year following injury (Du et al., 2015). These discoveries further highlight the potential of using PTEN interference as a pro-regenerative strategy for treating adult spinal cord injury (Ramon-Cueto et al., 2000).

    PTEN's Role in Regulating Normal Neuronal Development and Function

    The PTEN gene is thought to exert its growth inhibiting effects through the PTEN protein’s negative regulation of phosphoinositide 3-kinase (PI3K). As a phosphatase, PTEN converts active phosphatidylinositol (3,4,5)-triphosphate (PIP3) to inactive phosphatidylinositol (4,5)-bisphosphate (PIP2), resulting in diminished AKT and downstream mammalian target of rapamycin (mTOR) activation. Thus, deletion of PTEN leads to enhanced levels of PIP3, activation of AKT, and activation of mTOR. The mTOR pathway is well known for its ability to regulate cell growth and proliferation and PTEN’s upstream and non-redundant negative regulation of the mTOR pathway make it a promising pro-regenerative therapeutic target (Don et al., 2012).

    It’s here that we come to the theme of our review; is it possible to take the brakes off of such a powerful growth-promoting pathway without losing control? The logic behind testing PTEN was that it had been identified as a tumor suppressor gene. PTEN mutations are common in several cancers, and have been associated with developmental disorders including macrocephaly and autism spectrum disorders (Goffin et al., 2001; Hollander et al., 2011). Experimental studies in which PTEN was deleted during early development in particular cell types revealed neuronal overgrowth, brain enlargement, seizures, and premature death. These studies used mice with a lox-P flanked PTEN gene paired with Cre recombinase expression regulated under the control of promoters including neuron specific enolase (NSE, (Kwon et al., 2006)), glial fibrillary acid protein (GFAP, (Backman et al., 2001; Kwon et al., 2001; Fraser et al., 2004; Yue et al., 2005; Fraser et al., 2008; Wen et al., 2013)), Ca2+/calmodulin-dependent protein kinase II (CamKII, (Sperow et al., 2012)), and the dopamine active transporter (DAT, (Diaz-Ruiz et al., 2009)). In studies using NSE, GFAP, and CamKII promoter driven Cre expression, mice with PTEN deletion exhibit significantly higher postnatal mortality and premature death (~11 weeks of age for CamKII-Cre, (Sperow et al., 2012)). In the GFAPCre models, multiple groups have identified neurons with successful PTEN deletion in the cerebellum, hippocampus, and the cerebral cortex (Backman et al., 2001; Kwon et al., 2001; Fraser et al., 2004, 2008).

    The negative consequences following widespread neuronal PTEN loss during development necessitated an in-depth examination of the long-term consequences of deleting PTEN in the way that promotes axon regeneration. As a first step in assessing the potential risk, we employed the same experimental model as in our original report of CST regeneration following spinal cord injury (Liu et al., 2010). PTEN was deleted by injecting AAV-Cre into the sensorimotor cortex of floxed PTEN mice on postnatal day 1. Mice were then allowed to survive for at least one year, and motor function was tested in the final months prior to euthanasia (Gutilla et al., 2016).

    Over several months of handling and testing, mice did not exhibit any obvious behavioral abnormalities or spontaneous seizures. General motor function was tested by open field activity and Rotorod, and brains were examined extensively for any evidence of tumors or other neuropathology. Mice with PTEN deletion exhibited normal exploratory activity in an open field and were slightly, though not significantly, impaired on the Rotorod. Most important, we found no evidence of tumors or other neuropathology in the area of PTEN deletion. Cortical motoneurons, the cells of origin of CST axons, appeared healthy and exhibited high levels of immunostaining for the phosphorylated form of ribosomal protein S6 (rpS6). rpS6 phosphorylation is considered a bioindiciator of mTOR activation, so high levels of immunostaining for phosphorylated rpS6 indicates continued activation of mTOR more than a year after PTEN deletion.

    The only histological abnormalities were: 1) cortical motoneurons lacking PTEN (identified by retrograde labeling following Fluorogold injections into the spinal cord) were substantially larger than control neurons; 2) there was visible disruption of the normal laminar organization of the cortex in the area of PTEN deletion, perhaps as a result of the increase in neuronal size; 3) the ratio of neuropil to cell bodies was higher in the region of PTEN deletion. Our speculation is that this is due to cellular hypertrophy including hypertrophy of dendrites, but we have not yet assessed this quantitatively.

