• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    2016-11-28 09:36:38路小彬肖守軍
    無機(jī)化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:代位單晶硅南京大學(xué)

    路小彬 肖守軍

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    路小彬肖守軍*

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    建立了室溫下使用多次透射反射紅外光譜法(MTR-IR)測量單晶硅中間隙氧和代位碳含量的新紅外光譜吸收方法,在理論和實驗上證明了MTR-IR優(yōu)于常規(guī)使用的單次垂直透射紅外(IR)吸收測量方法。與IR法相比較,MTR-IR法的優(yōu)點為:(1)間隙氧在1 107 cm-1處和代位碳在605 cm-1處的吸收峰與MTR-IR法中紅外光透過硅片的的次數(shù)N(6~12)成線性增加的正比例關(guān)系,因此單晶硅中間隙氧和代位碳含量的檢測限至少比IR法低一個數(shù)量級;(2)MTR-IR法測量薄硅片如0.2 mm的厚度時產(chǎn)生的干涉條紋強(qiáng)度是單次垂直透射紅外吸收法(IR)的1/23、是單次Brewster角透射紅外吸收法的1/11;(3)單次垂直透射紅外吸收法(IR)1次只測量樣品上的1個點,MTR-IR法則在更長的樣品上1次測量多個樣品點,每次測量更具有代表性。理論計算和實驗結(jié)果都證實了MTR-IR吸收法測量晶體硅中間隙氧和代位碳雜質(zhì)含量的高靈敏度、可靠性和重復(fù)性。

    多次透射反射;紅外;間隙氧;代位碳

    0Introduction

    Silicon-basedsemiconductorindustry,asa miracle in the human beings history,continues to develop at considerably high growth rates already for half a century.Recently,solar energy has been recognized in common as an alternative sustainable energy source due to the increased awareness of the global energy crisis[1].Silicon solar cells have become the most important photovoltaic products owing to the sophisticatedmanufacturingtechnologyandthe reliable cell quality.The quality control of silicon materials is crucial to both semiconductor and solar cell industries of silicon.During the Czochralski(CZ) procedureingrowingsiliconsinglecrystalsfor semiconductor and photovoltaic industry,oxygen and carbon are incorporated into the molten silicon to different extents from the quartz crucibles and the graphite heaters.As oxygen atoms can find sites within the lattice structure among silicon atoms, interstitial oxygen(Oi)appears.Moreover,carbon atoms occupy positions generally taken by silicon atoms in the lattice structure,and this kind of impurity is defined as substitutional carbon(Cs)[1-3].

    Interstitial oxygen and substitutional carbon are the main forms of oxygen and carbon impurities existinginsilicon.Theirdifferentlevelscause different physical and electrical effects in silicon, whichhavebeenextensivelyinvestigatedand correlated[4-6].Although Oi in suitable concentrations possesses an advantage to enhance the mechanical strength of silicon because of its nailing for stretching ofdislocationinthesiliconlattice,higher concentrations will result in electrically active defects that decrease the performance of the devices.Thus a gettering technique has been developed to decrease Oi and avoid defects during the silicon crystal growth procedure.High content of Cs affects the way Oi nucleates and precipitates,as well as resulting in softening and breakdown of electronic components[7-10]. Consequently,to control the silicon quality for high performance devices,it is absolutely necessary to monitor the content of Oi and Cs in silicon wafers more accurately and sensitively.

    Varioustechniqueshavebeenappliedto determine the content of Oi and Cs in bulk silicon. Thesetechniquesconsistofgasfusionanalysis, secondary ion mass spectrometry,charged particle activation analysis and neutron activation analysis etc.,all of which are destructive,costly and time consuming[1].In addition,the above methods measure the total content of elemental oxygen and carbon, including Oi and Cs and other forms of oxygen and carbon.Thus they are not specific for measuring the concentration of Oi(atoms per cm3,abbreviated as cOi, cm-3)and of Cs(atoms per cm3,abbreviated as cCs, cm-3).By contrast,infrared analysis is specific to cOiand cCsin silicon.Silicon atoms form bonds with the adjacent oxygen atoms(Si-O-Si)and carbon atoms(Si-C)in the lattice structure[11-13].The interstitial oxygen is in the form of Si-O-Si,giving three vibration peaks centered at 1 107 cm-1(strong),513 cm-1(medium) and 1 718 cm-1(weak)respectively.Among the three bands,the strongest one at 1 107 cm-1is usually used to determine cOi[14-16].The substitutional carbon in the form of Si-C gives a vibration band at 605 cm-1. However the Si-C band overlaps with the strong silicon lattice vibration(Si-Si)at 605 cm-1,which renders the measurement of cCsdelicate.The amount of light absorbed by Si-O-Si and Si-C is proportional to the concentration of atoms forming the bonds.Thus their corresponding infrared bands are measured and manipulated to quantitate cOiand cCsrespectively.The calculation procedure is composed of subtraction of a reference(free of Oi and Cs)absorption band from a samples band,and subsequently calculation of cOiand cCsusing the following formulae generally.

    A=αbα=εc

    where A is the measured absorbance;ε is the absorption coefficient of a particular bond,cm2;b is the thickness of the sample,cm;c is the concentration of the impurity,cm-3.

    The IR method for the levels of Oi and Cs can be carried out at ambient or low temperature.Although the latter is more accurate than the former,it is costly and time consuming to handle the measurement at thecryogenic temperature.Furthermore,the reflection loss of infrared light at both cryostat windows outweighs its advantages[17-20].

