• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL FINITE ENERGY WEAK SOLUTION TO THE VISCOUS QUANTUM NAVIERSTOKES-LANDAU-LIFSHITZ-MAXWELL MODEL IN 2-DIMENSION?

    2016-11-29 01:18:21BolingGuoInstituteofAppliedPhysicsandComputationalMathChinaAcademyofEngineeringPhysicsBeijing100088PRChinaGuangwuWangGraduateSchoolofChinaAcademyofEngineeringPhysicsBeijing100088PRChina
    Annals of Applied Mathematics 2016年1期

    Boling Guo(Institute of Applied Physics and Computational Math.,China Academy of Engineering Physics,Beijing 100088,PR China)Guangwu Wang(Graduate School of China Academy of Engineering Physics,Beijing 100088,PR China)

    GLOBAL FINITE ENERGY WEAK SOLUTION TO THE VISCOUS QUANTUM NAVIERSTOKES-LANDAU-LIFSHITZ-MAXWELL MODEL IN 2-DIMENSION?

    Boling Guo
    (Institute of Applied Physics and Computational Math.,China Academy of Engineering Physics,Beijing 100088,PR China)
    Guangwu Wang?
    (Graduate School of China Academy of Engineering Physics,Beijing 100088,PR China)

    In this paper,we prove the global existence of the weak solution to the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell equations in two-dimension for large data.The main techniques are the Faedo-Galerkin approximation and weak compactness theory.

    global finite energy weak solution;viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system;Faedo-Galerkin method

    2000 Mathematics Subject Classification35A01;35D30;35M31; 35Q40;35Q61

    1 Introduction

    In studying the dispersive theory of magnetization of ferromagnets,we also consider the viscous quantum of a fluid on motion under the Maxwell electric-magnetic field,that is,the macroscopic motion of a fluid and the quantum effects and the interactions between electrons in microscopic will be considered similarly.

    In this paper we study the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system (QNSLLM) in (0,T) ×?:

    Roughly speaking,system (1.1) - (1.6) is a coupling between the viscous isentropic quantum Navier-Stokes equations and Landau-Lifshitz-Maxwell equations.This model can be used to describe the dispersive theory of magnetization of ferromagnets with the electromagnetic field.

    For system (1.1) - (1.6) ,we impose the following initial conditions

    which satisfy that

    Furthermore,we always assume thatare 2D-periodic.

    Firstly setting E=B=0,d is a constant vector,and using a effective velocity transformation[18]system (1.1) - (1.6) becomes the isentropic compressible quantum Navier-Stokes equation (IQCNS) .Setμ=0,we get the isentropic compressibleNavier-Stokes equation (ICNS) .For the Navier-Stokes equations with constant viscosity,the existence of global weak solution to ICNS with large initial data in Rnwas first obtained by P.L.Lions[22],whereFeireisl et al.[6,7]extended Lions’s work to the caseFor solutions with spherical symmetry,Jiang and Zhang[15]relaxed the restriction on γ in[22]to the case γ>1,and got the global existence of the weak solutions for N=2 or 3.Luo, Xin and Yang[24]proved the existence and regularity of weak solutions with density connecting to vacuum continuously in 1D.

    If ν=E=B=0,d is a constant vector,system (1.1) - (1.6) is called quantum hydrodynamic model (QHD) .In[24]J¨ungel and Li proved the existence of local-intime solutions and global-in-time solutions to (1.1) - (1.6) for the one-dimensional case with Dirichlet and Neumann boundary conditions for the particle density ρ.In[16], the authors gave the local-in-time existence of the solutions to equations (1.1) - (1.6) in the multi-dimensional torus for the irrotational velocity,and they also proved that local-in-time solutions exit globally in time and exponentially converge toward the corresponding steady-state under a“subsonic”type stability condition.In[14], the authors proved the local-in-time and global-in-time existence of the solutions to equations (1.1) - (1.6) in Rnfor rotational fluid.

    If E=B=0,d is a constant vector,then system (1.1) - (1.6) becomes the viscous quantum hydrodynamic model (vQHD) (see[10,17]for the derivation) .In[18], J¨ungel proved the existence of the global finite energy weak solution to the vQHD.

    If u=E=B=0 and ρ is a constant,then system (1.1) - (1.6) is Landau-Lifshitz model (LL) .In 1981,a group headed by Zhou and Guo proved the existence of the global weak solutions to the initial value problems and initial boundary value problems for Landau-Lifshitz equations from one dimension to multi-dimensions[27]. Alouges and Soyeur[1]proved similar results by penalty method in 1992.In 1993, Guo and Hong began the studies on two-dimensional Landau-Lifshitz equations,they established in[12]the relations between two-dimensional Landau-Lifshitz equations and harmonic maps and applied the approaches studying harmonic maps to get the global existence and uniqueness of partially regular weak solution.In this aspect, in 2004,Liu[23]proved that the“stationary”weak solutions to higher dimensional Landau-Lifshitz equations are partially regular.

    If d is a constant vector,system (1.1) - (1.6) is the viscous quantum Navier-Stokes-Maxwell model (QNSM) .Furthermore ifμ=ν=0,it becomes the Navier-Stokes-Maxwell model (NSM) .In[13],Hong et al.got the existence and uniqueness of global spherically symmetric classical solution to the initial boundary value problem to the system of NSM.Germain,Ibrahim and Masmoudi[9]proved the local and global well-posedness of incompressible NSM.