    Safety of PTEN Interference as a Therapeutic Strategy and Remaining Questions

    While our study does not qualify as a safety study as would be required for preclinical development of a therapy, the mice survived without any ill effects for up to 18 months after PTEN deletion (considered early old age in mice). Other studies involving hundreds of mice and rats with PTEN deletion in the sensorimotor cortex report enhanced regeneration and improvements in motor function after spinal cord injury, and there have been no reports of negative effects. Taken together, our findings along with previous reports point to the possibility of targeting PTEN therapeutically without triggering untoward effects.

    Despite providing an important first look at the long-term consequences of PTEN deletion, several questions remain unaddressed. Other groups have reported seizures following deletion of PTEN early in development (Backman et al., 2001; Ogawa et al., 2007; Pun et al., 2012) as well as changes in the electrophysiological properties of neurons lacking PTEN (Fraser et al., 2008; Sperow et al., 2012; Williams et al., 2015). So far there have been no systematic studies of the physiological consequences of PTEN deletion in cortical neurons, but this warrants further investigation. Additionally, since most acute neurological traumas and neurodegenerative diseases occur in adults, it will also be important to assess the consequences of PTEN deletion in adults.

    Figure 1 Increased number of articles related to PTEN and regeneration published per year since 2006.

    The ability to induce a robust growth capability in central nervous system neurons has broad implications even beyond the potential of enabling regeneration of axons after spinal cord injury. Park’s original study reported that in addition to promoting axon regeneration, PTEN deletion in retinal ganglion cells reduced retrograde cell death following optic nerve crush. It will be of considerable interest to assess whether PTEN deletion could prevent or reverse age-related deterioration of neurons such as neuronal atrophy or even prevent death that is observed in neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS). Indeed, there have been reports that show that deleting PTEN in the substantia nigra reverses symptoms in an experimental Parkinson’s disease model and protects dopaminergic neurons from toxic insults (Diaz-Ruiz et al., 2009; Domanskyi et al., 2011).

    The pace of research on PTEN related to neural regeneration is clearly accelerating. A PubMed search done on May 21, 2016 using the keywords “PTEN, regeneration, and axon”in “Abstract” yielded a total of 56 papers, with an increasing number being published each year (Figure 1). Indeed, 12 papers have been published in the first five months of 2016. This increased effort aimed at understanding PTEN’s role in neural regeneration will undoubtedly help to address the questions that still remain.

    Author contributions: All authors participated in the organization of the article and the selection of topics to be covered. EAG wrote the majority of the text of the article, edited the figure and figure legend, and provided references. OS provided critical commentary, text, and figure design. All authors approved the final version of the article.

    Conflicts of interest: OS is one of the co-founders of the company Axonis, which holds options on patents related to targeting PTEN to enhance regeneration after injury. The terms of this arrangement have been reviewed and approved by the University of California, Irvine in accordance with its conflict of interest policies.

    References

    Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW (2001) Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 29:396-403.

    Danilov CA, Steward O (2015) Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol 266:147-160.

    Diaz-Ruiz O, Zapata A, Shan L, Zhang Y, Tomac AC, Malik N, de la Cruz F, Backman CM (2009) Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons. PLoS One 4:e7027.

    Domanskyi A, Geissler C, Vinnikov IA, Alter H, Schober A, Vogt MA, Gass P, Parlato R, Schutz G (2011) Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson’s disease models. FASEB J 25:2898-2910.

    Don AS, Tsang CK, Kazdoba TM, D’Arcangelo G, Young W, Zheng XF (2012) Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov Today 17:861-868.

    Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, Jiang L, Liu K (2015) Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci 35:9754-9763.

    Filbin MT (2006) Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 361:1565-1574.

    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294-301.

    Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ (2008) Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience 151:476-488.

    Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ (2004) Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 64:7773-7779.

    Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP (2001) PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet 105:521-524.

    Gutilla EA, Buyukozturk MM, Steward O (2016) Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 279:27-39.

    Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11:289-301.

    Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ (2001) Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 29:404-411.

    Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377-388.

    Lewandowski G, Steward O (2014) AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 34:9951-9962.

    Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075-1081.

    Ogawa S, Kwon CH, Zhou J, Koovakkattu D, Parada LF, Sinton CM (2007) A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res 1168:112-123.

    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963-966.