    The room temperature IR method for cOiand cCsmeasurements is most commonly used in industry because it is easy and simple to operate.Generally the presentlyacceptedstandardmethodusedin industry for cOiand cCsmeasurements is restricted to a silicon slice with a thickness of 2 mm and a diameter of the infrared beam by a one-time perpendicular transmission of the infrared beam(we name it“conventional IR”).The detection limits of cOiand cCsfor a 2.0 mm thick single crystalline silicon are 1×1016and 5×1015cm-3respectively[21-22].The above quantitative analysis meets challenges in practice such as:1) measurement errors become larger when cOiand cCsreachtheirowndetectionlimits,2)interference fringes from thin wafers below 0.3 mm thickness interferethetargetbandsignal,3)thesingle transmission measurement approach in a spot provides a localized spectrum with poor specimen statistics, compared to the multi-spot data collection in MTR-IR. Our newly developed MTR-IR(Scheme 1)provides an excellent quantitative approach for analysis of cOiand cCs,duetoitsuptooneorderofmagnitude enhancement of infrared absorption signals on the samesiliconslicefromtheconventionalIR measurement[23-26].In this letter,we applied the MTRIR spectroscopy in analysis of cOiand cCsof 0.45 mm thick silicon wafers.Our MTR-IR method greatly improves the measurement sensitivity and accuracy, for example,reaching detection limits of cOiat 1×1015cm-3and cCsat 5×1014cm-3for the standard silicon specimens with a 2.0 mm thickness,which is one order of a magnitude lower than from the standard method.MTR-IRalsoattenuatestheinterference fringes of thin wafers greatly,and advances the representativeness of data collections.

    Scheme 1Scheme of the MTR-IR optical path

    1 Experimental

    1.1Substrates

    Double-side-polished and〈100〉oriented n-type silicon wafers(B doped,resistivity of 15 Ω·cm(CZ) and 3 000 Ω·cm(FZ)respectively,0.45 mm thick, from Shanghai Junhe Electronic Materials Co.Ltd., China)were cut into rectangular shapes(16 mm×50 mm)for infrared analysis.CZ silicon wafers were used as samples and FZ as reference to measure the impurity concentrations of Oi and Cs respectively.

    1.2Wafer cleaning

    Siliconwaferswerecleanedwith“piranha solution”(concentrated H2SO4/30%H2O2,3∶1,V/V)for 4 h(caution:piranha solution reacts violently with organic materials and should be handled with great care)to remove organic pollutants,followed by boiling in the mixture of NH3·H2O/H2O/H2O2(1∶1∶1,V∶V∶V) for 30 min,then cooling to room temperature,rinsing with water,and storing in water.Silicon samples were immersed in 1%HF for 5 min to eliminate the native passivation silicon oxide layer,and dried with a stream of nitrogen just before the measurement.

    1.3Measurement

    The optical setup was designed to adapt to any commercial FTIR spectrometers,which is Bruker 80v FTIR,in our case.MTR accessory with a Brewster incident angle of 74°was used.Unless specified,a DTGS detector and scan times of 100 at 4 cm-1resolutionwereusedformeasurementoverthewavenumber range from 400 to 4 000 cm-1.

    The silicon sample was inserted between the two Aumirrors,withoneendofthesiliconslice protruding about 5 mm out of the incident spot,in order to make sure that the first incidence shot was on the silicon surface.The two guiding mirrors can be moved back and forth to get the maximal luminous flux in the DTGS detector.The incident angle was controlled at 74°by a micro-adjuster with a minimal angle scale of 0.225.

    The whole measurement procedure was performed according to ASTM F 1188 and ASTM F 1391[21-22,30]. Eight random samples from different batches were used.Each sample was measured successively 4 times by MTR and IR by slightly relocating the Si wafer each time in order to measure different sampling points.Therefore for each sample,4 different sampling points were measured by IR,whereas 40 different sampling points measured by MTR-IR if N equals 10. 1.4Theory/calculation

    1.4.1Comparisonofcomputationmodelsfor

    conventional IR and MTR-IR

    1.4.1.1Conventional IR method

    In the conventional IR method,the normal incident light passes a Si wafer(for convenience,a slightly oblique incidence is drawn in Fig.1),the transmittance canbeexpressedasinEq.(1)and(2)[21-22].

    where T is the transmittance of normal incidence, %;R is reflectivity;n is refractive index;σ is wavenumber,cm-1;ψ is the phase change due to the interfering multiple reflections on the boundaries of the sample.

    1.4.1.2Brewster angle single incidence

    The expression of TBfor the single Brewster incidence refers to Eq.(3)[29].

    Fig.1 Light path of computation model for IR

    where TBis the transmittance of the Brewster angle single transmission,%;Rsand Rpindicate the reflectance of s-and p-polarization respectively;the first(Rp=0)and the second term(Rshas a value)in the formula represent transmittance energy of ppolarization and s-polarization respectively,because the total transmittance energy equals the sum of ppolarization and s-polarization(p-or s-polarization holds 1/2 of the original light energy);the phase change introduced by the interfering multiple reflections on the boundaries of a silicon is considered.