    If u=0 and ρ is constant,it obtains the Landau-Lifshitz-Maxwell model (LLM) . In[5],Ding,Guo,Li and Zeng obtained the existence of the global weak solution for the LLM for 3-dimensional case.The global existence of the unique smooth solution to the LLM of the ferromagnetic spin chain without disspation in one or two dimensions were established in[26].Ding and Guo[4]proved the existence of partial regular weak solution to LLM.

    In this paper,we are interested in the global existence of finite energy solutions to the initial problem of (1.1) - (1.6) in two-dimensional case.Besides difficulties pointed in[18],the main difficulty is the coupling of velocity,electric field,magnetic field and magnetization field.Therefore,the key in our analysis is to deal with convection term,the quantum term,the electric-magnetic term and the last two terms about the magnetization field in the momentum equation.Inspired by[18],we choose the test function of the form ρ? for the momentum equation,the magnetization field equation and the magnetic field equation.

    Next we state our main results.

    Theorem 1.1 (Global existence) Let T>0,P (ρ) =Aργ(γ≥1) . (1.8) holds. And ρ0,u0,d0,E0,B0are 2D-periodic functions.Furthermore E (ρ0,u0,d0,E0,B0) (see (4.2) for the definition of E (ρ,u,d,E,B) ) is finite.There exists a weak solution (ρ,u,d,E,B) to (1.1) - (1.6) with the regularity

    satisfying (1.1) pointwise and for all smooth test functions satisfying ? (·,T) =0,

    The product A:B means summation over both indices of matrices A and B.

    It is easy to see that (1.1) - (1.6) lacks compactness which we need to get the estimate of L2or H1-norm for u.To overcome this difficult,we first add the right hand of (1.2) a viscosity term δ?u+δu:

    Then we want to send the viscosity constant δ to 0.Finally,we obtain the desired weak solution to the original problem (1.1) - (1.6) .

    This paper is organized as follows.In Section 2,we give some preliminaries which will be used in the following section.We show the local existence of (1.1) - (1.6) in Section 3.In Section 4,we firstly prove the a-priori estimates and the existence of global weak solution to the viscosity system (1.20) - (1.25) ,then show the limit of δ→0.The global-in-time existence weak solutions can be achieved according to the Faedo-Galerkin method and weak compactness techniques.

    2 Preliminaries

    In this section we first give some notation.In this paper we denote C the constant dependent of N and δ.Lp([0,T];Lq(?) ) (p,q≥1) is a space whose element is the p-integrable respect to time variable and q-integrable respect to space variable function.Wk,pand Hsare the Sobolev spaces. (Hs)?is the dual space of Hs.

    Lemma 2.1 (Gagliardo-Nirenberg inequality) Let ??Rd(d≥1) be a bounded open set with??∈C0,1,m ∈N,1≤p,q,r≤∞.Then there exists a constant C>0 such that for all u∈Wm,p(?) ∩Lq(?) ,

    Next we give a weak compactness lemma which will be used in the following section.

    Lemma 2.2 (Aubin-Lions Lemma) Assume X?Y?Z are Banach spaces andThen the following immbedding are compact:

    3 Local Existence of Solutions

    In this section we will show the local existence of solutions to the viscosity system (1.20) - (1.25) by Faedo-Galerkin method.Let T>0,and {ωj} be an orthonormal basis of L2(?) which is also an orthogonal basis of H1(?) .Introduce the finite-dimensional space XN=span {ω1,···,ωN} ,n∈N.Denote the approximate solutions to problem (1.21) - (1.25) byin the following form

    where βj(t) ,γj(t) ,δj(t) ,ηj(t) ,ζj(t) (j=1,···,N,N=1,2,···) are 2-dimensional vector-valued functions.For some functions λi(t) ,and the norm of v in C0([0,T];XN) can be formulated as

    As a consequence,v can be bounded in C0([0,T];Ck(?) ) for any k∈N,and there exists a constant C>0 depending on k such that

    The approximate system is defined as follows.Let ρ∈C1([0,T];C3(?) ) be the classical solution to

    The maximum principle provides the lower and upper bounds ([15],Chapter 7.3)

    Next we wish to solve (1.20) - (1.25) on the space XN.To this end,for given,we are looking for functionssuch that

    To solve (3.4) - (3.7) ,we follow ([15],Chapter 7.3.3) and introduce the following family of operators,given a function

    These operators are symmetric and positive definite with the smallest eigenvalue

    Hence,since XNis finite-dimensional,the operators are invertible with

    for all ?1,?2∈L1(?) such that

    Now the integral equation (3.4) can be rephrased as an ordinary differential equation on the finite-dimensional space XN,

    when ρ=S1(u)

    Integrating (3.9) over (0,t) yields the following nonlinear equation:Since the operators S1and M are Lipschitz type, (3.10) can be solved by evoking the fixed point theorem of Banach on a short time interval[0,T′],where T′≤T, in the space C0([0,T];XN) .In fact,we have evenThen we can solve system (3.5) - (3.7) .Thus,there exists a unique local-in-time solution

    4 A Priori Estimates and Global Existence

    In this section,we will give some a-priori estimates.Using these estimates, we can show that the local-in-time solutionwhich are proved in Section 2 can be extended globally.In the case of not confusing,we omit the subscript N and superscript δ in this section.