    Pun RY, Rolle IJ, Lasarge CL, Hosford BE, Rosen JM, Uhl JD, Schmeltzer SN, Faulkner C, Bronson SL, Murphy BL, Richards DA, Holland KD, Danzer SC (2012) Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75:1022-1034.

    Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425-435.

    Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319-370.

    Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS (2012) Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. J Physiol 590:777-792.

    Wen Y, Li W, Choudhury GR, He R, Yang T, Liu R, Jin K, Yang SH (2013) Astroglial PTEN loss disrupts neuronal lamination by dysregulating radial glia-guided neuronal migration. Aging Dis 4:113-126.

    Williams MR, DeSpenza T, Jr., Li M, Gulledge AT, Luikart BW (2015) Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci 35:943-959.

    Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, Liu X (2005) PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development 132:3281-3291.

    Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z (2013) Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 33:15350-15361.

    10.4103/1673-5374.189160 Accepted: 2016-08-10

    *Correspondence to:

    精品国产露脸久久av麻豆| 中文字幕av电影在线播放| 日本欧美国产在线视频| 999久久久国产精品视频| 熟女av电影| 国产成人精品久久久久久| 亚洲欧美成人综合另类久久久| 在线观看美女被高潮喷水网站| 男人爽女人下面视频在线观看| 日本91视频免费播放| 国产成人午夜福利电影在线观看| 成人毛片60女人毛片免费| 精品一区二区三区四区五区乱码 | 91午夜精品亚洲一区二区三区| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 看非洲黑人一级黄片| 免费观看a级毛片全部| 亚洲激情五月婷婷啪啪| 久久久精品免费免费高清| 亚洲第一青青草原| 国产毛片在线视频| 日韩,欧美,国产一区二区三区| 亚洲成色77777| 免费观看在线日韩| 亚洲国产精品一区二区三区在线| 91午夜精品亚洲一区二区三区| 亚洲色图 男人天堂 中文字幕| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 亚洲精品国产色婷婷电影| 最近中文字幕高清免费大全6| 亚洲精品国产av成人精品| 亚洲欧美精品综合一区二区三区 | 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 欧美中文综合在线视频| 水蜜桃什么品种好| 日韩精品免费视频一区二区三区| 中文天堂在线官网| www.精华液| 丝袜脚勾引网站| 青春草视频在线免费观看| 男女免费视频国产| 2018国产大陆天天弄谢| 国产片特级美女逼逼视频| 亚洲国产看品久久| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 丝袜美足系列| 最近2019中文字幕mv第一页| 曰老女人黄片| 国产精品久久久久久av不卡| 午夜日韩欧美国产| 午夜日韩欧美国产| 国产精品熟女久久久久浪| 97在线人人人人妻| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| 在现免费观看毛片| 午夜福利乱码中文字幕| 看十八女毛片水多多多| 国产一区二区在线观看av| 热re99久久国产66热| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久av网站| 久久精品国产亚洲av高清一级| 免费观看av网站的网址| 亚洲av国产av综合av卡| 一级,二级,三级黄色视频| 美女大奶头黄色视频| 色网站视频免费| 黑丝袜美女国产一区| 亚洲国产精品一区二区三区在线| 青草久久国产| av免费在线看不卡| 精品第一国产精品| 热re99久久国产66热| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 国产av一区二区精品久久| 女人久久www免费人成看片| 边亲边吃奶的免费视频| 一区二区av电影网| 久久午夜综合久久蜜桃| 超碰成人久久| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人 | 久久久精品免费免费高清| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 捣出白浆h1v1| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 一个人免费看片子| 精品人妻偷拍中文字幕| 精品第一国产精品| 国产爽快片一区二区三区| 亚洲经典国产精华液单| 18禁裸乳无遮挡动漫免费视频| 在线 av 中文字幕| 少妇的逼水好多| 超色免费av| 午夜免费鲁丝| 免费黄网站久久成人精品| 99国产综合亚洲精品| 日韩伦理黄色片| 男女高潮啪啪啪动态图| 蜜桃国产av成人99| 成人亚洲欧美一区二区av| 少妇的丰满在线观看| 久久久久网色| 尾随美女入室| 日韩不卡一区二区三区视频在线| 亚洲综合精品二区| 一区福利在线观看| 午夜av观看不卡| 一二三四中文在线观看免费高清| 极品少妇高潮喷水抽搐| 男女下面插进去视频免费观看| 国产亚洲最大av| 另类精品久久| 亚洲av电影在线进入| 成人国产av品久久久| av免费在线看不卡| 欧美另类一区| 人人妻人人添人人爽欧美一区卜| 最近手机中文字幕大全| 97人妻天天添夜夜摸| 亚洲精品第二区| 日韩制服丝袜自拍偷拍| 久久99一区二区三区| 久久久精品94久久精品| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| 黄色一级大片看看| 亚洲成国产人片在线观看| a 毛片基地| 久久av网站| 少妇人妻 视频| 又黄又粗又硬又大视频| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 咕卡用的链子| 另类亚洲欧美激情| 日韩精品有码人妻一区| 超碰成人久久| 国产精品二区激情视频| 亚洲综合色惰| 国产精品免费视频内射| 在线天堂中文资源库| 亚洲欧美成人综合另类久久久| 不卡av一区二区三区| 欧美变态另类bdsm刘玥| 最黄视频免费看| 欧美人与性动交α欧美软件| 1024香蕉在线观看| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 日韩大片免费观看网站| 麻豆精品久久久久久蜜桃| www.av在线官网国产| 成年女人毛片免费观看观看9 | 成人免费观看视频高清| 亚洲成人av在线免费| 亚洲精品视频女| av免费观看日本| 在线观看国产h片| 国产在视频线精品| 亚洲图色成人| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 一边亲一边摸免费视频| 亚洲综合精品二区| 日日啪夜夜爽| 美女高潮到喷水免费观看| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 国产精品嫩草影院av在线观看| 亚洲欧美色中文字幕在线| 熟女电影av网| 成人国产av品久久久| 国产毛片在线视频| 国产成人精品无人区| 日本午夜av视频| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 亚洲av免费高清在线观看| 久久久久久人人人人人| 国产免费又黄又爽又色| 免费大片黄手机在线观看| 国产黄频视频在线观看| √禁漫天堂资源中文www| 久久久久精品性色| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 日韩一卡2卡3卡4卡2021年| 国产成人免费无遮挡视频| 晚上一个人看的免费电影| 午夜福利,免费看| 2022亚洲国产成人精品| 两个人看的免费小视频| 欧美成人午夜精品| 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 秋霞伦理黄片| 少妇人妻久久综合中文| 国产乱来视频区| 久久久久久久久久人人人人人人| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 2021少妇久久久久久久久久久| 欧美人与善性xxx| xxx大片免费视频| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 国产综合精华液| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 不卡av一区二区三区| 亚洲国产日韩一区二区| www.熟女人妻精品国产| 97在线人人人人妻| 亚洲天堂av无毛| 欧美中文综合在线视频| 国产精品蜜桃在线观看| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 热99久久久久精品小说推荐| av片东京热男人的天堂| 春色校园在线视频观看| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看 | 国产欧美日韩综合在线一区二区| 2021少妇久久久久久久久久久| 蜜桃在线观看..