    1.4.1.3MTR method[27]

    The light path of the computation model for MTR-IR refers to Scheme 1.Comparing Scheme 1 to Fig.2,we observed that two gold mirrors enforce the light transmit through the silicon slice N times and simultaneously taking away the message of oxygen and carbon of the silicon sample.The optical path in the MTR-IR setup of Scheme 1 is N times of bBat theBrewster incidence.For simplicity,only the main light path is drawn in Scheme 1 with N=6,all other light paths by multiple reflections in the MTR setup are ignored.The transmittance for MTR-IR(TMTR)is deduced as follows(See supporting information for details of derivation of the formula of MTR-IR):

    Fig.2 Light path of the computation model for Brewster angle single transmission

    Fig.3 Comparison of Oi and Cs spectra for MTR-IR and conventional IR

    where TMTRis the transmittance of MTR,%;RAuis the reflectivity of gold;bMTRis the optical path through a silicon sample in the MTR-IR measurement,cm. 1.4.2Theory of signal enhancement of MTR-IR

    Presently,theconventionalIRmethodfor measurement of cOiand cCsis to place a 2 mm thick single crystalline silicon slice normally(or within the margin of error of a slightly oblique angle≤10°)in the light path.The sampling length equals to the thickness of the slice.The illuminated area is a circle with a diameter of the light spot,so the resulting cOiand cCsjust represent the impurities within a cylinder with a diameter of the light spot(depending on the aperture)and a height of 2 mm.Whereas in the MTRIR setup,the infrared light reflects back and forth manytimesbetweentwogoldmirrorsand simultaneously passes through the sampling silicon slice repeatedly and takes away the information of Oi and Cs by the resonance of Si-O-Si and Si-C bonds. So,the optical path is N(1+1/n2)1/2times of the thickness of a silicon wafer(b),and correspondingly the absorbance is amplified N(1+1/n2)1/2times[29].

    At the Brewster angle of 74,when Rp=0,Rs=0.70, RAu=1,the phase change of p polarization light ψ=π, the following formula can be deduced from Eq.(1)and(4).

    From Eq.(6),the sampling length is enlarged N(1+1/n2)1/2times,assuming the recorded infrared spectral signal comes from the main optical path illustrated in Scheme 1,and all other infrared signals are ignored.The infrared light passes through a silicon slice N times in different regions,thus the collected signal is an integrated one of the whole optical path,physically and statistically representing Oi and Cs in the silicon slice better.

    2 Results and discussion

    2.1Comparison of infrared traces between the conventional IR method and the MTR-IR method

    We listed two spectral traces of the same sample in Fig.3,where the upper trace was obtained from MTR-IR and the lower trace from the conventional IR. All bands bear the same shape but their absorbance strength in MTR-IR is much higher than from IR, especially for the two strongest bands of Oi at 1 107 cm-1and Cs at 605 cm-1.From the view point of quantitation,the bigger the absorbance value,the less the measurement error of Oi and Cs.Consequently cOiand cCsare more accurate and will have a lower detection limit.Because the absorption of Cs at 605 cm-1overlaps with the strongest absorption of the silicon lattice vibration(Si-Si)centered at 610 cm-1,a FZ silicon reference is needed to subtract the silicon lattice vibration.Further,the real advantage of MTRIR over the conventional IR not only lies in its ability to measure the spectra of Oi and Cs with stronger signals,but also with more sampling points for robust and representative measurements.

    In Fig.3,the peak height ratios of Oi and Cs (MTR-sample/IR-sample)were measured to be~10 and~8 respectively.Generally speaking,cCsis more difficult to be measured than cOiusing the conventional IR method,due to two factors:(1)It is very tough to extract the much smaller Si-C peak from the strong Si-Si lattice band and therefore artificial results are often derived individually,thus an accurate quantitation is nearlyimpossible.(2)TheCslevelinsingle crystalline silicon is always an order of magnitude lowerthanthatofOi.Judgedfromthesignal enhancement,it is possible to extend the limit of detection of cOiat 1×1016to 1×1015cm-3and cCsat 5× 1015to 5×1014cm-3for a 2.0 mm thick single crystalline silicon.

    We randomly chose 8 samples to measure their cOiand cCs,both by the conventional IR and the MTRIR methods,for verification of the MTR-IR method by the correlation curve in Fig.4a and 4b(calculation details please see Supporting Information:2.Data calculation).As it can be seen in Fig.4a and 4b,both cOiandcCsarelinearlycorrelated.Thelinear relationshipofbothcOiandcCsprovedthe measurement accuracy of the MTR-IR method for determination of cOiand cCsin single crystalline silicon materials.

    Fig.4 aOi concentration at 1 107 cm-1for eight samples measuredbyMTR-IRvsconventionalIR

    The interference fringes become much stronger when a silicon wafer thickness is close to the infrared wavelength.Thefringesarewellrecognizedto interrupt the IR measurement,they obscure the weak features of the spectra,as well as reduce the accuracyof quantitative analysis.Both IR and MTR-IR are able to measure a silicon slice with a thickness above 0.3 mmbecausethemultiplebeamsresultedfrom multiple reflections and transmissions are out of phase andthusthesebeamsgenerateneglectable interference fringes[29].