    Theorem 4.1 Set the conditions in Theorem 1.1 to be hold.Then we have the following energy inequality:

    Then multiplying (1.21) by u,and integrating both sides of it by parts respectively in ?,we have

    Indeed we have the following fact:

    Multiplying (1.22) by?d+B,and integrating both sides of it by parts respectively in ?,we get

    here we use the following computation:

    We can easily have

    Combining (4.3) - (4.7) ,we can get

    The proof is completed.

    From Theorem 4.1,by Gronwall inequality,we can easily get the following estimates:

    Corollary 4.1 Set Theorem 4.1 to hold,then we have

    The energy inequality (4.1) and Corollary 4.1 allow us to conclude some estimates.

    Lemma 4.1 The following uniform estimate holds for some constant C>0,

    Proof The lemma follows form the energy estimate in Theorem 4.1.The inequality

    with κ2,was shown in[18],and the inequality

    was proved in[18],the proof is completed.

    We able to deduce more regularity from the H2bound for

    Lemma 4.2 (space regularity for ρ and ρu) The following uniform estimates hold for some constant C>0 not depending on N and δ:

    where p<2.

    Proof Since the space H2(?) embeds continuously into L∞(?) ,showing thatis bounded in L2([0,T];L∞(?) ) .Thus,in view of (4.11) , (4.12) ,is uniformly bounded in L2([0,T];L2(?) ) .By (4.9) and (4.18) ,is bounded inis bounded in L∞([0,T];L6(?) ) .This,together with (4.9) , implies that

    is uniformly bounded in L2([0,T];L3/2(?) ) ,which proves the first claim.

    For the second claim,we observe first that,by the Gagliardo-Nirenberg inequality in Lemma 2.1,with p=2γ/ (γ+1) and θ=1/2,

    is bounded in L2([0,T];Lp(?) ) which proves the second claim.

    Finally,the Gagliardo-Nirenberg inequality,with θ=3/ (4γ+3) and q=2 (4γ+ 3) /3

    shows that ρ is bounded in Lq/2([0,T];Lq/2(?) ) .This finishes the proof.

    From (4.16) we can get the estimate about

    Lemma 4.4 (Time regularity for ρ and ρu) The following uniform estimates hold for s>2,

    Proof By (4.20) , (4.21) ,we find that?tρ=?div (ρu) ?ν?ρ is uniformly bounded in L2([0,T];L3/2(?) ) ,which proves the first claim.

    The sequence ρu?u is bounded in L∞([0,T];L1(?) ) ;hence,div (ρu?u) is bounded in L∞([0,T]; (W1,∞(?) )?) ,because of the continuous embedding of Hs(?) into W1,∞(?) for s>2,and also in L∞([0,T]; (Hs(?) )?) .The estimate

    for all ?∈L4([0,T];W1,3(?) ) proves thatis uniformly bounded inIn view of (4.22) ,ργis bounded inFurthermore,by (4.20) ,? (ρu) is uniformly bounded in L2([0,T]; (W1,3(?) )?) ,and by (4.17) ,δ?u is bounded in L2([0,T]; (H1(?) )?) .Therefore,using Corollary 4.1 and Lemma 4.3,we get that

    is uniformly bounded in L4/3([0,T]; (Hs(?) )?) .The proof is completed.

    The L4([0,T];W1,4(?) ) bound (4.18) onprovides a uniform estimate for

    Lemma 4.5 (Time regularity forThe following estimate holds:

    Proof Dividing the mass equation (1.1) bygives

    The first term on the right-hand side is bounded in L2([0,T]; (H1(?) )?) by (4.11) and (4.12) .The remaining terms are uniformly bounded in L2([0,T];L2(?) ) ;see (4.11) , (4.12) , (4.17) .The proof is completed.

    Lemma 4.6 There is

    Proof Multiplying (1.3) by dt,and integrating by parts respect to x in ?,we have

    Here C1,C2,C3,C4are constants independent of N.Then integrating by parts respect to t in[0,T],using the Corollary 4.1 and Lemma 4.3 we get (4.27) .Thus we complete the proof of this lemma.

    Next we will show the limit of the Fadeo-Galerkin approximated solution.We perform first the limit N→∞,with δ>0 being fixed.The limit δ→0 is carriedout in the last part of this section.We consider both limits separately since the weak formulation (1.16) - (1.19) for the viscous quantum NSLLM equations is different from its approximation (3.1) and (3.4) - (3.7) .

    We conclude from the Aubin-Lions lemma,taking into account the regularity (4.21) and (4.24) for ρN,the regularity (4.18) and (4.26) forand the regularity (4.20) and (4.25) for ρNuN,that there exist subsequences of ρN,and ρNuN, which are not related,such that,for some function ρ and J,as N→∞,

    Here we have used that the embeddingare compact.The estimate (4.17) on uNprovides further the existence of a subsequence (not relabeled) such that,as N→∞,

    Then,since ρnuNconverges weakly to ρu in L1([0,T];L6(?) ) ,we infer that J=ρu.

