• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的影響

      2016-11-30 02:36:40從雨佳朱家明
      關(guān)鍵詞:參量金融預(yù)測

      從雨佳,朱家明

      (1.安徽財(cái)經(jīng)大學(xué) 金融學(xué)院,安徽 蚌埠 233000;2.安徽財(cái)經(jīng)大學(xué) 統(tǒng)計(jì)與應(yīng)用數(shù)學(xué)學(xué)院,安徽 蚌埠 233000)

      ?

      金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的影響

      從雨佳1,朱家明2

      (1.安徽財(cái)經(jīng)大學(xué) 金融學(xué)院,安徽 蚌埠 233000;2.安徽財(cái)經(jīng)大學(xué) 統(tǒng)計(jì)與應(yīng)用數(shù)學(xué)學(xué)院,安徽 蚌埠 233000)

      金融抑制與我國區(qū)域經(jīng)濟(jì)增長呈顯著的正相關(guān),通過構(gòu)建金融抑制與我國區(qū)域經(jīng)濟(jì)增長影響關(guān)系數(shù)學(xué)模型,預(yù)測區(qū)域經(jīng)濟(jì)增長的可靠性,提高決策部門宏觀調(diào)控能力.以我國區(qū)域經(jīng)濟(jì)發(fā)展八大區(qū)域?yàn)檠芯繉?duì)象,提出基于最大Lyapunove指數(shù)分析的區(qū)域經(jīng)濟(jì)增長預(yù)測模型,定量預(yù)測金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)的影響.通過構(gòu)建金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長約束參量模型,對(duì)經(jīng)濟(jì)增長指數(shù)時(shí)間序列進(jìn)行分析,提取時(shí)間序列的最大Lyapunove特征,在分析不同經(jīng)濟(jì)增長統(tǒng)計(jì)區(qū)域金融相關(guān)率樣本集合的基礎(chǔ)上,結(jié)合SVM進(jìn)行訓(xùn)練,實(shí)現(xiàn)區(qū)域經(jīng)濟(jì)增長預(yù)測.數(shù)據(jù)仿真分析得出,該方法能有效擬合金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的關(guān)系模型,實(shí)現(xiàn)對(duì)區(qū)域經(jīng)濟(jì)增長的準(zhǔn)確預(yù)測,精度較高,可靠性較好.

      金融抑制;區(qū)域經(jīng)濟(jì);Lyapunove指數(shù)

      0 引 言

      隨著中國金融業(yè)改革的不斷深入,采用金融工具進(jìn)行市場調(diào)節(jié)成為我國市場經(jīng)濟(jì)宏調(diào)控的一個(gè)重要手段.目前,我國金融機(jī)構(gòu)分布較為集中,可采用金融抑制方法對(duì)區(qū)域經(jīng)濟(jì)進(jìn)行調(diào)節(jié).使用相關(guān)金融工具對(duì)市場區(qū)域經(jīng)濟(jì)增長水平進(jìn)行調(diào)節(jié),在促進(jìn)產(chǎn)業(yè)的均衡可持續(xù)發(fā)展具有重要意義.在區(qū)域?qū)用?,隨著市場經(jīng)濟(jì)體制調(diào)整地不斷深入,金融與經(jīng)濟(jì)發(fā)展間呈現(xiàn)顯著的因果關(guān)系,隨著我國人民經(jīng)濟(jì)生活水平不斷提高,區(qū)域間的經(jīng)濟(jì)差異確不斷拉大,區(qū)域間的金融發(fā)展差距同時(shí)也在不斷擴(kuò)大,使得金融發(fā)展的差距值超過了經(jīng)濟(jì)發(fā)展差距值[1-3].一方面,分析金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的影響關(guān)系,建立金融抑制與經(jīng)濟(jì)增長的數(shù)學(xué)關(guān)系模型,實(shí)現(xiàn)對(duì)區(qū)域經(jīng)濟(jì)增長的可靠性預(yù)測,使經(jīng)濟(jì)可以穩(wěn)定的發(fā)展.另一方面,研究金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響關(guān)系模型,對(duì)促進(jìn)區(qū)域經(jīng)濟(jì)的穩(wěn)定性增長,保障金融結(jié)構(gòu)平穩(wěn)等方面具有重要意義,相關(guān)的數(shù)學(xué)建模受到眾多學(xué)者的重視[4-7].文獻(xiàn)[8]提出基于非線性時(shí)間序列分析的區(qū)域經(jīng)濟(jì)增長預(yù)測算法,通過構(gòu)建區(qū)域經(jīng)濟(jì)增長指數(shù)時(shí)間序列模型,采用相空間重構(gòu)方法實(shí)現(xiàn)經(jīng)濟(jì)預(yù)測,提高預(yù)測精度,但是該模型計(jì)算開銷較大,隨著干擾向量的增多,預(yù)測精度不好;文獻(xiàn)[9]提出基于零冗余度模糊C均值聚類的金融抑制與區(qū)域經(jīng)濟(jì)增長關(guān)系模型,實(shí)現(xiàn)經(jīng)濟(jì)數(shù)據(jù)分類和準(zhǔn)確預(yù)測,但是該模型需要大量的先驗(yàn)數(shù)據(jù)作為指導(dǎo),當(dāng)先驗(yàn)知識(shí)缺乏時(shí),對(duì)經(jīng)濟(jì)增長的預(yù)測效果不好.