    However,when the sample thickness is less than 0.2 mm,the interference fringes become more obvious and cannot be ignored when measuring Oi and Cs. The amplitude of interference fringes depends on the interaction mode between the incident light and the sample.Eq.(1),(3)and(4)are used to calculate the transmittance of three modes respectively:normal incidence,Brewster angle single transmission,and MTR.For the Brewster angle incidence,RPis equal to 0,while RSis 0.70.Obviously the oscillation of transmittance is derived from the phase change of ψ, thus the p-polarization does not cause any oscillation of transmittance at the Brewster angle incidence.In (1),the whole term affects the amplitude of oscillation, while in(3)and(4),the second term bearing the phase change of ψ becomes weaker and weaker when N increases.Therefore the amplitude of oscillations must be reduced with increasing N.In Fig.5,the variation of oscillations caused by phase change(ψ)is shown for the normal incidence,the Brewster angle single transmission,and the MTR mode respectively. The amplitude of the oscillationis 0.058for the normal incidence(T),0.029 for the Brewster angle single transmission(TB),and only 0.002 5 for the MTR-IR approach(TMTR).In this case,theoretically compared to the normal incidence,the Brewster angle single transmission reduces the oscillation amplitude by a factor of 2,whereas,the MTR setup reduces the oscillation amplitude by a factor of 23.The above theoretical analysis demonstrates the overwhelming advantages of the MTR setup for measuring cOiand cCsin a thin silicon slice.

    Fig.4bCs concentration at 605 cm-1for eight samples measured by MTR-IR vs conventional IR

    Fig.5Theoretical simulation of the transmittance oscillations as a function of the wavenumber σ calculated from Eq.(1),(3)and(4), corresponding to the normal incidence, the Brewster angle single transmission and MTR respectively

    To prove the theoretical calculation,we recorded the spectra of a 0.20 mm thin silicon wafer in Fig.6with normal incidence(bottom trace as“normal incidence”),Brewsteranglesingletransmission (middle trace as“Brewster angle single transmission”) and MTR(upper trace as“MTR”)respectively.From the three curves,it is easily observed that interference fringes appear heavily for the normal incidence, moderately for the Brewster angle single transmission, and negligibly for the MTR.The interference fringe strengthratiosofMTR/Brewsteranglesingle transmission/normal incidence are close to 20∶2∶1 in most regions.

    From Fig.6,not only the interference fringes in MTR-IR are greatly attenuated,the target signals inthe region of 400 to 1 200 cm-1are also significantly magnified.Thus the signal to noise ratio is enhanced several orders of magnitude higher in MTR for much thinner silicon slices less than 0.3 mm thickness.The use of a thin silicon wafer can decrease the sampling volume,save the cost of an experiment,and fits the requirements of the solar energy industry.From both thetheoreticalcalculationsofFig.5andthe experimental spectra of Fig.6,obviously the currently used standard IR method is not suitable,whereas MTR-IR is much more powerful for measurement of Oi and Cs in a thin silicon slice less than 0.3 mm thick.That is also why MTR-IR is needed urgently for the silicon solar cell industry.

    Finally,we present the evolution of 7 infrared traces against N in Fig.7a.We have demonstrated the linear relationship of the absorbance strength of a band against the number of simplified transmission times(N) in our previous report[23].Since the detection limit of an analysis method depends on the signal to noise ratio. For the measurements of Fig.3 and Fig.7a,their baselines are flat enough,therefore,we can assign the spectral noise from 0.3~2.0 mm thick silicon samples to the instrumental noise,which possess the same value. With this hypothesis,we can deduce the detection limits of Oi and Cs,shown in Fig.7b,at different N from 6 to 12 by dividing the standard detection limits with the peak magnification times of MTR/normal incidence (peak height of Oi or Cs in Fig.7/peak height of Oi or Cs in IR-sample in Fig.3).It is observed that our MTRIR method significantly improves the detection limits of cOiand cCsfor the standard 2.0 mm thick single crystalline silicon,reaching cOiand cCsat 1×1015and 5× 1014cm-3,respectively.

    Fig.6Experimental results of interference fringes corresponding to normal incidence,Brewster angle single transmission and MTR respectively

    Fig.7(a)Variation of the absorbance of Oi and Cs in silicon wafers vs N from the MTR setup(b)Comparison of the limit of detection of cOiand cCsin silicon wafers measured with IR and MTR-IR

    3 Conclusions

    In conclusion,our experiments confirm that the MTR-IR method can reach a higher sensitivity and better spectral quality than the most commonly used conventional IR.The signal of the Oi peak at 1 107 cm-1obtained by MTR can be enhanced 10 times than by the conventional IR method,the one of the Cs peak at 605 cm-18 times.The MTR sampling length is N(1+1/n2)1/2times long as the one in the conventional IR,thus the measured cOiand cCsare morerepresentative.SinceMTR-IRreducestheinterference fringes greatly for silicon slices with a thickness thinner than 0.3 mm,it will be the most powerful tool to characterize the ultrathin silicon wafers and therefore the portable and foldable silicon devices.Due to its simple operation,MTR-IR satisfies thepracticalneedsinindustrialapplications, especially for semiconductor and silicon solar cell industries.

    Several parameters still need improvement in further works.For example,the theoretical equations are deduced from the main light path,neglecting other multiple reflections and transmissions on silicon and gold mirrors.The MTR formulas still need more experimental data for calibration.

    Considering the conclusion above,we believe that the MTR-IR method will be established as a standard method for measurement of interstitial oxygen andsubstitutionalcarbonforcrystallinesilicon materials.