    We are now in the position to let N→∞in the approximate system (3.1) and (3.4) - (3.7) with ρ=ρN,u=uN,d=dN,E=ENand B=BN.Clearly,the limit N→∞shows immediately that n solves

    Next we consider the weak formulation (3.4) term by term.The strong convergence of ρNuNin L2([0,T];L2(?) ) and the weak convergence of ρNin L2([0,T];L6(?) ) leads to

    Furthermore,in view of (4.21) (up to a subsequence) ,

    equals,for sufficiently smooth test functions,

    Similarly,using the a-priori estimates we can show that as N →∞,the limit of (dN,EN,BN) satisfies

    Finally,we will show the limit asbe a solution to (3.2) , (3.4) - (3.7) with the regularity proved in the previous.By employing the test function ρδ? in (3.4) (which is possible as long as the integrals are well defined) ,we obtain,according to

    The Aubin-Lions lemma and the regularity results from the previous allow us to extract subsequences (not relabeled) such that as δ→0,for some functions ρ and j,

    Estimate (4.11) , (4.12) and Fatou lemma yield

    This implies that J=0 in ρ=0.Then,when we define the limit velocity u:=J/ρBy (4.11) , (4.12) ,there exists a subsequence (not relabeled) such that

    for some function g.Hence,sinceconverges strongly towe infer thatconverges weakly to

    Now we are able to pass to the limit δ→0 in the weak formulation (4.32) term by term.The strong convergences (4.33) and (4.34) imply that

    The strong convergence of ρδuδimmediately gives

    Furthermore,we have

    It holds that r<6 since we have p>3.This implies that

    The almost everywhere convergence of ρδand thebound on ρδ(see (4.22) ) ,together with the fact that 4γ/3+1>γ+1,proves that

    Using the estimate (4.17) forwe obtain further,for smooth test functions,

    It remains to show the convergence of (ρδ)2div (uδ) uδ.To this end,we proceed similarly as in[11]and introduce the functionssatisfyingThen we estimate the low-density part of (ρδ)2div (uδδ) uδby

    where C>0 is independent of δ and α.We write

    As δ→0,the first term on the right-hand side converges strongly to div (Gα(ρ) ρu) in L1([0,T]; (H1(?) )?) since Gα(ρδ) converges strongly to Gα(ρ) in Lp([0,T];Lp(?) ) for any p<∞and ρδuδconverges strongly to ρu in L2([0,T];Lq(?) ) for any q<3. In view of (4.35) and (4.36) ,we infer the weak?convergenceThus,because of (4.33) ,

    Moreover,in view of the strong convergence of ρδuδto ρu in L2([0,T];Lq(?) ) for all q<3,we infer that

    For fixed α>0,the first integral converges to zero as δ→0.Furthermore,the last integral can be estimated byuniformly in δ ( (4.37) ) .For the second integral,we recall thatFurthermore, by the Gagliardo-Nirenberg inequality,the bounds of ρu in L2([0,T];W1,3/2(?) ) andThus,since

    As a consequence,the second integral converges to 0 as δ→0.Thus,in the limit δ→0, (4.39) can be made arbitrarily small,and hence,

    Here we will omit the rest term convergence about d,E,B,you can refer to[11].

    We have proved that (ρ,u,d,E,B) solves (1.20) - (1.25) for smooth initial data.Let (ρ0,u0,d0,E0,B0) be some finite-energy initial data,that is ρ0≥0 andbe smooth approximations satisfyingstrongly in H1(?) andstrongly in L3/2(?) .By the above proof,there exists a weak solutionwith initial datasatisfying all the above bounds.In particular,converges strongly in some spaces toand there exist uniform bounds forand forThus,up to subsequences,as δ→0,

    Note that a priori estimates in Section 4 are independent of D.By using the diagonal method and letting D→∞,we can obtain the global existence of weak solution to the Cauchy problem of system (1.1) - (1.6) and (1.7) .For simplicity,we do not state the theorem here.

    In the following work we will show the partial regularity of these weak solution to NSLLM.We will show that if the solution to (1.1) - (1.6) is smooth except finitely many singular point.

    References

    [1]F.Alouges and A.Soyeur,On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness,Nonlinear Anal.TMA,18 (1992) ,1071-1084.

    [2]D.Bresch,B.Desjardins and C.K.Lin,On some compressible fluid models:Korteweg,lubrication and shallow water systems,Comm.Partial Differential Equations, 28 (2003) ,1009-1037.

    [3]S.Brull and F.M′ehats,Derivation of viscous correction terms for the isothermal quantum Euler model,Z.Angew.Math.Mech.,90 (2010) ,219-230.

    [4]S.J.Ding and B.L.Guo,Existence of partial regularity weak solutions to Landau-Lifshitz-Maxwell equations,Journal of Differential Equations,244:10 (2008) ,2448-2472.

    [5]S.J.Ding,B.L.Guo,J.Y.Lin and M.Zeng,Global existence of weak solution for Landau-Lifshitz-Maxwell equtions,Discrete and Continuous Dynamical Systems-Series A,17:4 (2007) ,867-890.

    [6]E.Feireisl,Dynamics of Viscous Compressible Fluids,Oxford University Press,Oxford, 2004.