| 欧美日韩一级在线毛片| 男男h啪啪无遮挡| 亚洲精品在线美女| 尾随美女入室| 久久99精品国语久久久| av网站在线播放免费| 久久国内精品自在自线图片| 18禁动态无遮挡网站| 宅男免费午夜| 亚洲国产精品一区二区三区在线| 少妇人妻 视频| 天天躁日日躁夜夜躁夜夜| 国产成人一区二区在线| 国产男女内射视频| 黑人巨大精品欧美一区二区蜜桃| 久久久国产精品麻豆| 男人操女人黄网站| 中文精品一卡2卡3卡4更新| videossex国产| 午夜精品国产一区二区电影| 亚洲男人天堂网一区| 国产黄频视频在线观看| 久久精品久久精品一区二区三区| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 少妇的丰满在线观看| 亚洲欧美中文字幕日韩二区| 热99久久久久精品小说推荐| 成人手机av| 一区二区三区四区激情视频| 亚洲国产精品国产精品| 在线看a的网站| 亚洲精品国产色婷婷电影| 免费看av在线观看网站| 亚洲人成77777在线视频| 久久久久视频综合| 最近的中文字幕免费完整| 亚洲国产精品999| 自拍欧美九色日韩亚洲蝌蚪91| av线在线观看网站| 看非洲黑人一级黄片| 一边摸一边做爽爽视频免费| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 人人澡人人妻人| 日韩欧美一区视频在线观看| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区 | 精品少妇黑人巨大在线播放| 日韩大片免费观看网站| 亚洲av免费高清在线观看| 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 亚洲美女搞黄在线观看| 观看av在线不卡| 日韩中文字幕欧美一区二区 | 曰老女人黄片| 精品一区二区三卡| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站 | 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 高清欧美精品videossex| 色94色欧美一区二区| 久久精品久久精品一区二区三区| 中文字幕人妻丝袜一区二区 | 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 伦理电影大哥的女人| 久久久久久伊人网av| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 夫妻性生交免费视频一级片| 十分钟在线观看高清视频www| 欧美日韩国产mv在线观看视频| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 成人国产av品久久久| av视频免费观看在线观看| 一级片'在线观看视频| 丝袜喷水一区| 日韩大片免费观看网站| 丝袜喷水一区| 国产一区亚洲一区在线观看| 韩国精品一区二区三区| 日韩制服骚丝袜av| 国产乱人偷精品视频| 日韩精品有码人妻一区| 伊人久久大香线蕉亚洲五| 中文字幕人妻熟女乱码| 女人被躁到高潮嗷嗷叫费观| 最黄视频免费看| 国产精品久久久久久精品古装| 亚洲,欧美精品.| 七月丁香在线播放| 精品亚洲成国产av| 中文字幕色久视频| 美女午夜性视频免费| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一区蜜桃| 成人国产av品久久久| 亚洲,欧美精品.| 中文字幕最新亚洲高清| 尾随美女入室| 观看美女的网站| 尾随美女入室| 日本av手机在线免费观看| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 宅男免费午夜| 久久影院123| 18禁国产床啪视频网站| 在线观看美女被高潮喷水网站| 亚洲,欧美精品.| 中国国产av一级| 亚洲第一青青草原| 日韩成人av中文字幕在线观看| 伦精品一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久av网站| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| av国产精品久久久久影院| 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| videosex国产| 美女福利国产在线| 熟女电影av网| www日本在线高清视频| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 视频在线观看一区二区三区| 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 色播在线永久视频| 狠狠婷婷综合久久久久久88av| 免费在线观看视频国产中文字幕亚洲 | 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老女人水多毛片| 国产97色在线日韩免费| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| h视频一区二区三区| 国产激情久久老熟女| 国产成人精品一,二区| 少妇人妻 视频| 韩国av在线不卡| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| 90打野战视频偷拍视频| 亚洲综合色网址| 亚洲精品第二区| 看免费成人av毛片| 国产男女内射视频| 自线自在国产av| 国产极品天堂在线| 一区二区三区乱码不卡18| 免费在线观看完整版高清| 最近最新中文字幕免费大全7| 婷婷色av中文字幕| 美女大奶头黄色视频| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀 | 欧美激情极品国产一区二区三区| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 一区在线观看完整版| 99热全是精品| 亚洲精品aⅴ在线观看| 热99国产精品久久久久久7| 边亲边吃奶的免费视频| 建设人人有责人人尽责人人享有的| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美| 国产97色在线日韩免费| 午夜福利乱码中文字幕| 国产精品一区二区在线不卡| www.av在线官网国产| 久久午夜福利片| 成年美女黄网站色视频大全免费| 狂野欧美激情性bbbbbb| 一区在线观看完整版| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 