      因此,提出基于最大Lyapunove指數(shù)分析的區(qū)域經(jīng)濟(jì)增長預(yù)測算法,實(shí)現(xiàn)金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)的影響的定量分析和預(yù)測研究.建立金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的約束參量模型,進(jìn)行數(shù)學(xué)建模分析,在分析經(jīng)濟(jì)增長指數(shù)時(shí)間序列的基礎(chǔ)上,提取時(shí)間序列的最大Lyapunove特征,采用最大Lyapunov指數(shù)分岔原理實(shí)現(xiàn)區(qū)域經(jīng)濟(jì)增長的預(yù)測.實(shí)驗(yàn)結(jié)果證明,采用本文模型在分析金融抑制對(duì)我國的區(qū)域經(jīng)濟(jì)增長關(guān)系時(shí),其預(yù)測精度較高,性能優(yōu)越.

      1 約束參量模型構(gòu)建及經(jīng)濟(jì)增長

      指數(shù)時(shí)間序列

      圖 1 金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響的 約束參量模型Fig.1 Constraint parameter model of financial repression on regional economic growth in China

      1.1 約束參量模型

      市場經(jīng)濟(jì)發(fā)展與金融抑制的擴(kuò)大最終必然導(dǎo)致我國區(qū)域經(jīng)濟(jì)出現(xiàn)波動(dòng),對(duì)于了解我國區(qū)域經(jīng)濟(jì)發(fā)展情況具有一定作用.為推動(dòng)我國區(qū)域經(jīng)濟(jì)的平衡發(fā)展,需要構(gòu)建金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響關(guān)系模型.由于經(jīng)濟(jì)的增長最終反映在商品的價(jià)值屬性基礎(chǔ)上,因此,可通過調(diào)整金融機(jī)構(gòu),實(shí)現(xiàn)對(duì)商品價(jià)格和價(jià)值的調(diào)節(jié),結(jié)合市場環(huán)境和供求關(guān)系[10-13],對(duì)金融抑制對(duì)經(jīng)濟(jì)增長和抑制的雙重關(guān)系進(jìn)行分析,得到金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響的約束參量模型,如圖1所示.