    [7]E.Feireisl,A.Novotn′y and H.Petzeltov′a,On the existence of globally defined weak solutions to the Navier-Stokes equations,J.Math.Fluid Mech.,3 (2001) ,358-392.

    [8]C.Gardner,Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device,ⅠEEE Trans.El.Dev.,38 (1991) ,392-398.

    [9]P.Germain,S.Ibrahim and N.Masmoudi,Well-posedness of the Navier-Stokes-Maxwell equations,Proceedings of the Royal Society of Edinburgh,144:1 (2014) ,71-86.

    [10]M.P.Gualdani and A.J¨ungel,Analysis of the viscous quantum hydrodynamic equations for semiconductors,Eur.J.Appl.Math.,15 (2004) ,577-595.

    [11]B.L.Guo and S.J.Ding,Landau-Lifshitz Equations,Word Science:Singapore,2008.

    [12]B.L.Guo and M.C.Hong,The Landau-Lifshitz equations of the ferromagnetic spin chain and harmonic maps,Calc.Var.,1 (1993) ,311-334.

    [13]G.Y.Hong,X.F.Hou,H.Y.Peng and C.J.Zhu,Global spherically symmetric classical solution to the Navier-Stokes-Mawell system with large initial data and vacuum, Science China Mathematics,57:12 (2014) ,2463-2484.

    [14]F.M.Huang,H.L.Li,A.Matsumura and S.Odanaka,Well-posedness and stability of multi-dimensional quantum hydrodynamics for semiconductors in R3,Series in Contemporary Applied Mathematics CAM 15,High Education Press,Beijing,2010.

    [15]S.Jiang and P.Zhang,Global sphereically symmetric solutions of the compressible isentropic Navier-Stokes equations,Comm.Math.Phys.,215 (2001) ,559-581.

    [16]H.L.Li and P.Marcati,Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors,Comm.Math.Phys.,245 (2004) ,215-247.

    [17]A.J¨ungel,A Steady-state quantum Euler-Poisson system for potential flows,Commun. Math.Phys.,194 (1998) ,463-479.

    [18]A.J¨ungel,Global weak solutions to cmpressible Navier-Stokes equations for quantum fluids,SⅠAM J.Appl.Math.,42:3 (2010) ,1025-1045.

    [19]A.J¨ungel,Quasi-hydrodynamic Semiconductor Equations,Birkh¨ause,Basel,2001.

    [20]L.D.Landau and E.M.Lifshitz,On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,Phys.Z.Sovietunion.,8 (1935) ,153-169.

    [21]Z.Lei,D.Li and X.Y.Zhang,Remarks of global wellposedness of liquid crystal flows and heat flow of harmonic maps in two dimensions,Proceedings of American Mathemathical Society,142:11 (2012) ,3801-3810.

    [22]P.L.Lions,Mathematical Topic in Fluid Mechanics,Vol.2 Compressible models,in; Oxford Lectures Series in Mathematics and its Applications,Vol.10,Oxford Science Publications,The Clarendon Press,Oxford University Press,New York,1998.

    [23]X.Liu,Partial regularity for Landau-Lifshitz system of ferromagnetic spin chain,Calc. Var.,20 (2004) ,153-173.

    [24]T.Luo,Z.P.Xin and T.Yang,Interface behavior of compressible Navier-Stokes equtions with vacuum,SⅠAM J.Math.Anal.,31 (2000) ,1175-1191.

    [25]P.M.Markowich,C.Ringhoffer,and C.Schmeiser,Semiconductor Equations,Wien, Springer,1990.

    [26]F.Q.Su and B.L.Guo,The global smooth solution for Landau-Lifshitz-Maxwell equation without dissipaton,Journal of Partial Differential Equations,3 (1998) ,193-208.

    [27]Y.L.Zhou,H.S.Sun,and B.L.Guo,Existence of weak solution for boundary problems of systems of ferromagnetic chain,Science in China A,27 (1981) ,779-811.

    (edited by Liangwei Huang)