美女午夜性视频免费| 91久久精品国产一区二区三区| 深夜精品福利| 精品国产国语对白av| 日本免费在线观看一区| 一二三四在线观看免费中文在| 汤姆久久久久久久影院中文字幕| 国产精品蜜桃在线观看| 中国三级夫妇交换| 久久毛片免费看一区二区三区| 色视频在线一区二区三区| 久久久久久久久久久免费av| 99久国产av精品国产电影| 一级,二级,三级黄色视频| 免费看av在线观看网站| 亚洲av成人精品一二三区| tube8黄色片| 国产精品 欧美亚洲| 深夜精品福利| 99九九在线精品视频| 久久99一区二区三区| 韩国av在线不卡| 中文字幕人妻熟女乱码| 国产一区有黄有色的免费视频| 97在线视频观看| 亚洲在久久综合| 好男人视频免费观看在线| 在线看a的网站| 国产精品国产三级国产专区5o| 久久精品国产综合久久久| 99re6热这里在线精品视频| 777米奇影视久久| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 日韩欧美精品免费久久| 精品酒店卫生间| 久久影院123| 在线观看免费视频网站a站| 日韩中文字幕视频在线看片| 亚洲国产看品久久| 人人澡人人妻人| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 欧美日韩成人在线一区二区| 国产在线一区二区三区精| 大片电影免费在线观看免费| 精品少妇黑人巨大在线播放| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看| 少妇人妻精品综合一区二区| 国产黄色免费在线视频| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 18+在线观看网站| 男女边吃奶边做爰视频| 久久精品aⅴ一区二区三区四区 | 91精品伊人久久大香线蕉| 免费在线观看完整版高清| 国产亚洲午夜精品一区二区久久| 精品99又大又爽又粗少妇毛片| 免费高清在线观看视频在线观看| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 久久国产精品大桥未久av| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 亚洲精品一区蜜桃| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 亚洲一区中文字幕在线| 日本免费在线观看一区| 9191精品国产免费久久| 亚洲中文av在线| 日日摸夜夜添夜夜爱| 亚洲精品一二三| 国产高清国产精品国产三级| 国产伦理片在线播放av一区| 我的亚洲天堂| 在线天堂中文资源库| 久久国产亚洲av麻豆专区| 欧美最新免费一区二区三区| 人妻人人澡人人爽人人| 免费观看av网站的网址| 日本欧美国产在线视频| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 看免费成人av毛片| 最近中文字幕高清免费大全6| 91精品三级在线观看| 欧美精品av麻豆av| 亚洲精品一二三| 中国国产av一级| 男人添女人高潮全过程视频| 日韩中文字幕视频在线看片| 国产亚洲av片在线观看秒播厂| 99热网站在线观看| 久久精品国产a三级三级三级| 精品久久久久久电影网| 91成人精品电影| 成年女人毛片免费观看观看9 | 国产不卡av网站在线观看| 国产精品女同一区二区软件| 99re6热这里在线精品视频| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 美女福利国产在线| 最近中文字幕2019免费版| 高清欧美精品videossex| 在线看a的网站| 欧美日韩精品网址| 久久99精品国语久久久| 18禁观看日本| 色哟哟·www| 久久精品人人爽人人爽视色| 亚洲欧美日韩另类电影网站| 色婷婷av一区二区三区视频| 国产伦理片在线播放av一区| 免费在线观看视频国产中文字幕亚洲 | 黄色女人牲交| 真人做人爱边吃奶动态| 麻豆av在线久日| 日本五十路高清| 久久影院123| 国产亚洲精品久久久久5区| 不卡一级毛片| 欧美日韩亚洲国产一区二区在线观看| 国产三级黄色录像| 侵犯人妻中文字幕一二三四区| 性少妇av在线| 日本精品一区二区三区蜜桃| 又黄又爽又免费观看的视频| 国产国语露脸激情在线看| 一区二区日韩欧美中文字幕| 亚洲午夜理论影院| 国产色视频综合| 日韩 欧美 亚洲 中文字幕| 国产激情欧美一区二区| 亚洲五月天丁香| 亚洲精品在线观看二区| 国产在线精品亚洲第一网站| 最近最新中文字幕大全免费视频| 亚洲专区中文字幕在线| 中文字幕最新亚洲高清| 久久人妻熟女aⅴ| 久久久久久人人人人人| 国产精品永久免费网站| 叶爱在线成人免费视频播放| 亚洲精品在线美女| 久久久国产一区二区| 91成年电影在线观看| 夜夜看夜夜爽夜夜摸 | 黑人巨大精品欧美一区二区蜜桃| av天堂久久9| 51午夜福利影视在线观看| 女同久久另类99精品国产91| 日韩有码中文字幕| 国产在线观看jvid| 窝窝影院91人妻| av超薄肉色丝袜交足视频| 老司机靠b影院| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 国产区一区二久久| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全电影3 | 亚洲欧美精品综合久久99| av在线播放免费不卡| 男女高潮啪啪啪动态图| 亚洲精品一二三| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| 麻豆一二三区av精品| 黑丝袜美女国产一区| 欧美激情久久久久久爽电影 | 夜夜躁狠狠躁天天躁| 亚洲精华国产精华精| 欧美av亚洲av综合av国产av|