    Acknowledgments:We acknowledge financial support from the National Basic Research Program of China(No. 2013CB922101)and the NSFC,No.91027019.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1]Boyle R.Thermo Scientific Application Note,2008,50640:1-4

    [2]CravenRA,KorbHW.SolidStateTechnol.,1981,24(7):55-61

    [3]Benson K E,Lin W,Martin E P.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:33-48

    [4]Abe T,Kikuchi K,Shirai S,et al.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:54-71

    [5]Rava P,Gatos H C,Lagowski J.Semiconductor Silicon 1981.PenningtonN.J.:Electrochem.Soc.Inc.,1981:232-243

    [6]Ohsawa A,Honda K,Yoshikawa M.Fujitsu Scie.Techn.J., 1980,16(3):123-134

    [7]Kishino S,Matsushita Y,Kanamori M.Appl.Phys.Lett., 1979,35(3):213-215

    [8]Ogino M.Appl.Phys.Lett.,1982,41(9):847-849

    [9]Oehrlein G S,Lindstrom J L,Corbett J W.Appl.Phys.Lett., 1982,40(3):241-243

    [10]Ohsawa A,Takizawa R,Honda K,et al.Appl.Phys.,1982, 53(8):5733-5737

    [11]Pajot B.Analusis.,1977,5:293-303

    [12]Hrostowski H J A B J.J.Chem.Phys.,1960,33:980-990

    [13]Corbett J W,Mcdonald R S,Watkins G D.J.Phys.Chem. Solids,1964,25:873-879

    [14]Kaiser W,Keck P H,Lange C F.Phys.Rev.,1956,101(4): 1264-1267

    [15]Kaiser W,Keck P H.J.Appl.Phys.,1957,28(8):882-885

    [16]Kaiser W,Frisch H L,Reiss H.Phys.Rev.,1958,112(5): 1546-1554

    [17]Bosomworth D R,Hayes W,Spray A R L,et al.Royal Soc. London,1970,317(1528):133-152

    [18]Pajot B,Deltour J P.Infrared Phys.,1967,7:195-200

    [19]Oeder R,Wagner P.Defects in SemiconductorsⅡ.N.Y.: North-Holland,1983:171-175

    [20]Kolbesen B O,Kladenovi T.Krist.Tech.,1980,15(1):k1-k3

    [21]ASTM.Designation F1188:Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption.

    [22]ASTM.Designation F1391:Test Method for Substitutional Atomic Carbon Content by Infrared Absorption.

    [23]Liu H,Xiao S,Chen Y,et al.J.Phys.Chem.B,2006,110 (36):17702-17705

    [24]Guo P,Liu H,Liu X,et al.J.Phys.Chem.C,2010,114(1): 333-341

    [25]Liu H,Venkataraman N V,Bauert T E,et al.J.Phys.Chem. A,2008,112(48):12372-12377

    [26]LiuH,VenkataramanNV,SpencerND,etal.Chemphyschem, 2008,9(14):1979-1981

    [27]LIU Hong-Bo(劉洪波).Thesis for the Doctorate of Nanjing University(南京大學(xué)博士論文).2008.

    [28]Xiao S,Liu H,Tobias B.China Patent,2006,10097859.4. 2006-11-16.

    [29]Leroueille J.Appl.Spectrosc.,1982,36(2):153-155

    [30]Baghdadi A,BullisWM,CroarkinMC,etal.J. Electrochem.Soc.,1989,136(7):2015-2024

    Sensitive and Accurate Measurement of Interstitial Oxygen and Substitutional Carbon in Single Crystalline Silicon by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)

    LU Xiao-BinXIAO Shou-Jun*
    (State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University, Nanjing 210093,China)

    A new infrared spectroscopic measurement of interstitial oxygen and substitutional carbon in silicon wafers at room temperature by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)has been established.The superiority of MTR-IR to conventional IR has been analyzed first in principle by theoretical calculation and then verified by practical measurements of single crystalline silicon samples.The advantages of MTR-IR over conventional IR with a single normal incidence are:(1)The absorption bands of interstitial oxygen at 1 107 cm-1and substitutional carbon at 605 cm-1can be enhanced linearly with the simplified transmission times(N)between 6 and 12,which consequentlyextendsthe detection limit of oxygen and carbon at least one order of magnitude lower.(2)The strength of interference fringes can be decreased for a 0.2 mm thin silicon slice by 23 times as that from the single normal incidence and 11 times as that from the Brewster angle transmission respectively.(3)Not like the conventional IR method,only collecting data from one sampling point at each measurement,MTR-IR collects data from multiple sampling points in a longer sample for one measurement.Overall,both theoretical calculations and experimental results demonstrate the high sensitivity,reliability,and reproducibility of the MTR-IR spectroscopy on the measurement ofimpurities of interstitial oxygen and substitutional carbon of single crystalline silicon.

    multiple transmission-reflection(MTR);infrared Spectroscopy(IR);interstitial oxygen;substitutional carbon