    ?Manuscript March 3,2016

    ?.E-mail:yunxianwgw@163.com

    天堂动漫精品| 精品午夜福利视频在线观看一区| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费| 久久久成人免费电影| 噜噜噜噜噜久久久久久91| 真人一进一出gif抽搐免费| 亚洲第一电影网av| 免费av不卡在线播放| 亚洲 国产 在线| 一二三四社区在线视频社区8| 亚洲精品久久国产高清桃花| av黄色大香蕉| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 丝袜美腿在线中文| 亚洲国产中文字幕在线视频| 欧美日韩精品网址| 色综合亚洲欧美另类图片| 欧美性猛交黑人性爽| 一级作爱视频免费观看| 99精品在免费线老司机午夜| 三级国产精品欧美在线观看| 色综合亚洲欧美另类图片| av视频在线观看入口| 精品熟女少妇八av免费久了| 国产精品电影一区二区三区| 中文字幕av成人在线电影| 免费高清视频大片| 久99久视频精品免费| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 丰满人妻一区二区三区视频av | 国产精品永久免费网站| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 欧美成狂野欧美在线观看| 精品久久久久久久久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲色图av天堂| 久久精品91蜜桃| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久com| 亚洲一区高清亚洲精品| 精品99又大又爽又粗少妇毛片 | 久久久久久久午夜电影| 长腿黑丝高跟| 成人无遮挡网站| 很黄的视频免费| 国内精品久久久久久久电影| 中文字幕精品亚洲无线码一区| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 搡老熟女国产l中国老女人| 内射极品少妇av片p| 国产黄片美女视频| 免费无遮挡裸体视频| 午夜影院日韩av| 国产精品香港三级国产av潘金莲| 哪里可以看免费的av片| 久久久久久国产a免费观看| 一本久久中文字幕| 长腿黑丝高跟| 欧美日韩一级在线毛片| 亚洲人成网站高清观看| 此物有八面人人有两片| 我要搜黄色片| 亚洲第一电影网av| 国产精品综合久久久久久久免费| or卡值多少钱| 亚洲av电影不卡..在线观看| 99视频精品全部免费 在线| 丰满的人妻完整版| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 91久久精品电影网| 嫩草影院精品99| 国内精品久久久久久久电影| 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| xxx96com| 欧美+亚洲+日韩+国产| 成人特级av手机在线观看| 亚洲人成伊人成综合网2020| 欧美精品啪啪一区二区三区| 欧美午夜高清在线| 操出白浆在线播放| 亚洲最大成人中文| 国产高清激情床上av| 亚洲无线在线观看| 18禁美女被吸乳视频| 亚洲无线观看免费| 国产三级中文精品| 免费高清视频大片| 国产精品久久视频播放| 在线观看午夜福利视频| tocl精华| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色| 欧美国产日韩亚洲一区| 757午夜福利合集在线观看| 动漫黄色视频在线观看| 欧美日本视频| 欧美激情久久久久久爽电影| 神马国产精品三级电影在线观看| 美女黄网站色视频| 中亚洲国语对白在线视频| 国产欧美日韩一区二区精品| 夜夜躁狠狠躁天天躁| 老司机在亚洲福利影院| 村上凉子中文字幕在线| 99在线人妻在线中文字幕| 最近最新免费中文字幕在线| 美女高潮的动态| 中文资源天堂在线| 老熟妇仑乱视频hdxx| 波多野结衣高清作品| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 九色国产91popny在线| 亚洲天堂国产精品一区在线| 99久久99久久久精品蜜桃| 国产高清视频在线播放一区| 久久精品影院6| а√天堂www在线а√下载| 久99久视频精品免费| 精品午夜福利视频在线观看一区| 国产色婷婷99| 欧美激情久久久久久爽电影| av在线蜜桃| 久久99热这里只有精品18| a级毛片a级免费在线| 色精品久久人妻99蜜桃| 国产视频内射| 午夜视频国产福利| 全区人妻精品视频| 中文字幕人成人乱码亚洲影| 色综合站精品国产| 中文字幕精品亚洲无线码一区| 99国产精品一区二区三区| 国产主播在线观看一区二区| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 国产精品三级大全| 精品久久久久久成人av| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 日日夜夜操网爽| 免费看a级黄色片| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美 | 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲av成人av| 精品午夜福利视频在线观看一区| 日韩免费av在线播放| 国产精品女同一区二区软件 | 成人鲁丝片一二三区免费| 国产精品98久久久久久宅男小说| 综合色av麻豆| 国产高清videossex| 一进一出抽搐gif免费好疼| 日韩欧美免费精品| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 色视频www国产| av福利片在线观看| 色综合站精品国产| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 99riav亚洲国产免费| www国产在线视频色| 可以在线观看的亚洲视频| 禁无遮挡网站| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 亚洲电影在线观看av| 国产精品一及| 欧美zozozo另类| 99热这里只有精品一区| 亚洲成av人片在线播放无| 亚洲精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 国产精品嫩草影院av在线观看 | 国产野战对白在线观看| 丰满乱子伦码专区| 黄片大片在线免费观看| 