      根據(jù)圖1所示的參量約束模型,建立金融結(jié)構(gòu)與區(qū)域經(jīng)濟(jì)發(fā)展的關(guān)系模型,采用社會(huì)科學(xué)用統(tǒng)計(jì)軟件包SPSS11. 0進(jìn)行統(tǒng)計(jì)分析,得到金融結(jié)構(gòu)調(diào)整下區(qū)域經(jīng)濟(jì)發(fā)展的層次差異控制函數(shù)為

      (1)

      其中:(xi,xj)為我國金融機(jī)構(gòu)的內(nèi)部結(jié)構(gòu)作用單元格;b為拉格朗日算子.考慮我國區(qū)域經(jīng)濟(jì)發(fā)展的空間毗鄰性和模糊適應(yīng)度關(guān)系,需要對(duì)經(jīng)濟(jì)增長進(jìn)行風(fēng)險(xiǎn)控制,得到在金融抑制下我國金融發(fā)展的區(qū)域社會(huì)關(guān)系特征為

      (2)

      根據(jù)實(shí)際情況,選取十項(xiàng)影響區(qū)域經(jīng)濟(jì)發(fā)展的約束參量進(jìn)行特征建模,從總體規(guī)劃角度把我國區(qū)域經(jīng)濟(jì)發(fā)展分為八大經(jīng)濟(jì)區(qū)域,分別為東北地區(qū)、北部沿海區(qū)域、東部沿海區(qū)域、南部沿海區(qū)域、黃河中游區(qū)域、長江中游區(qū)域、西南區(qū)域、西北區(qū)域,并對(duì)此八個(gè)區(qū)域經(jīng)濟(jì)增長的各影響因素進(jìn)行量化加權(quán),得到加權(quán)控制函數(shù)為

      (3)

      根據(jù)金融抑制風(fēng)險(xiǎn)評(píng)估模型進(jìn)行8個(gè)重點(diǎn)區(qū)域的經(jīng)濟(jì)增長水平衡量,在理想狀態(tài)下忽略其他次要因素的作用,得到區(qū)域經(jīng)濟(jì)增長的風(fēng)險(xiǎn)判別式

      (4)

      圖 2 金融抑制對(duì)我國區(qū)域經(jīng) 濟(jì)增長指數(shù)預(yù)測流程Fig.2 Financial repression on China’s regional economic growth index forecast process

      1.2 區(qū)域經(jīng)濟(jì)增長指數(shù)時(shí)間序列分析

      通過上述分析,構(gòu)建我國區(qū)域經(jīng)濟(jì)增長指數(shù)時(shí)間序列的參量評(píng)價(jià)體系,對(duì)各區(qū)域的金融相關(guān)參量進(jìn)行狀態(tài)特征擬合,得到各個(gè)區(qū)域金融抑制和經(jīng)濟(jì)發(fā)展的時(shí)間序列擬合關(guān)系結(jié)果為

      (5)

      對(duì)于區(qū)域經(jīng)濟(jì)增長的時(shí)間序列x(t),參照Beth模型進(jìn)行非線性時(shí)間序列分析,得到金融抑制下金融資產(chǎn)的均衡因子為c1,c2,…,ca,設(shè)各個(gè)經(jīng)濟(jì)區(qū)域資金運(yùn)用的權(quán)重函數(shù)為U,則不同經(jīng)濟(jì)增長統(tǒng)計(jì)區(qū)域的金融相關(guān)匹配分析樣本集合,可采用PCA特征提取和主成分分析方法,通過對(duì)經(jīng)濟(jì)增長的歷史數(shù)據(jù)進(jìn)行SVM學(xué)習(xí)和訓(xùn)練,結(jié)合最大Lyapunove指數(shù)進(jìn)行經(jīng)濟(jì)增長預(yù)測[14-20],輸出預(yù)測結(jié)果.根據(jù)上述分析,得到金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)預(yù)測模型流程,如圖2所示.