    O611.5

    A

    1001-4861(2016)02-0351-09

    10.11862/CJIC.2016.044

    2015-11-03。收修改稿日期:2015-12-03。

    國家重點基礎(chǔ)研究發(fā)展計劃(No.2013CB922101),國家自然科學(xué)基金(No.91027019)資助項目。

    *通信聯(lián)系人。E-mail:sjxiao@nju.edu.cn

    猜你喜歡
    代位單晶硅南京大學(xué)
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    代位追償引發(fā)糾紛
    公民與法治(2022年6期)2022-07-26 06:16:20
    論法國代位清償制度及對我國的啟示
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    論抵押權(quán)物上代位的實現(xiàn)制度
    法制博覽(2018年22期)2018-01-23 03:31:24
    單晶硅回歸
    能源(2016年2期)2016-12-01 05:10:32
    單晶硅各向異性濕法刻蝕的形貌控制
    添加劑對單晶硅太陽電池表面織構(gòu)化的影響
    再保險人適用代位求償權(quán)之法理分析
    法制博覽(2016年36期)2016-02-02 14:17:03
    Comprendre et s'entendre
    日韩伦理黄色片| 在线观看免费午夜福利视频| 欧美激情高清一区二区三区| 男女之事视频高清在线观看 | 91麻豆精品激情在线观看国产 | 精品高清国产在线一区| 午夜久久久在线观看| 亚洲精品乱久久久久久| 久久久久久亚洲精品国产蜜桃av| 欧美在线一区亚洲| 亚洲国产精品一区二区三区在线| 国产真人三级小视频在线观看| 高清欧美精品videossex| 伊人亚洲综合成人网| 亚洲自偷自拍图片 自拍| 中文字幕精品免费在线观看视频| 校园人妻丝袜中文字幕| 精品卡一卡二卡四卡免费| 脱女人内裤的视频| 午夜福利影视在线免费观看| 91九色精品人成在线观看| 中文乱码字字幕精品一区二区三区| 国产精品免费视频内射| 伦理电影免费视频| 丝袜美足系列| 9191精品国产免费久久| 女人爽到高潮嗷嗷叫在线视频| 热re99久久国产66热| 又黄又粗又硬又大视频| 亚洲精品第二区| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 亚洲九九香蕉| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美一区二区综合| 久久精品亚洲av国产电影网| 国产黄频视频在线观看| 亚洲欧洲精品一区二区精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产一区二区| 免费不卡黄色视频| 日本av手机在线免费观看| 热re99久久国产66热| 97人妻天天添夜夜摸| 亚洲精品在线美女| a 毛片基地| 久久国产精品影院| 国精品久久久久久国模美| 国产成人精品久久二区二区免费| av电影中文网址| 在线观看www视频免费| 丁香六月天网| 日本黄色日本黄色录像| 黄频高清免费视频| 久久精品成人免费网站| 免费人妻精品一区二区三区视频| 欧美黑人精品巨大| 亚洲精品国产av蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 日本色播在线视频| 别揉我奶头~嗯~啊~动态视频 | 99热全是精品| 在线天堂中文资源库| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 国产免费又黄又爽又色| 视频在线观看一区二区三区| 一边亲一边摸免费视频| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 这个男人来自地球电影免费观看| 看免费av毛片| 欧美+亚洲+日韩+国产| 国产在线一区二区三区精| 夫妻午夜视频| 久久性视频一级片| 永久免费av网站大全| 深夜精品福利| 十八禁网站网址无遮挡| 黑丝袜美女国产一区| 免费女性裸体啪啪无遮挡网站| 视频区欧美日本亚洲| 国产片内射在线| 高清av免费在线| 两个人看的免费小视频| 免费久久久久久久精品成人欧美视频| 午夜福利免费观看在线| 欧美变态另类bdsm刘玥| 欧美人与善性xxx| 国产欧美亚洲国产| 日韩,欧美,国产一区二区三区| 纵有疾风起免费观看全集完整版| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 热99久久久久精品小说推荐| 后天国语完整版免费观看| av在线播放精品| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 亚洲国产欧美在线一区| 国产视频一区二区在线看| 国产91精品成人一区二区三区 | 赤兔流量卡办理| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 久久免费观看电影| www.熟女人妻精品国产| 国产精品久久久久久精品古装| www.999成人在线观看| 观看av在线不卡| 丁香六月欧美| 国产野战对白在线观看| 成年av动漫网址| 另类亚洲欧美激情| 欧美精品一区二区大全| 婷婷色综合大香蕉| 国产精品av久久久久免费| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美视频二区| 亚洲精品一二三| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| 一本综合久久免费| 国产一级毛片在线| 国产日韩欧美亚洲二区| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 国产日韩欧美亚洲二区| 国产精品二区激情视频| 亚洲黑人精品在线| a级毛片在线看网站| 国产女主播在线喷水免费视频网站| 久久免费观看电影| 又大又爽又粗| 性少妇av在线| 亚洲国产欧美在线一区| 一级毛片我不卡| 男人添女人高潮全过程视频| 亚洲人成电影观看| 好男人视频免费观看在线| 国产一区有黄有色的免费视频| 天天躁夜夜躁狠狠久久av| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲| 久久久亚洲精品成人影院| 亚洲情色 制服丝袜| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| 日日夜夜操网爽| 丝袜在线中文字幕| 高潮久久久久久久久久久不卡| 免费一级毛片在线播放高清视频 | 又黄又粗又硬又大视频| www.999成人在线观看| 日本vs欧美在线观看视频| 五月天丁香电影| 蜜桃在线观看..