国产精品永久免费网站| 国内精品一区二区在线观看| 亚洲自拍偷在线| 十八禁网站免费在线| 欧美成人一区二区免费高清观看| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 日韩欧美国产一区二区入口| 19禁男女啪啪无遮挡网站| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 欧美区成人在线视频| 久久精品国产亚洲av香蕉五月| 91在线精品国自产拍蜜月 | 99国产极品粉嫩在线观看| 久久香蕉国产精品| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| h日本视频在线播放| avwww免费| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 最新中文字幕久久久久| 免费在线观看亚洲国产| 国产免费一级a男人的天堂| 制服丝袜大香蕉在线| 亚洲av成人精品一区久久| 成人三级黄色视频| 一级黄片播放器| 婷婷精品国产亚洲av| 午夜福利免费观看在线| xxx96com| 欧美在线黄色| 国产精品嫩草影院av在线观看 | 特大巨黑吊av在线直播| 亚洲 国产 在线| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 欧洲精品卡2卡3卡4卡5卡区| 黄色日韩在线| 日韩欧美国产一区二区入口| 久久久久久国产a免费观看| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 波野结衣二区三区在线 | 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 日日夜夜操网爽| 91字幕亚洲| 久久久国产精品麻豆| 在线看三级毛片| 欧美+日韩+精品| 在线视频色国产色| 久久精品国产综合久久久| 国产高潮美女av| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 黄色女人牲交| 精品久久久久久成人av| 成人三级黄色视频| 日本黄色片子视频| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 国产探花极品一区二区| 少妇的逼好多水| 国产精品久久久久久久久免 | 国产一区二区三区视频了| 日韩av在线大香蕉| 亚洲午夜理论影院| 19禁男女啪啪无遮挡网站| 中文字幕人妻熟人妻熟丝袜美 | 国产成人av激情在线播放| av国产免费在线观看| 黄色片一级片一级黄色片| 小说图片视频综合网站| 久久久久久久精品吃奶| 国产免费男女视频| 18禁在线播放成人免费| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站| 午夜福利成人在线免费观看| 韩国av一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 99久久成人亚洲精品观看| 久久香蕉精品热| 色吧在线观看| 久久久久九九精品影院| 国产色婷婷99| 国产男靠女视频免费网站| 18禁美女被吸乳视频| 国产av一区在线观看免费| 国内精品美女久久久久久| 女生性感内裤真人,穿戴方法视频| 免费在线观看成人毛片| 国产精品一区二区三区四区免费观看 | 国产免费一级a男人的天堂| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 国产极品精品免费视频能看的| 九九热线精品视视频播放| 女人被狂操c到高潮| 精品电影一区二区在线| 最近在线观看免费完整版| 国产精品亚洲一级av第二区| 日韩欧美精品免费久久 | 男女下面进入的视频免费午夜| 欧美丝袜亚洲另类 | 国产老妇女一区| 日韩av在线大香蕉| 老司机在亚洲福利影院| 欧美成人a在线观看| 欧美+日韩+精品| 乱人视频在线观看| 国产亚洲精品一区二区www| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 熟女电影av网| 男女下面进入的视频免费午夜| 国产精品98久久久久久宅男小说| 女人高潮潮喷娇喘18禁视频| 91久久精品国产一区二区成人 | 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 国产淫片久久久久久久久 | xxx96com| 国产三级在线视频| 久久久久九九精品影院| 9191精品国产免费久久| 99久久精品热视频| 一级黄片播放器| 精品不卡国产一区二区三区| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 91字幕亚洲| 日韩有码中文字幕| 亚洲精品亚洲一区二区| xxxwww97欧美| 亚洲自拍偷在线| 成年免费大片在线观看| 亚洲国产精品sss在线观看| 成人鲁丝片一二三区免费| 免费看a级黄色片| 免费在线观看成人毛片| 亚洲美女黄片视频| 91麻豆av在线| 久久这里只有精品中国| 国产精品 欧美亚洲| 搡女人真爽免费视频火全软件 | 91av网一区二区| 女人被狂操c到高潮| 午夜影院日韩av| 桃色一区二区三区在线观看| 国产成人系列免费观看| 午夜福利成人在线免费观看| 男女做爰动态图高潮gif福利片| 亚洲av不卡在线观看| 国产真实伦视频高清在线观看 | 一进一出抽搐动态| av天堂在线播放| 一级黄片播放器| 人人妻,人人澡人人爽秒播| 国产中年淑女户外野战色| 精品电影一区二区在线| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 欧美中文日本在线观看视频| 国产精品香港三级国产av潘金莲| 国产高清videossex| 色吧在线观看| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 免费在线观看日本一区| 成人特级av手机在线观看| 在线国产一区二区在线| 我要搜黄色片| 成年版毛片免费区| 午夜免费激情av| 午夜福利在线观看免费完整高清在 | 熟女人妻精品中文字幕| 亚洲真实伦在线观看| e午夜精品久久久久久久| 国产av在哪里看| 女人被狂操c到高潮| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 久久这里只有精品中国| 级片在线观看| 国产av不卡久久| 天堂av国产一区二区熟女人妻| 综合色av麻豆| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月 | 久久久国产成人免费| 老熟妇仑乱视频hdxx| 