      2 區(qū)域經(jīng)濟(jì)增長指數(shù)序列的特征提取和預(yù)測

      2.1 最大Lyapunove指數(shù)特征提取

      (6)

      其中,相空間重構(gòu)的嵌入維數(shù)為m;金融抑制的特征泛函數(shù)為τ,在上述重構(gòu)基礎(chǔ)上進(jìn)行最大Lyapunove指數(shù)特征提取,為區(qū)域經(jīng)濟(jì)增長指數(shù)預(yù)測提供數(shù)據(jù)輸入,而對(duì)于一個(gè)無約束模型,可采用協(xié)方差特征分解方法對(duì)L進(jìn)行Lyapunove泛化處理,表示為L=U*S*C.其中,U和C是正交矩陣,則得到區(qū)域經(jīng)濟(jì)增長時(shí)間序列主成分為

      (7)

      式中,S為L均為奇異值.通過檢驗(yàn)對(duì)樣本數(shù)據(jù)進(jìn)行二自由度特征分解,得到金融抑制對(duì)區(qū)域經(jīng)濟(jì)增長的均衡關(guān)系為

      (8)

      在利用誤差糾正模型,獲取區(qū)域經(jīng)濟(jì)增長指數(shù)的重構(gòu)軌跡矩陣L,在最佳嵌入維數(shù)為m時(shí),對(duì)區(qū)域經(jīng)濟(jì)增長的金融相關(guān)率進(jìn)行N×m維的子空間降噪,得到輸出的金融抑制約束矩陣X,即

      (9)

      (10)

      (11)

      2.2 定量分析預(yù)測實(shí)現(xiàn)

      在構(gòu)建最大Lyapunov指數(shù)譜基礎(chǔ)上,建立Nb個(gè)m維向量,構(gòu)成一個(gè)區(qū)域經(jīng)濟(jì)增長的差異性特征函數(shù)泛函矩陣,即

      (12)

      (13)

      在國民消費(fèi)指數(shù)一定的情況下,得到結(jié)合矩陣:

      (14)

      采用PCA主成分分析方法,結(jié)合最大Lyapunove指數(shù)的分離原理,實(shí)現(xiàn)金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)預(yù)測,算法流程實(shí)現(xiàn)步驟為

      (2)在固定效應(yīng)模型下,計(jì)算不同省市和地區(qū)間經(jīng)濟(jì)增長的線性態(tài)勢協(xié)方差矩陣C為

      (15)

      其中,

      (16)

      (17)

      (18)

      (3) 根據(jù)最大Lyapunove指數(shù)計(jì)算結(jié)果進(jìn)行資產(chǎn)流量的線性規(guī)劃和重構(gòu),采用自適應(yīng)分岔方法構(gòu)建預(yù)測的特征方程

      (19)

      求解S的特征值λ,建立SVM訓(xùn)練模型,求得金融抑制特征值λ對(duì)應(yīng)的特征向量U;

      3 仿真分析

      為了驗(yàn)證構(gòu)建的金融抑制與我國區(qū)域經(jīng)濟(jì)增長影響關(guān)系數(shù)學(xué)模型,在區(qū)域經(jīng)濟(jì)增長預(yù)測方面的可靠性,進(jìn)行仿真實(shí)驗(yàn),仿真實(shí)驗(yàn)采用NS-2.27和NS軟件進(jìn)行我國區(qū)域經(jīng)濟(jì)增長指數(shù)模型構(gòu)建和金融制抑制模型模擬,金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的約束參量體現(xiàn)在經(jīng)濟(jì)增長總量GDP等因素上,因此選取金融抑對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)的6個(gè)因子,分別表示為x1,x2,…,x6,統(tǒng)計(jì)在x1,x2,…,x6等6個(gè)金融抑制約束因子影響下近5年(2011~2016年)的我國區(qū)域經(jīng)濟(jì)增長指數(shù)歸一化時(shí)域波形,如圖3所示.