| 亚洲欧洲国产日韩| 九色亚洲精品在线播放| videosex国产| 搡老乐熟女国产| 狠狠精品人妻久久久久久综合| 欧美日韩综合久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 中文字幕另类日韩欧美亚洲嫩草| 男女高潮啪啪啪动态图| 国产爽快片一区二区三区| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 波多野结衣av一区二区av| 又大又爽又粗| 好男人视频免费观看在线| 一区福利在线观看| 99久久精品国产亚洲精品| 欧美日韩精品网址| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看 | 99国产精品99久久久久| 考比视频在线观看| 日韩伦理黄色片| www日本在线高清视频| 亚洲男人天堂网一区| 亚洲国产av新网站| 在线观看www视频免费| 国产av精品麻豆| 男女国产视频网站| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频 | 免费少妇av软件| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 国产在线免费精品| 国产一区二区 视频在线| av在线app专区| 免费看十八禁软件| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 免费不卡黄色视频| 少妇粗大呻吟视频| 久久天躁狠狠躁夜夜2o2o | 大话2 男鬼变身卡| 亚洲欧美日韩高清在线视频 | 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 永久免费av网站大全| 国产1区2区3区精品| 美女中出高潮动态图| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 国产高清videossex| 韩国精品一区二区三区| 欧美日韩视频精品一区| 在线 av 中文字幕| 免费高清在线观看日韩| 亚洲欧美日韩高清在线视频 | 日韩制服丝袜自拍偷拍| 午夜av观看不卡| 99国产精品一区二区三区| 久久精品国产亚洲av涩爱| 啦啦啦在线观看免费高清www| 热re99久久精品国产66热6| 国产av精品麻豆| 久久久久久久久免费视频了| 亚洲人成网站在线观看播放| 欧美黄色淫秽网站| 天天躁夜夜躁狠狠躁躁| 天天躁夜夜躁狠狠久久av| 国产成人欧美在线观看 | 老汉色av国产亚洲站长工具| 国产片内射在线| 亚洲成人免费av在线播放| 免费人妻精品一区二区三区视频| 老司机在亚洲福利影院| 亚洲欧美精品自产自拍| 两个人看的免费小视频| 婷婷色av中文字幕| 国产欧美日韩精品亚洲av| 国产精品国产三级专区第一集| 亚洲国产av新网站| 久久国产亚洲av麻豆专区| 亚洲中文字幕日韩| 一区福利在线观看| 日韩av不卡免费在线播放| 搡老乐熟女国产| 欧美 日韩 精品 国产| 国产免费视频播放在线视频| 亚洲av综合色区一区| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 成人三级做爰电影| 午夜两性在线视频| 岛国毛片在线播放| 欧美精品一区二区免费开放| 99久久综合免费| 国产日韩欧美亚洲二区| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 日韩中文字幕视频在线看片| 少妇 在线观看| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 亚洲色图综合在线观看| 又紧又爽又黄一区二区| 欧美变态另类bdsm刘玥| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 国产一区二区 视频在线| 日韩制服丝袜自拍偷拍| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 国产男女内射视频| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀 | 美女国产高潮福利片在线看| av视频免费观看在线观看| 别揉我奶头~嗯~啊~动态视频 | 九色亚洲精品在线播放| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 少妇被粗大的猛进出69影院| 国产精品一国产av| 午夜日韩欧美国产| 久久亚洲精品不卡| 亚洲人成电影观看| 亚洲国产最新在线播放| 精品视频人人做人人爽| 老鸭窝网址在线观看| 国产精品一区二区免费欧美 | 日韩视频在线欧美| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 爱豆传媒免费全集在线观看| 一边摸一边抽搐一进一出视频| 尾随美女入室| 操美女的视频在线观看| 亚洲一区中文字幕在线| 国产又色又爽无遮挡免| av福利片在线| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 两性夫妻黄色片| 丝袜美足系列| 久久狼人影院| 国产熟女午夜一区二区三区| 国语对白做爰xxxⅹ性视频网站| 考比视频在线观看| 国产色视频综合| 一本综合久久免费| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲 | xxxhd国产人妻xxx| 韩国精品一区二区三区| 亚洲七黄色美女视频| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 色精品久久人妻99蜜桃| 丁香六月欧美| 午夜福利乱码中文字幕| 日本午夜av视频| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 精品国产一区二区久久| 下体分泌物呈黄色| 久久久国产精品麻豆| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 一本综合久久免费| 深夜精品福利| 成人国语在线视频| 亚洲欧美一区二区三区国产| 亚洲av日韩精品久久久久久密 | 高清欧美精品videossex| 免费看不卡的av| 国产成人91sexporn| 人妻人人澡人人爽人人| 成人午夜精彩视频在线观看| 国产成人91sexporn| 日韩一区二区三区影片| 免费高清在线观看日韩| 久久国产精品人妻蜜桃| 婷婷成人精品国产| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 午夜福利乱码中文字幕| 午夜老司机福利片| 秋霞在线观看毛片| 免费看十八禁软件| 久久久久久久精品精品| 亚洲国产看品久久| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 国产免费现黄频在线看| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 中文字幕人妻丝袜制服| 黄片播放在线免费| 欧美精品高潮呻吟av久久| 日本av免费视频播放| 亚洲国产精品成人久久小说| 九草在线视频观看| 一级毛片电影观看| 亚洲少妇的诱惑av| 免费观看a级毛片全部| 在线 av 中文字幕| 男人添女人高潮全过程视频| 黄色片一级片一级黄色片| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 国产精品免费大片| 亚洲精品一区蜜桃| 国产一区二区三区av在线| 下体分泌物呈黄色| 