三级毛片av免费| av中文乱码字幕在线| 女人被狂操c到高潮| av国产免费在线观看| 51国产日韩欧美| 亚洲人成网站在线播放欧美日韩| 1024手机看黄色片| 国产免费男女视频| 欧美黑人巨大hd| 波野结衣二区三区在线 | 成年版毛片免费区| 男插女下体视频免费在线播放| 欧美区成人在线视频| 午夜精品在线福利| 日韩人妻高清精品专区| 欧美黄色淫秽网站| 国产精品香港三级国产av潘金莲| 久久人妻av系列| 少妇的逼好多水| 午夜日韩欧美国产| 国产高清有码在线观看视频| 国产精品亚洲一级av第二区| 在线观看日韩欧美| 亚洲成人精品中文字幕电影| 久久伊人香网站| 97超视频在线观看视频| 99热精品在线国产| 国产精品女同一区二区软件 | 欧美乱色亚洲激情| 最近最新免费中文字幕在线| 人妻夜夜爽99麻豆av| 亚洲人成电影免费在线| 此物有八面人人有两片| 免费看日本二区| 久久这里只有精品中国| 一级毛片女人18水好多| 国产精品女同一区二区软件 | 又黄又粗又硬又大视频| 99久久无色码亚洲精品果冻| 日本黄色视频三级网站网址| 午夜激情欧美在线| 3wmmmm亚洲av在线观看| 一本精品99久久精品77| 色综合站精品国产| 岛国在线观看网站| 久久九九热精品免费| 国产高潮美女av| 成年免费大片在线观看| 久久99热这里只有精品18| 午夜精品一区二区三区免费看| 久久香蕉国产精品| 亚洲欧美日韩东京热| 午夜老司机福利剧场| 亚洲 欧美 日韩 在线 免费| 又黄又粗又硬又大视频| 国产精品久久久久久人妻精品电影| 又紧又爽又黄一区二区| 久久久国产成人免费| 亚洲真实伦在线观看| 精品久久久久久成人av| 免费高清视频大片| 国产免费男女视频| 久久久久九九精品影院| 神马国产精品三级电影在线观看| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 国产亚洲精品一区二区www| 国产精品久久久久久人妻精品电影| 亚洲电影在线观看av| 午夜激情欧美在线| 最新中文字幕久久久久| 怎么达到女性高潮| 欧美日韩乱码在线| 国产亚洲精品久久久久久毛片| 精品一区二区三区视频在线 | 中文在线观看免费www的网站| 国产av不卡久久| 国产成+人综合+亚洲专区| 欧美在线一区亚洲| 成人av一区二区三区在线看| 蜜桃亚洲精品一区二区三区| 国产精品一及| 9191精品国产免费久久| 国产精品久久视频播放| 伊人久久大香线蕉亚洲五| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 小蜜桃在线观看免费完整版高清| 亚洲黑人精品在线| 老熟妇仑乱视频hdxx| 国产v大片淫在线免费观看| 一进一出好大好爽视频| 亚洲av中文字字幕乱码综合| 69av精品久久久久久| 一级黄色大片毛片| 中国美女看黄片| 精品不卡国产一区二区三区| 免费看十八禁软件| 熟女电影av网| 超碰av人人做人人爽久久 | 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 日本黄色视频三级网站网址| 中国美女看黄片| 中文亚洲av片在线观看爽| 亚洲精品久久国产高清桃花| 一级黄色大片毛片| 最后的刺客免费高清国语| 欧美日韩综合久久久久久 | 变态另类成人亚洲欧美熟女| 国模一区二区三区四区视频| 亚洲中文字幕日韩| a在线观看视频网站| 亚洲中文字幕日韩| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 1024手机看黄色片| 国产爱豆传媒在线观看| 成人av在线播放网站| 91字幕亚洲| 99久久精品国产亚洲精品| 日本与韩国留学比较| 99久国产av精品| 日本 av在线| 尤物成人国产欧美一区二区三区| 综合色av麻豆| 在线观看免费视频日本深夜| 两人在一起打扑克的视频| 国产免费av片在线观看野外av| 少妇的逼水好多| 啪啪无遮挡十八禁网站| 中文字幕av成人在线电影| 国产精品久久电影中文字幕| 亚洲av日韩精品久久久久久密| 亚洲av二区三区四区| 欧美日韩福利视频一区二区| 亚洲美女视频黄频| 麻豆一二三区av精品| 亚洲五月天丁香| 欧美又色又爽又黄视频| 国产综合懂色| 俄罗斯特黄特色一大片| 国产极品精品免费视频能看的| 亚洲精品456在线播放app | 国产蜜桃级精品一区二区三区| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说| 99国产综合亚洲精品| 夜夜看夜夜爽夜夜摸| 性欧美人与动物交配| 国产高清视频在线观看网站| 久久精品国产亚洲av涩爱 | 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 精品人妻1区二区| 天堂影院成人在线观看| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 色综合欧美亚洲国产小说| 国产成人福利小说| av福利片在线观看| 国产97色在线日韩免费| 精品乱码久久久久久99久播| 伊人久久精品亚洲午夜| 在线观看免费午夜福利视频| www.色视频.com| 香蕉久久夜色| 国产欧美日韩一区二区精品| 国产主播在线观看一区二区| 在线播放无遮挡| 亚洲成av人片免费观看| 在线观看一区二区三区| 真人做人爱边吃奶动态| 性色avwww在线观看| 亚洲国产精品999在线| 窝窝影院91人妻| 91久久精品国产一区二区成人 | 别揉我奶头~嗯~啊~动态视频| 国产主播在线观看一区二区| 国产亚洲精品av在线| 成年人黄色毛片网站| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| 久久亚洲真实| 日本与韩国留学比较| 国产探花在线观看一区二区| 精品久久久久久久末码| 精品人妻1区二区| 欧美一级a爱片免费观看看| 日本免费a在线| 日韩免费av在线播放| 日韩欧美国产在线观看| 日韩欧美免费精品| 欧美一区二区精品小视频在线| 亚洲第一电影网av| 午夜亚洲福利在线播放| 日本免费一区二区三区高清不卡| 欧美国产日韩亚洲一区| 少妇裸体淫交视频免费看高清| 欧美一区二区精品小视频在线| 级片在线观看| 最近最新中文字幕大全免费视频| 日韩精品青青久久久久久| 久久久久久久亚洲中文字幕 | 99久久成人亚洲精品观看| 天美传媒精品一区二区| 亚洲 国产 在线| 99热这里只有是精品50| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲人成网站在线播| 免费高清视频大片| 国产精品99久久久久久久久| 午夜精品久久久久久毛片777| 亚洲乱码一区二区免费版|