      (a) x1 (b) x2 (c) x3

      (d) x4 (e) x5 (f) x6圖 3 金融抑制約束因子影響下的我國區(qū)域經(jīng)濟(jì)增長指數(shù)時(shí)域波形Fig.3 Time domain waveform of the regional economic growth in China under the influence of financial restraint factor

      本文參考了金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)影響較大的國民消費(fèi)指數(shù)、金融相關(guān)性指數(shù)、區(qū)域經(jīng)濟(jì)協(xié)調(diào)性發(fā)展指數(shù)等衡量指標(biāo),采用改進(jìn)模型,進(jìn)行金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響相關(guān)性的分析,得到結(jié)果見表1.從表1結(jié)果可見,采用本文方法進(jìn)行預(yù)測和分析時(shí),改進(jìn)模型的擬合精度較高,金融抑制與我國區(qū)域經(jīng)濟(jì)增長間具有顯著性正相關(guān)關(guān)系.為定量分析改進(jìn)模型的性能,采用本文模型和傳統(tǒng)方法建立模型,進(jìn)行經(jīng)濟(jì)增長預(yù)測,得到預(yù)測擬合曲線如圖4所示.從圖4可知,采用本文模型進(jìn)行區(qū)域經(jīng)濟(jì)增長預(yù)測,精度較高,優(yōu)于傳統(tǒng)方法.

      表 1 金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長影響的相關(guān)性分析Table 1 Correlation analysis of the influence of financial restraint on regional economic growth in China

      圖 4 各種模型分析金融抑制對(duì)我國區(qū)域 經(jīng)濟(jì)增長指數(shù)預(yù)測結(jié)果擬合曲線Fig.4 Variety of models to analyze financial repression in China’s regional economic growth index prediction results fitting curve

      4 結(jié)束語

      針對(duì)采用傳統(tǒng)的模型進(jìn)行預(yù)測時(shí)一直存在預(yù)測結(jié)果不準(zhǔn)確、效果差的問題,提出基于最大Lyapunove指數(shù)分析的區(qū)域經(jīng)濟(jì)增長預(yù)測模型,定量預(yù)測金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長指數(shù)的影響.通過構(gòu)建金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的約束參量模型,對(duì)經(jīng)濟(jì)增長指數(shù)時(shí)間序列進(jìn)行分析,提取時(shí)間序列的最大Lyapunove特征,在分析不同經(jīng)濟(jì)增長統(tǒng)計(jì)區(qū)域的金融相關(guān)率樣本集合的基礎(chǔ)上,結(jié)合SVM進(jìn)行訓(xùn)練,實(shí)現(xiàn)區(qū)域經(jīng)濟(jì)增長的預(yù)測.實(shí)驗(yàn)以我國區(qū)域經(jīng)濟(jì)發(fā)展的八大區(qū)域?yàn)檠芯繉?duì)象,數(shù)據(jù)仿真分析得出,采用該方法能有效擬合金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的關(guān)系模型,實(shí)現(xiàn)對(duì)區(qū)域經(jīng)濟(jì)增長的準(zhǔn)確預(yù)測,精度較高,可靠性較好,展示較好的應(yīng)用價(jià)值.

      [1]STCHARLESP,BILODEAUG,BERGEVINR.Subsense:Auniversalchangedetectionmethodwithlocaladaptivesensitivity[J].IEEETransactionsonImageProcessing,2015,24(1):359-373.

      [2]MOGHADAMAA,KUMARM,RADHAH.Commonandinnovativevisuals:Asparsitymodelingframeworkforvideo[J].IEEETransactionsonImageProcessing,2014,23(9):4055-4069.

      [3]ALEXEB,DESELAERST,F(xiàn)ERRARIV.Measuringtheobjectnessofimagewindows[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2012,34(11):2189-2202.

      [4]ZHANGLuming,XIAYingjie,JIRangping,etal.Spatial-awareobject-levelsaliencypredictionbylearninggraphlethierarchies[J].IEEETransactionsonIndustrialElectronics,2015,12(2):1301-1308.

      [5]LIUZhi,ZOUWenbin,MEUROL.Saliencytree:Anovelsaliencydetectionframework[J].IEEETransactionsonImageProcessing,2014,23(5):1937-1952.

      [6]XULi,JIAJiaya,MATSUSHITAY.Motiondetailpreservingopticalflowestimation[J].IEEETransactionsonPatternAnalysisandMachineIntelligence,2012,34(9):1744-1757.