国产精品av久久久久免费| 脱女人内裤的视频| 国产一卡二卡三卡精品| 中文精品一卡2卡3卡4更新| 黄色 视频免费看| 色精品久久人妻99蜜桃| 丁香六月欧美| 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| 亚洲熟女毛片儿| 伊人亚洲综合成人网| 高潮久久久久久久久久久不卡| 成年动漫av网址| 久久这里只有精品19| 秋霞在线观看毛片| 国产免费现黄频在线看| 丰满迷人的少妇在线观看| 免费少妇av软件| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| av线在线观看网站| 国产男女超爽视频在线观看| 一级毛片女人18水好多 | 成年女人毛片免费观看观看9 | 久久人人97超碰香蕉20202| 男的添女的下面高潮视频| 黄色毛片三级朝国网站| av视频免费观看在线观看| 观看av在线不卡| 美女福利国产在线| h视频一区二区三区| 国产黄频视频在线观看| 9色porny在线观看| 少妇精品久久久久久久| 后天国语完整版免费观看| 亚洲欧美清纯卡通| 国产不卡av网站在线观看| 99久久精品国产亚洲精品| 妹子高潮喷水视频| 日韩人妻精品一区2区三区| 我要看黄色一级片免费的| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 日韩视频在线欧美| 99热网站在线观看| 国产精品一二三区在线看| 51午夜福利影视在线观看| 91精品伊人久久大香线蕉| av网站在线播放免费| 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 婷婷成人精品国产| videosex国产| 天堂8中文在线网| 国产欧美日韩一区二区三 | 国产精品国产三级专区第一集| 老司机深夜福利视频在线观看 | 99国产综合亚洲精品| 一级毛片女人18水好多 | 91麻豆av在线| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 国产欧美亚洲国产| 国产精品欧美亚洲77777| 巨乳人妻的诱惑在线观看| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 久久精品亚洲av国产电影网| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 日日爽夜夜爽网站| 国产欧美日韩精品亚洲av| 欧美大码av| 人妻 亚洲 视频| 爱豆传媒免费全集在线观看| 男人舔女人的私密视频| 美女主播在线视频| 狂野欧美激情性bbbbbb| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 丰满迷人的少妇在线观看| 成人午夜精彩视频在线观看| 中文字幕色久视频| 欧美亚洲日本最大视频资源| 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 精品久久久久久久毛片微露脸 | 国产极品粉嫩免费观看在线| 亚洲成人免费电影在线观看 | 男人爽女人下面视频在线观看| 免费高清在线观看日韩| 亚洲成人手机| 老汉色av国产亚洲站长工具| 看免费av毛片| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 大码成人一级视频| 日本欧美视频一区| 制服诱惑二区| 久热爱精品视频在线9| 日韩av不卡免费在线播放| 天天躁日日躁夜夜躁夜夜| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看 | a 毛片基地| 国产亚洲精品久久久久5区| 最近手机中文字幕大全| 久久国产精品大桥未久av| 99久久99久久久精品蜜桃| 国产有黄有色有爽视频| 99九九在线精品视频| 久久人妻福利社区极品人妻图片 | 国产欧美日韩精品亚洲av| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| svipshipincom国产片| 两个人免费观看高清视频| 七月丁香在线播放| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 免费在线观看影片大全网站 | √禁漫天堂资源中文www| 日本五十路高清| e午夜精品久久久久久久| 又紧又爽又黄一区二区| 51午夜福利影视在线观看| 热99国产精品久久久久久7| 精品久久久久久久毛片微露脸 | 女人精品久久久久毛片| 三上悠亚av全集在线观看| 国产精品秋霞免费鲁丝片| 欧美+亚洲+日韩+国产| 观看av在线不卡| 亚洲av在线观看美女高潮| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 一区二区av电影网| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站 | 久久青草综合色| 日本黄色日本黄色录像| 我的亚洲天堂| 久久精品国产亚洲av涩爱| 久久久久久久久免费视频了| 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美在线精品| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| 久久久久国产一级毛片高清牌| 亚洲欧美色中文字幕在线| 又粗又硬又长又爽又黄的视频| 国产在线观看jvid| 久久久久国产一级毛片高清牌| 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜喷水一区| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 大片电影免费在线观看免费| 在线观看免费视频网站a站| 亚洲欧洲精品一区二区精品久久久| 欧美变态另类bdsm刘玥| 国产人伦9x9x在线观看| 亚洲精品一二三| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 中文字幕高清在线视频| 老司机影院毛片| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| 无限看片的www在线观看| 国产亚洲精品久久久久5区| 国产片特级美女逼逼视频| 一级,二级,三级黄色视频| 一区二区三区激情视频| 免费在线观看黄色视频的| 日韩制服丝袜自拍偷拍| 狂野欧美激情性xxxx| 午夜福利一区二区在线看| 高潮久久久久久久久久久不卡| 亚洲av日韩精品久久久久久密 | 啦啦啦啦在线视频资源| 日本色播在线视频| av线在线观看网站| 一本色道久久久久久精品综合| 亚洲欧美色中文字幕在线| 2018国产大陆天天弄谢| 国产一卡二卡三卡精品| 亚洲,一卡二卡三卡| 国产有黄有色有爽视频| 欧美日韩精品网址| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 国产成人欧美在线观看 | 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| 亚洲人成电影观看| 亚洲专区中文字幕在线| 美女扒开内裤让男人捅视频| 十八禁网站网址无遮挡| 一级毛片我不卡| 麻豆av在线久日|