      [7]LIL,XIEW.Intuitionisticfuzzyjointprobabilisticdataassociationfilteranditsapplicationtomultitargettracking[J].SignalProcessing,2014,19(6):433-444.

      [8]SVENSSOND,ULMKEM,HAMMARSTRANDL.Multitargetsensorresolutionmodelandjointprobabilisticdataassociation[J].IEEETransactionsonAerospaceandElectronicSystems,2012,48(4):3418-3434.

      [9]PATCHARAMANEEPAKRONP,ARMOURS,DOUFEXIA.Coordinatedbeamformingschemesbasedonmodifiedsignaltoleakageplusnoiseratioprecodingdesigns[J].IETCommunications,2015,9(4):558-567.

      [10]KALEVAJ,TOLLIA,JUNTTIM.Weightedsumratemaximizationforinterferingbroadcastchannelviasuccessiveconvexapproximation[C]//IEEEGlobalCommunicationsConference,Anaheim,2012:3838-3843.

      [11]LIUH,DINGZG,F(xiàn)ANPZ,etal.Precodingdesignforinterferencesuppressioninmulticellmultiusernetworks[J].IETCommunications,2014,8(9):1534-1540.

      [12]HUANGX,WANGZ,LIY,etal.Designoffuzzystatefeedbackcontrollerforrobuststabilizationofuncertainfractional-orderchaoticsystems[J].JournaloftheFranklinInstitute,2015,31(12):5480-5493.

      [13] 周鐳,單鋒,劉鵬,等. 基于供應(yīng)鏈的企業(yè)信息化評(píng)價(jià)模型的建立[J]. 西安工程大學(xué)學(xué)報(bào),2015,29(6):772-779.

      ZHOULei,SHANFeng,LIUPeng,etal.Theestablishmentoftheenterpriseinformatizationevaluationmodelbasedonsupplychain[J].JournalofXi’anPolytechnicUniversity,2015,29(6):772-779.

      [14] 劉春濟(jì),馮學(xué)鋼,高靜. 中國旅游產(chǎn)業(yè)結(jié)構(gòu)變遷對(duì)旅游經(jīng)濟(jì)增長的影響[J]. 旅游學(xué)刊,2014,29(8):37-49.

      LIUChunji,F(xiàn)ENGXuegang,GAOJing.ChangesinthestructureofthetourismindustryandtheireffectonthegrowthofthetourismeconomyinChina[J].TourismTribune,2014,29(8):37-49.

      [15] 陸興華,陳平華. 基于定量遞歸聯(lián)合熵特征重構(gòu)的緩沖區(qū)流量預(yù)測算法[J]. 計(jì)算機(jī)科學(xué),2015,42(4):68-71.

      LUXinghua,CHENPinghua.Trafficpredictionalgorithminbufferbasedonrecurrencequantificationunionentropyfeaturereconstruction[J].ComputerScience,2015,42(4):68-71.

      [16]GLENTISGO,JAKOBSSONA,ANGELOPOULOSK.Block-recursiveIAA-basedspectralestimateswithmissingsamplesusingdatainterpolation[C]//InternationalConferenceonAcoustics,SpeechandSignalProcessing(ICASSP),F(xiàn)lorence,2014:350-354.

      [17]SUNW,SOHC,CHENY,etal.Approximatesubspacebasediterativeadaptiveapproachforfasttwo-dimensionalspectralestimation[J].IEEETransactionsonSignalProcessing,2014,62(12):3220-3231.

      [18] 芮蘭蘭,李欽銘. 基于組合模型的短時(shí)交通流量預(yù)測算法[J]. 電子與信息學(xué)報(bào),2016,38(5):1227-1233.

      RUILanlan,LIQinming.Short-termtrafficflowpredictionalgorithmbasedoncombinedmodel[J].JournalofElectronicsandInformationTechnology,2016,38(5):1227-1233.

      [19] 羅廣,陽許軍. 基于Web的推送技術(shù)在風(fēng)險(xiǎn)預(yù)警系統(tǒng)中的應(yīng)用[J]. 電子設(shè)計(jì)工程,2016,12(11):46-48.

      LUOGuang,YANGXujun.Web-basedpushserviceapplicationsinriskearlywarningsystem[J].InternationalElectronicElements,2016,12(11):46-48.

      [20]SVILEND,HARALDH.InformationrateofOFDM-basedopticalwirelesscommunicationsystemswithnonlineardistortion[J].JournalofLightwaveTechnology,2012,31(6):918-929.

      編輯、校對(duì):趙 放

      The impact of financial repression on regional economic growth in China

      CONG Yujia1,ZHU Jiaming2

      (1.School of Finance, Anhui University of Finance and Economics, Bengbu 233000,Anhui,China;2.Institute of Statistics and Applied Mathematics,Anhui University of Finance & Economics,Bengbu 233000,Anhui,China)

      Financial repression in China has significant positive correlation. By building financial repression and the mathematical model of the relationship of the regional economic growth in China, the reliability of the regional economic growth can be estimated, improving the macro-control ability of decision-making departments. With eight large area in China as the research object, the largest Lyapunove prediction model is proposed for regional economic growth index analysis and to quantitatively forecast financial inhibition effects on China's regional economic growth index. By building the financial repression constraint parameter model, the growth index of time series is analyzed to extract the largest Lyapunove features of time series.Based on the analysis of the financial related statistical region of the different economic growth, on the basis of sample collection, in combination with the SVM training, regional economic growth forecasts are realized.Simulation show that, this method can effectively fit model on the relationship between the regional economic growth in China financial repression, economic growth for the area of accurating prediction of high precision, good reliability, showing a good application value.

      financial repression; regional economy; Lyapunove index

      1674-649X(2016)04-0545-07

      10.13338/j.issn.1674-649x.2016.04.024

      2016-03-12

      朱家明(1973—),男,安徽省宿州市人,安徽財(cái)經(jīng)大學(xué)副教授,研究方向?yàn)閼?yīng)用數(shù)學(xué)與數(shù)學(xué)建模.

      E-mail:zhujm1973@163.com

      從雨佳,朱家明.金融抑制對(duì)我國區(qū)域經(jīng)濟(jì)增長的影響[J].西安工程大學(xué)學(xué)報(bào),2016,30(4):546-451.

      CONG Yujia,ZHU Jiaming.The impact of financial repression on regional economic growth in China[J].Journal of Xi′an Polytechnic University,2016,30(4):546-451.

      F 224

      A

      猜你喜歡
      參量金融預(yù)測
      無可預(yù)測
      黃河之聲(2022年10期)2022-09-27 13:59:46
      選修2-2期中考試預(yù)測卷(A卷)
      選修2-2期中考試預(yù)測卷(B卷)
      何方平:我與金融相伴25年
      金橋(2018年12期)2019-01-29 02:47:36
      君唯康的金融夢(mèng)
      不必預(yù)測未來,只需把握現(xiàn)在
      P2P金融解讀
      環(huán)形光的形成與參量的依賴關(guān)系
      含雙參量的p-拉普拉斯邊值問題的多重解
      鎖定放大技術(shù)在參量接收陣中的應(yīng)用
      靖州| 泗阳县| 旅游| 贡觉县| 永泰县| 蒙阴县| 西平县| 潼南县| 阿图什市| 新竹县| 彩票| 崇文区| 吴桥县| 丰镇市| 怀仁县| 曲松县| 吴川市| 乌兰县| 平山县| 昌吉市| 扶风县| 泉州市| 朝阳市| 芜湖市| 武陟县| 阳新县| 横峰县| 余庆县| 波密县| 耿马| 丹江口市| 雅安市| 大同县| 都昌县| 湖口县| 云浮市| 瑞金市| 德兴市| 孝感市| 安庆市| 陵水|